Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Contamination de surfaces – Nettoyage“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Contamination de surfaces – Nettoyage" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Contamination de surfaces – Nettoyage"
Topie, Emmanuel, und Anne Gogny. „Conduite à tenir face à un chien ou un chat atteint ou suspect d'être atteint par une maladie transmissible“. Le Nouveau Praticien Vétérinaire canine & féline 18, Nr. 80 (2021): 11–17. http://dx.doi.org/10.1051/npvcafe/80011.
Der volle Inhalt der QuelleBissong, M. E. A., und M. Moukou. „Mobile phones of hospital workers: a potential reservoir for the transmission of pathogenic bacteria“. African Journal of Clinical and Experimental Microbiology 23, Nr. 4 (24.10.2022): 407–15. http://dx.doi.org/10.4314/ajcem.v23i4.9.
Der volle Inhalt der QuelleTrimoulinard, A., C. Tessier, L. Atiana und E. Cardinale. „Salmonelles et saucisses à la Réunion“. Revue d’élevage et de médecine vétérinaire des pays tropicaux 67, Nr. 3 (30.06.2015): 115. http://dx.doi.org/10.19182/remvt.10165.
Der volle Inhalt der QuelleSentis, M. L., Ph Delaporte, M. Gastaud, W. Marine und O. Utéza. „Nettoyage de surfaces de grandes dimensions par laser à excimères“. Le Journal de Physique IV 11, PR7 (Oktober 2001): Pr7–127—Pr7–128. http://dx.doi.org/10.1051/jp4:2001740.
Der volle Inhalt der QuelleDegrigny, C., O. Morel, J. Morvan, J. M. Maire und S. Boucard. „Nettoyage et stabilisation de surfaces metalliques peintes: application a la restauration d'une voiture autochenille“. Studies in Conservation 40, Nr. 4 (November 1995): 227. http://dx.doi.org/10.2307/1506497.
Der volle Inhalt der QuelleGuillaumin, Bruno. „Nettoyage et désinfection dans l’industrie de l’embouteillage, des aliments transformés et des surfaces ouvertes“. Bulletin de l'Académie Vétérinaire de France, Nr. 2_sup (2002): 49. http://dx.doi.org/10.4267/2042/61576.
Der volle Inhalt der QuelleDegrigny, C., O. Morel, J. Morvan, J. M. Maire und S. Boucard. „Nettoyage et stabilisation de surfaces métalliques peintes: application à la restauration d'une voiture autochenille“. Studies in Conservation 40, Nr. 4 (November 1995): 227–36. http://dx.doi.org/10.1179/sic.1995.40.4.227.
Der volle Inhalt der QuelleBourgeois, Denis, und Marta Mazur. „Prophylaxie et Orthodontie : zoom sur l’espace interdentaire“. Revue d'Orthopédie Dento-Faciale 58, Nr. 3 (September 2024): 317–28. http://dx.doi.org/10.1051/odf/2024030.
Der volle Inhalt der QuelleBrouillaud-Delattre, A., A. Kobilinsky, O. Cerf, S. Aligé, G. Gerlot und J. M. Herry. „Méthode de mesure de l'efficacité des procédés de nettoyage et de désinfection des surfaces ouvertes“. Le Lait 74, Nr. 1 (1994): 79–88. http://dx.doi.org/10.1051/lait:199417.
Der volle Inhalt der QuelleCasel, A., E. Sasse und H. Kibbel. „B-contamination of Si-surfaces“. Fresenius' Zeitschrift für analytische Chemie 333, Nr. 4-5 (Januar 1989): 522–23. http://dx.doi.org/10.1007/bf00572368.
Der volle Inhalt der QuelleDissertationen zum Thema "Contamination de surfaces – Nettoyage"
Abbadie, Alexandra. „Nettoyage chimique humide de surfaces silicium (appliqué au recyclage), nettoyage chimique humide et préparation de surface d'alliages silicium-germanium et de couches de germanium pur“. Toulouse 3, 2004. http://www.theses.fr/2004TOU30082.
Der volle Inhalt der QuelleMettler, Eric. „Etude des caractéristiques microbiologiques et physico-chimiques, après nettoyage et désinfection, de surfaces colonisées par des biofilms, dans divers ateliers de l'industrie alimentaire et au laboratoire“. Dijon, 1996. http://www.theses.fr/1996DIJOS067.
Der volle Inhalt der QuelleLelièvre, Caroline. „Nettoyabilité d'équipements fermés agro-industriels : modélisation des cinétiques de nettoyage de surfaces contaminés par des spores de Bacillus et caractérisation de l'influence de l'hydrodynamique“. Compiègne, 2001. http://www.theses.fr/2001COMP1355.
Der volle Inhalt der QuelleDari, Carolina. „New innovative methods for cleaning surfaces using foams based on bio-based surfactants“. Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILR038.
Der volle Inhalt der QuelleIn the food industry, surfaces contaminated with microorganisms are a major cause of cross-contamination, resulting in foodborne illness and food waste. Despite thorough cleaning efforts, foodborne illness rates are rising, suggesting current practices are insufficient. Traditional cleaning methods also consume large amounts of water, energy, and chemicals, raising sustainability and environmental concerns. The industry is exploring more sustainable alternatives, such as dry-cleaning methods, eco-friendly products, and advanced control systems, to reduce resource consumption while maintaining hygiene standards. One promising alternative for cleaning closed surfaces is the use of foam, a method already used for open surfaces. Foam cleaning can potentiallyreduce water, energy, and chemical consumption. The aim of this thesis is to study the links between foam properties and removal of microorganisms from both open and closed surfaces, and explores innovative cleaning techniques to develop more sustainable and efficient methods for the food industry.The first part is dedicated to the cleaning of open surfaces, i.e., static foam cleaning. Here we study the removal of hydrophilic and hydrophobic Bacillus subtilis spores from stainless steel surfaces by using foams. The model foams are formulated with bio-based surfactants (10-hydroxystearic acid and sodium cocoyl isethionate). The relationship between bubbles size and foam liquid fraction and the decontamination efficiency is investigated to determine the mechanisms of foam action. Foams themselves can decontaminate surface soiled with spores, most probably by wiping and imbibition mechanisms. Foams with smaller bubbles size have the highestdecontamination efficiency. Under the conditions studied, the liquid fraction is not the main parameter governing the decontamination efficiency.The second part is dedicated to the cleaning of closed surfaces, i.e., foam flow cleaning. Here we study the efficiency of foam flow formulated with a model surfactant (Sodium dodecyl sulfate) in comparison with foam flow formulated with bio-based surfactants (alkyl polyglucosides) to remove hydrophilic spores from pipes. We demonstrate similar efficiency for short cleaning times). In addition, through a life cycle assessment we demonstrate the reduction of several environmental impacts with the use of bio-based surfactant compared to the model surfactant.The third part is dedicated to the stabilization of water-in-water emulsions and the production of a foamulsion based ont these emulsions. We study the stabilization of PEG-in-Dextran emulsions with lamellar gel networks based on alkyl polyglucosides and fatty alcohols. We show that highly stable emulsions are obtained over a long period of time for specific formulation conditions. We also demonstrate for the first time the production of a foamulsion based on water-in-water emulsions
Tauveron, Grégoire. „Propriétés de surface des spores de Bacillus cereus et capacité de contamination des équipements agro-industriels : influence des conditions environnementales“. Compiègne, 2006. http://www.theses.fr/2006COMP1650.
Der volle Inhalt der QuelleBacillus cereus, responsible for food toxi-infections, frequently contaminates heated-processed foods. Indeed, beyond its resistance to heat and chemical treatment, the B. Cereus spore possesses a strong capacity to adhere to inert materials such as steel and therefore may be considered as a major food contamination risk. Mastery of equipment hygiene requires a deeper knowledge of factors which influence B. Cereus spores' adhesion capacity and their resistance to cleaning techniques. The adhesion of micro-organisms is linked to their surface properties, which may vary according to the environmental conditions they encounter. Ln the course of this study, we reveal a wide variability in surface properties (morphology, hydrophobia, surface protein content) from one spore strain to another. These differences are associated with a significant variability in each strain's capacity to adhere to steel and in its resistance to cleaning-in-place (CIP). Close examination of these data has shown that the longer their appendages, the stronger the spores' adhesion, whereas resistance to cleaning-in-place is inversely proportional to the size of the exosporia. The use of mutants (from B. Cereus and B. Anthracis) allowed us to show that brush-like exosporial filaments (made up of BclA) inhibit resistance to cleaning. An absence of the ExsY protein stops the exosporium from developing and leads to a consequent decrease in adhesion and an increase in resistance to cleaning. Thus, surface contamination risk is higher for strains with long appendages and small exosporia. Furthermore, spores' surface properties are affected by the conditions encountered by the bacteria. We have studied the influence of conditions likely to be encountered by spores in the agro-food industry. Sporulation at high temperature and sporulation in a liquid environment respectively affect the exosporium's size and integrity and result in lesser adhesion. Ln addition, the application of hydrodynamic conditions close to those encountered in the agro-food industry, induces greater or lesser damage to the exosporia according to the conditions in which they sporulated. This damage leads to a decrease in spore adhesion coupled with an increase in their resistance to eleaning. These behavioural differences must therefore be taken into account in analytical procedures applied in the determination of risk associated with the presence of B. Cereus
Negri, Fabienne. „Traitement des plaquettes de GaAs (100) de grand diamètre : mise au point du procédé, préparation et caractérisations de surface pour l'épitaxie par jets moléculaires“. Toulouse 3, 2001. http://www.theses.fr/2001TOU30208.
Der volle Inhalt der QuelleFeve, Séverine. „Validation du nettoyage appliquée à du matériel de développement industriel“. Bordeaux 2, 2000. http://www.theses.fr/2000BOR2P055.
Der volle Inhalt der QuelleDoumbia, Faman. „Étude du nettoyage de surfaces encrassées par des produits carnés“. 63-Aubière : Impr. U.E.R. Sci, 1985. http://catalogue.bnf.fr/ark:/12148/cb36110021j.
Der volle Inhalt der QuelleSergent, Delphine. „Validation d'un système de nettoyage automatique“. Bordeaux 2, 2000. http://www.theses.fr/2000BOR2P071.
Der volle Inhalt der QuelleCôte, Sophie. „Validation de procédures de nettoyage dans un laboratoire industriel de recherche et développement galénique“. Paris 5, 1994. http://www.theses.fr/1994PA05P172.
Der volle Inhalt der QuelleBücher zum Thema "Contamination de surfaces – Nettoyage"
1947-, Kohli Rajiv, und Mittal K. L. 1945-, Hrsg. Developments in surface contamination and cleaning: Fundamentals and applied aspects. Norwich, NY, U.S.A: W. Andrew Pub., 2008.
Den vollen Inhalt der Quelle finden1945-, Mittal K. L., und ScienceDirect (Online service), Hrsg. Developments in Surface Contamination and Cleaning, Vol. 3: Methods for Removal of Particle Contaminants. Burlington: William Andrew, Incorporated, 2011.
Den vollen Inhalt der Quelle findenMarie-Noëlle, Bellon-Fontaine, und Fourniat Jacky, Hrsg. Adhésion des micro-oragmismes aux surfaces: Biofilms - nettoyage - désinfection. Paris: Technique et Documentation, 1995.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Contamination analyses of technology mirror assembly optical surfaces. Westmont, Ill: McCrone Associates, Inc., 1991.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Analysis of particulate contanination on tape lift samples from the VETA optical surfaces. Westmont, Ill: McCrone Associates, inc., 1992.
Den vollen Inhalt der Quelle findenP, Cruikshank Dale, und United States. National Aeronautics and Space Administration., Hrsg. The surfaces of Pluto and Charon. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Den vollen Inhalt der Quelle findenBecker, Christopher H. Report on chemical analyses of provided samples: Final report. Huntsville, AL: NASA Marshall Space Flight Center, 1993.
Den vollen Inhalt der Quelle findenBecker, Christopher H. Report on chemical analyses of provided samples: Progress report, March 1, 1993. Huntsville, AL: NASA Marshall Space Flight Center, 1993.
Den vollen Inhalt der Quelle findenGeorge C. Marshall Space Flight Center., Hrsg. Report on chemical analyses of provided samples: Final report. Huntsville, AL: NASA Marshall Space Flight Center, 1993.
Den vollen Inhalt der Quelle findenGeorge C. Marshall Space Flight Center., Hrsg. Report on chemical analyses of provided samples: Progress report, March 1, 1993. Huntsville, AL: NASA Marshall Space Flight Center, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Contamination de surfaces – Nettoyage"
Shapiro, Arye, und Charles M. Falco. „Implications of Particle Contamination for Thin Film Growth“. In Particles on Surfaces 2, 245–51. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0531-6_20.
Der volle Inhalt der QuelleDean, Robert L. „Implications of Particulate Contamination in E-Beam Lithography“. In Particles on Surfaces 2, 253–65. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0531-6_21.
Der volle Inhalt der QuelleBearda, Twan, Ief Vander Mot, Kristel Van den Broeck, Nausikaä Van Hoornick, Jan Van Hoeymissen und Paul W. Mertens. „Metal Contamination on Silicon Surfaces from Solvents“. In Solid State Phenomena, 269–74. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-06-x.269.
Der volle Inhalt der QuelleHobbs, Philip C. D., J. Samuel Batchelder, Vaughn P. Gross und Kenneth D. Murray. „Ultra-Clean Air Ionizers for Suppression of Particulate Surface Contamination“. In Particles on Surfaces 3, 249–56. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4899-2367-7_19.
Der volle Inhalt der QuelleLogan, M. A., D. L. O’Meara, J. R. Monkowski und H. Cowles. „Particulate Contamination on Wafer Surfaces Resulting from Hexamethyldisilazane/Water Interactions“. In Particles on Surfaces 1, 57–68. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9531-1_5.
Der volle Inhalt der QuelleLewis, A. F., und R. J. Rogers. „Implications of Particulate Contamination in the Performance of Floppy Disks“. In Particles on Surfaces 1, 113–25. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9531-1_9.
Der volle Inhalt der QuelleZhao, Jie, Lingjie Song und Weihua Ming. „Antifogging and Frost-Resisting Polymeric Surfaces“. In Contamination Mitigating Polymeric Coatings for Extreme Environments, 185–214. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/12_2017_42.
Der volle Inhalt der QuelleKatagi, Toshiyuki. „Photodegradation of Pesticides on Plant and Soil Surfaces“. In Reviews of Environmental Contamination and Toxicology, 1–78. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4419-9098-3_1.
Der volle Inhalt der QuelleWilson, C. E., und D. A. Scheer. „Identification and Characterization of Nonmetallic Particulate Contamination Removed from Aerospace Components“. In Particles on Surfaces 2, 171–80. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0531-6_13.
Der volle Inhalt der QuelleJones, Wendy, John McDowell, Walter Prater und Garvin Stone. „Wear Resistant Coatings Reduce Particulate Contamination in a Magnetic Disk Drive“. In Particles on Surfaces 2, 217–34. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0531-6_18.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Contamination de surfaces – Nettoyage"
Schwierskott, Michael, und Mark Berdovich. „Presenting a rapid, dry method for measuring particulate contamination on surfaces“. In Optical Modeling and Performance Predictions XIV, herausgegeben von Mark A. Kahan und Catherine Merrill, 35. SPIE, 2024. http://dx.doi.org/10.1117/12.3028243.
Der volle Inhalt der QuelleLecaj, Elida, Bahri Sinani, Adelina Haskaj, Berat Sinani, Majlinda Ramadani und Blerta Retkoceri. „ASSESSING THE AGRICULTURAL CONSEQUENCES OF LANDFILL KELMEND-ASSOCIATED HEAVY METAL CONTAMINATION IN RAHOVE VILLAGE“. In 24th SGEM International Multidisciplinary Scientific GeoConference 24, 27–36. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/1.1/s01.04.
Der volle Inhalt der QuelleSaylor, W. P., und M. C. Hanichak. „Contamination Effects On Optical Surfaces“. In 33rd Annual Techincal Symposium, herausgegeben von John C. Stover. SPIE, 1990. http://dx.doi.org/10.1117/12.962861.
Der volle Inhalt der QuelleBaxter, R., A. Jones und H. Baxter. „Quantification of protein contamination on surfaces“. In 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383563.
Der volle Inhalt der QuelleSilvestri, Zaccaria, Shéhérazade Azouigui, Patrick Pinot und Mark Gee. „Roughness and contamination characterizations of worn surfaces“. In 16th International Congress of Metrology, herausgegeben von J. R. Filtz, B. Larquier, P. Claudel und J. O. Favreau. Les Ulis, France: EDP Sciences, 2013. http://dx.doi.org/10.1051/metrology/201308001.
Der volle Inhalt der QuelleBatchelder, J. Samuel. „Review Of Contamination Detection On Patterned Surfaces“. In Microlithography Conference, herausgegeben von John S. Batchelder, Daniel J. Ehrlich und Jeff Y. Tsao. SPIE, 1987. http://dx.doi.org/10.1117/12.940381.
Der volle Inhalt der QuelleBuch, J. D., und M. K. Barsh. „Analysis Of Particulate Contamination Buildup On Surfaces“. In Technical Symposium Southeast, herausgegeben von A. Peter M. Glassford. SPIE, 1987. http://dx.doi.org/10.1117/12.967066.
Der volle Inhalt der QuelleLobmeyer, Lynette D., und Larkin Carey. „Optical cleaning to remove particles for JWST mirror surfaces“. In Systems Contamination: Prediction, Control, and Performance 2018, herausgegeben von Carlos E. Soares, Eve M. Wooldridge und Bruce A. Matheson. SPIE, 2018. http://dx.doi.org/10.1117/12.2320691.
Der volle Inhalt der QuelleKirchner, Robert. „A model of preflight snow contamination on aircraft surfaces“. In 32nd Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-802.
Der volle Inhalt der QuelleGibbs, Timothy J., und David W. Messinger. „NEFDS contamination model parameter estimation of powder contaminated surfaces“. In SPIE Defense + Security, herausgegeben von Miguel Velez-Reyes und David W. Messinger. SPIE, 2016. http://dx.doi.org/10.1117/12.2222302.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Contamination de surfaces – Nettoyage"
Rawool-Sullivan, M. W., J. G. Conaway und D. W. MacArthur. Alpha contamination assessment for D&D activities: Monitoring concrete surfaces. Office of Scientific and Technical Information (OSTI), Februar 1996. http://dx.doi.org/10.2172/219246.
Der volle Inhalt der QuelleSelwyn, G. S., und R. Hicks. Atmospheric pressure plasma cleaning of contamination surfaces. 1997 mid-year progress report. Office of Scientific and Technical Information (OSTI), Juni 1997. http://dx.doi.org/10.2172/13661.
Der volle Inhalt der QuelleMedina, Victor, Chandler Noel und Jose Mattei-Sosa. Conceptual development and testing of a chitosan/graphene oxide (CSGO) “bandage” to isolate and remove chemical contamination from surfaces. Engineer Research and Development Center (U.S.), Juli 2019. http://dx.doi.org/10.21079/11681/33403.
Der volle Inhalt der QuelleGoddard, Alan, und Rachel Pateman. Exploring the chopping board microbiome – lessons learned. Food Standards Agency, November 2023. http://dx.doi.org/10.46756/sci.fsa.eaf949.
Der volle Inhalt der QuelleBrubaker, K. L., A. K. Draugelis, J. F. Schneider, K. A. Billmark und R. E. Zimmerman. X-ray fluorescence investigation of heavy-metal contamination on metal surfaces in the Pilot Plant Complex, Aberdeen Proving Ground, Maryland. Office of Scientific and Technical Information (OSTI), Juli 1995. http://dx.doi.org/10.2172/184039.
Der volle Inhalt der QuelleBryant, C. A., S. A. Wilks und C. W. Keevil. Survival of SARS-CoV-2 on the surfaces of food and food packaging materials. Food Standards Agency, November 2022. http://dx.doi.org/10.46756/sci.fsa.kww583.
Der volle Inhalt der QuelleGillor, Osnat, Stefan Wuertz, Karen Shapiro, Nirit Bernstein, Woutrina Miller, Patricia Conrad und Moshe Herzberg. Science-Based Monitoring for Produce Safety: Comparing Indicators and Pathogens in Water, Soil, and Crops. United States Department of Agriculture, Mai 2013. http://dx.doi.org/10.32747/2013.7613884.bard.
Der volle Inhalt der QuelleArrowsmith, Helen, Lewis Wallis, Christopher James, Nigel Blitz und Ann Wood. International review of the literature and guidance on food allergen cleaning. Food Standards Agency, Juni 2023. http://dx.doi.org/10.46756/sci.fsa.tad202.
Der volle Inhalt der QuelleChoudhary, Ruplal, Victor Rodov, Punit Kohli, Elena Poverenov, John Haddock und Moshe Shemesh. Antimicrobial functionalized nanoparticles for enhancing food safety and quality. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7598156.bard.
Der volle Inhalt der QuelleJones, Sara, Rebecca Ellis, Susan Dvorak, Abbie Dolling, Tara McNamara, Daisy Bradford, Amy Brown et al. Exploring the safety of at home powdered formula preparation. Food Standards Agency, Oktober 2023. http://dx.doi.org/10.46756/sci.fsa.zhk828.
Der volle Inhalt der Quelle