Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Constrained state estimation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Constrained state estimation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Constrained state estimation"
Gomez-Quiles, Catalina, Hugo A. Gil, Antonio de la Villa Jaen und Antonio Gomez-Exposito. „Equality-constrained bilinear state estimation“. IEEE Transactions on Power Systems 28, Nr. 2 (Mai 2013): 902–10. http://dx.doi.org/10.1109/tpwrs.2012.2215058.
Der volle Inhalt der QuelleQuintana, V. H., B. W. Scott und A. Y. Chikhani. „Constrained Power System State Estimation“. IFAC Proceedings Volumes 20, Nr. 5 (Juli 1987): 7–12. http://dx.doi.org/10.1016/s1474-6670(17)55409-9.
Der volle Inhalt der QuelleHu, Yudong, Changsheng Gao und Wuxing Jing. „Joint State and Parameter Estimation for Hypersonic Glide Vehicles Based on Moving Horizon Estimation via Carleman Linearization“. Aerospace 9, Nr. 4 (14.04.2022): 217. http://dx.doi.org/10.3390/aerospace9040217.
Der volle Inhalt der QuelleMare, José B., und José A. De Doná. „Symmetry between constrained reference tracking and constrained state estimation“. Automatica 45, Nr. 1 (Januar 2009): 207–11. http://dx.doi.org/10.1016/j.automatica.2008.06.020.
Der volle Inhalt der QuelleLiu, Yuanyuan, Yaqiong Fu, Huipin Lin, Jingbiao Liu, Mingyu Gao und Zhiwei He. „A New Constrained State Estimation Method Based on Unscented H∞ Filtering“. Applied Sciences 10, Nr. 23 (27.11.2020): 8484. http://dx.doi.org/10.3390/app10238484.
Der volle Inhalt der QuellePrakash, J., Sachin C. Patwardhan und Sirish L. Shah. „Constrained State Estimation Using Particle Filters“. IFAC Proceedings Volumes 41, Nr. 2 (2008): 6472–77. http://dx.doi.org/10.3182/20080706-5-kr-1001.01091.
Der volle Inhalt der QuelleDasgupta, Kalyan, und K. S. Swarup. „Tie-line constrained distributed state estimation“. International Journal of Electrical Power & Energy Systems 33, Nr. 3 (März 2011): 569–76. http://dx.doi.org/10.1016/j.ijepes.2010.12.010.
Der volle Inhalt der QuelleNie, S., J. Zhu und Y. Luo. „Simultaneous estimation of land surface scheme states and parameters using the ensemble Kalman filter: identical twin experiments“. Hydrology and Earth System Sciences 15, Nr. 8 (03.08.2011): 2437–57. http://dx.doi.org/10.5194/hess-15-2437-2011.
Der volle Inhalt der QuelleKorres, George N., und Theodore A. Alexopoulos. „A Constrained Ordering for Solving the Equality Constrained State Estimation“. IEEE Transactions on Power Systems 27, Nr. 4 (November 2012): 1998–2005. http://dx.doi.org/10.1109/tpwrs.2012.2194745.
Der volle Inhalt der QuelleWang, Yanyan, und Yingsong Li. „Sparse Multipath Channel Estimation Using Norm Combination Constrained Set-Membership NLMS Algorithms“. Wireless Communications and Mobile Computing 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/8140702.
Der volle Inhalt der QuelleDissertationen zum Thema "Constrained state estimation"
Yan, Jun. „Constrained model predictive control, state estimation and coordination“. Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2006. http://wwwlib.umi.com/cr/ucsd/fullcit?p3206875.
Der volle Inhalt der QuelleTitle from first page of PDF file (viewed May 3, 2006). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 106-110).
Lopez, Negrete de la Fuente Rodrigo. „Nonlinear Programming Sensitivity Based Methods for Constrained State Estimation“. Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/174.
Der volle Inhalt der QuelleVenturino, Antonello. „Constrained distributed state estimation for surveillance missions using multi-sensor multi-robot systems“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPAST118.
Der volle Inhalt der QuelleDistributed algorithms have pervaded many aspects of control engineering with applications for multi-robot systems, sensor networks, covering topics such as control, state estimation, fault detection, cyber-attack detection and mitigation on cyber-physical systems, etc. Indeed, distributed schemes face problems like scalability and communication between agents. In multi-agent systems applications (e.g. fleet of mobile robots, sensor networks) it is now common to design state estimation algorithms in a distributed way so that the agents can accomplish their tasks based on some shared information within their neighborhoods. In surveillance missions, a low-cost static Sensor Network (e.g. with cameras) could be deployed to localize in a distributed way intruders in a given area. In this context, the main objective of this work is to design distributed observers to estimate the state of a dynamic system (e.g. a multi-robot system) that efficiently handle constraints and uncertainties but with reduced computation load. This PhD thesis proposes new Distributed Moving Horizon Estimation (DMHE) algorithms with a Luenberger pre-estimation in the formulation of the local problem solved by each sensor, resulting in a significant reduction of the computation time, while preserving the estimation accuracy. Moreover, this manuscript proposes a consensus strategy to enhance the convergence time of the estimates among sensors while dealing with weak unobservability conditions (e.g. vehicles not visible by some cameras). Another contribution concerns the improvement of the convergence of the estimation error by mitigating unobservability issues by using a l-step neighborhood information spreading mechanism. The proposed distributed estimation is designed for realistic large-scale systems scenarios involving sporadic measurements (i.e. available at time instants a priori unknown). To this aim, constraints on measurements (e.g. camera field of view) are embodied using time-varying binary parameters in the optimization problem. Both realistic simulations within the Robot Operating System (ROS) framework and Gazebo environment, as well as experimental validation of the proposed DMHE localization technique of a Multi-Vehicle System (MVS) with ground mobile robots are performed, using a static Sensor Network composed of low-cost cameras which provide measurements on the positions of the robots of the MVS. The proposed algorithms are compared to previous results from the literature, considering several metrics such as computation time and accuracy of the estimates
Duan, Zhansheng. „State Estimation with Unconventional and Networked Measurements“. ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1133.
Der volle Inhalt der QuelleMook, Daniel Joseph. „Measurement covariance-constrained estimation for poorly modeled dynamic systems“. Diss., Virginia Polytechnic Institute and State University, 1985. http://hdl.handle.net/10919/49776.
Der volle Inhalt der QuellePajic, Slobodan. „Power System State Estimation and Contingency Constrained Optimal Power Flow - A Numerically Robust Implementation“. Digital WPI, 2007. https://digitalcommons.wpi.edu/etd-dissertations/240.
Der volle Inhalt der QuelleMerlinge, Nicolas. „State estimation and trajectory planning using box particle kernels“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS425/document.
Der volle Inhalt der QuelleState estimation and trajectory planning are two crucial functions for autonomous systems, and in particular for aerospace vehicles.Particle filters and sample-based trajectory planning have been widely considered to tackle non-linearities and non-Gaussian uncertainties.However, these approaches may produce erratic results due to the sampled approximation of the state density.In addition, they have a high computational cost which limits their practical interest.This thesis investigates the use of box kernel mixtures to describe multimodal probability density functions.A box kernel mixture is a weighted sum of basic functions (e.g., uniform kernels) that integrate to unity and whose supports are bounded by boxes, i.e., vectors of intervals.This modelling yields a more extensive description of the state density while requiring a lower computational load.New algorithms are developed, based on a derivation of the Box Particle Filter (BPF) for state estimation, and of a particle based chance constrained optimisation (Particle Control) for trajectory planning under uncertainty.In order to tackle ambiguous state estimation problems, a Box Regularised Particle Filter (BRPF) is introduced.The BRPF consists of an improved BPF with a guaranteed resampling step and a smoothing strategy based on kernel regularisation.The proposed strategy is theoretically proved to outperform the original BPF in terms of Mean Integrated Square Error (MISE), and empirically shown to reduce the Root Mean Square Error (RMSE) of estimation.BRPF reduces the computation load in a significant way and is robust to measurement ambiguity.BRPF is also integrated to federated and distributed architectures to demonstrate its efficiency in multi-sensors and multi-agents systems.In order to tackle constrained trajectory planning under non-Gaussian uncertainty, a Box Particle Control (BPC) is introduced.BPC relies on an interval bounded kernel mixture state density description, and consists of propagating the state density along a state trajectory at a given horizon.It yields a more accurate description of the state uncertainty than previous particle based algorithms.A chance constrained optimisation is performed, which consists of finding the sequence of future control inputs that minimises a cost function while ensuring that the probability of constraint violation (failure probability) remains below a given threshold.For similar performance, BPC yields a significant computation load reduction with respect to previous approaches
Steinig, Simeon [Verfasser], und Kunibert G. [Akademischer Betreuer] Siebert. „Adaptive finite elements for state-constrained optimal control problems - convergence analysis and a posteriori error estimation / Simeon Steinig. Betreuer: Kunibert G. Siebert“. Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2014. http://d-nb.info/106430897X/34.
Der volle Inhalt der QuelleSircoulomb, Vincent. „Étude des concepts de filtrage robuste aux méconnaissances de modèles et aux pertes de mesures. Application aux systèmes de navigation“. Thesis, Vandoeuvre-les-Nancy, INPL, 2008. http://www.theses.fr/2008INPL093N/document.
Der volle Inhalt der QuelleTo solve the problem of estimating the state of a system, it is necessary to have at one's disposal a model governing the dynamic of the state variables and to measure directly or indirectly all or a part of these variables. The work presented in this thesis deals with the estimation issue in the presence of model uncertainties and sensor losses. The first part of this work represents the synthesis of a state estimation device for nonlinear systems. It consists in selecting a state estimator and properly tuning it. Then, thanks to a criterion introduced for the occasion, it consists in algorithmically designing a hardware redundancy aiming at compensating for some sensor losses. The second part of this work deals with the conception of a sub-model compensating for some model uncertainties. This sub-model, designed by using the Allan variance, is usable by a Kalman filter. This work has been used to take into account some gyroscopical drifts in a GPS-INS integrated navigation based on a constrained Kalman filter. The results obtained, coming from experiments on two plane trajectories, showed a safe and robust behaviour of the proposed method
Healey, Christopher M. „Advances in ranking and selection: variance estimation and constraints“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/34768.
Der volle Inhalt der QuelleBücher zum Thema "Constrained state estimation"
Ariyur, Kartik. Navigation with Signals and Constraints of Opportunity: Exploiting Unstructured Environments for State Estimation. Elsevier Science & Technology Books, 2019.
Den vollen Inhalt der Quelle findenBeenakker, Carlo W. J. Extreme eigenvalues of Wishart matrices: application to entangled bipartite system. Herausgegeben von Gernot Akemann, Jinho Baik und Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.37.
Der volle Inhalt der QuelleBuchteile zum Thema "Constrained state estimation"
Shi, Dawei, Ling Shi und Tongwen Chen. „A Constrained Optimization Approach“. In Event-Based State Estimation, 77–108. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26606-0_5.
Der volle Inhalt der QuelleKurzhanski, Alexander B., und Alexander N. Daryin. „State Estimation and State Constrained Control“. In Dynamic Programming for Impulse Feedback and Fast Controls, 193–209. London: Springer London, 2019. http://dx.doi.org/10.1007/978-1-4471-7437-0_9.
Der volle Inhalt der QuelleBergounioux, M., und K. Kunisch. „Augmented Lagrangian Algorithms for State Constrained Optimal Control Problems“. In Control and Estimation of Distributed Parameter Systems, 33–48. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8849-3_3.
Der volle Inhalt der QuelleWang, Yudong, Jingchun Wang und Bo Liu. „Constrained Nonlinear State Estimation – A Differential Evolution Based Moving Horizon Approach“. In Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 1184–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74205-0_122.
Der volle Inhalt der QuelleKurzhanski, Alexander B. „On the Generalized Duality Principle for State-Constrained Control and State Estimation Under Impulsive Inputs“. In Lecture Notes in Economics and Mathematical Systems, 119–46. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75169-6_7.
Der volle Inhalt der QuellePark, Ju H., Hao Shen, Xiao-Heng Chang und Tae H. Lee. „Network-Based $$\mathscr {H}_{\infty }$$H∞ State Estimation for Neural Networks Using Limited Measurement“. In Recent Advances in Control and Filtering of Dynamic Systems with Constrained Signals, 193–210. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96202-3_10.
Der volle Inhalt der QuelleMatei, Alexander, und Stefan Ulbrich. „Detection of Model Uncertainty in the Dynamic Linear-Elastic Model of Vibrations in a Truss“. In Lecture Notes in Mechanical Engineering, 281–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77256-7_22.
Der volle Inhalt der QuelleMordukhovich, Boris S., und Kaixia Zhang. „Dirichlet Boundary Control of Parabolic Systems with Pointwise State Constraints“. In Control and Estimation of Distributed Parameter Systems, 223–36. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8849-3_17.
Der volle Inhalt der QuelleCasas, E., J. P. Raymond und H. Zidani. „Optimal Control Problem Governed by Semilinear Elliptic Equations with Integral Control Constraints and Pointwise State Constraints“. In Control and Estimation of Distributed Parameter Systems, 89–102. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8849-3_7.
Der volle Inhalt der QuelleFattorini, H. O. „Control Problems for Parabolic Equations with State Constraints and Unbounded Control Sets“. In Control and Estimation of Distributed Parameter Systems, 129–40. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8849-3_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Constrained state estimation"
Gomez-Quiles, Catalina, Hugo A. Gil, Antonio de la Villa Jaen und Antonio Gomez-Exposito. „Equality-constrained bilinear state estimation“. In 2013 IEEE Power & Energy Society General Meeting. IEEE, 2013. http://dx.doi.org/10.1109/pesmg.2013.6672832.
Der volle Inhalt der QuelleGoel, Ankit, und Dennis S. Bernstein. „Adaptive State Estimation with Subspace-Constrained State Correction“. In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147916.
Der volle Inhalt der QuelleEbinger, Bradley, Nidhal Bouaynaya, Robi Polikar und Roman Shterenberg. „Constrained state estimation in particle filters“. In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178732.
Der volle Inhalt der QuelleKuklišová Pavelková, Lenka. „Bayesian State Estimation Using Constrained Zonotopes“. In 20th International Conference on Informatics in Control, Automation and Robotics. SCITEPRESS - Science and Technology Publications, 2023. http://dx.doi.org/10.5220/0012230900003543.
Der volle Inhalt der QuelleTeixeira, B. O. S., J. Chandrasekar, L. A. B. Torres, L. A. Aguirre und D. S. Bernstein. „State estimation for equality-constrained linear systems“. In 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434800.
Der volle Inhalt der QuelleSurana, Amit, Matthew O. Williams, Manfred Morari und Andrzej Banaszuk. „Koopman operator framework for constrained state estimation“. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017. http://dx.doi.org/10.1109/cdc.2017.8263649.
Der volle Inhalt der QuelleSodhi, Paloma, Sanjiban Choudhury, Joshua G. Mangelson und Michael Kaess. „ICS: Incremental Constrained Smoothing for State Estimation“. In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. http://dx.doi.org/10.1109/icra40945.2020.9196649.
Der volle Inhalt der QuellePatel, Rahul, Sharad Bhartiya und Ravindra D. Gudi. „State Estimation Using Physics Constrained Neural Networks“. In 2022 IEEE International Symposium on Advanced Control of Industrial Processes (AdCONIP). IEEE, 2022. http://dx.doi.org/10.1109/adconip55568.2022.9894188.
Der volle Inhalt der QuelleNorman-Tenazas, Raphael, Brian S. Robinson, Justin Joyce, Isaac Western, Erik C. Johnson, William Gray-Roncal und Joan A. Hoffmann. „Continuous State Estimation With Synapse-constrained Connectivity“. In 2022 International Joint Conference on Neural Networks (IJCNN). IEEE, 2022. http://dx.doi.org/10.1109/ijcnn55064.2022.9892549.
Der volle Inhalt der QuelleVon Einem, Cornelius, Andrei Cramariuc, Roland Siegwart, Cesar Cadena und Florian Tschopp. „Path-Constrained State Estimation for Rail Vehicles“. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2023. http://dx.doi.org/10.1109/itsc57777.2023.10422075.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Constrained state estimation"
Zeller, Lucas, Daniel McGrath, Louis Sass, Shad O’Neel, Christopher McNeil und Emily Baker. Beyond glacier-wide mass balances : parsing seasonal elevation change into spatially resolved patterns of accumulation and ablation at Wolverine Glacier, Alaska. Engineer Research and Development Center (U.S.), Mai 2024. http://dx.doi.org/10.21079/11681/48497.
Der volle Inhalt der QuelleEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak und Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, Juli 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Der volle Inhalt der Quelle