Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Connectivity.

Zeitschriftenartikel zum Thema „Connectivity“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Connectivity" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Farahani, Mohammad Reza. „The Second-Connectivity and Second-Sum-Connectivity Indices of Armchair Polyhex Nanotubes TUAC6[m,n]“. International Letters of Chemistry, Physics and Astronomy 30 (März 2014): 74–80. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.30.74.

Der volle Inhalt der Quelle
Annotation:
The m-connectivety and m-sum connectivity indices of G are defined as to be and where runs over all paths of length m in G and di is the degree of vertex νi. In this paper, we give explicit formulas for the second-connectivity and second-sum-connectivity indices of an infinite class of Armchair Polyhex Nanotubes TUAC6[m,n].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Farahani, Mohammad Reza. „The Second-Connectivity and Second-Sum-Connectivity Indices of Armchair Polyhex Nanotubes TUAC<sub>6</sub>[m,n]“. International Letters of Chemistry, Physics and Astronomy 30 (12.03.2014): 74–80. http://dx.doi.org/10.56431/p-f068h3.

Der volle Inhalt der Quelle
Annotation:
The m-connectivety and m-sum connectivity indices of G are defined as to be and where runs over all paths of length m in G and di is the degree of vertex νi. In this paper, we give explicit formulas for the second-connectivity and second-sum-connectivity indices of an infinite class of Armchair Polyhex Nanotubes TUAC6[m,n].
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Farahani, Mohammad Reza. „The General Connectivity and General Sum-Connectivity Indices of Nanostructures“. International Letters of Chemistry, Physics and Astronomy 44 (Januar 2015): 73–80. http://dx.doi.org/10.18052/www.scipress.com/ilcpa.44.73.

Der volle Inhalt der Quelle
Annotation:
Let G be a simple graph with vertex set V(G) and edge set E(G). For ∀νi∈V(G),di denotes the degree of νi in G. The Randić connectivity index of the graph G is defined as [1-3] χ(G)=∑e=v1v2є(G)(d1d2)-1/2. The sum-connectivity index is defined as χ(G)=∑e=v1v2є(G)(d1+d2)-1/2. The sum-connectivity index is a new variant of the famous Randić connectivity index usable in quantitative structure-property relationship and quantitative structure-activity relationship studies. The general m-connectivety and general m-sum connectivity indices of G are defined as mχ(G)=∑e=v1v2...vim+1(1/√(di1di2...dim+1)) and mχ(G)=∑e=v1v2...vim+1(1/√(di1+di2+...+dim+1)) where vi1vi2...vim+1 runs over all paths of length m in G. In this paper, we introduce a closed formula of the third-connectivity index and third-sum-connectivity index of nanostructure "Armchair Polyhex Nanotubes TUAC6[m,n]" (m,n≥1).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Farahani, Mohammad Reza. „The General Connectivity and General Sum-Connectivity Indices of Nanostructures“. International Letters of Chemistry, Physics and Astronomy 44 (14.01.2015): 73–80. http://dx.doi.org/10.56431/p-892ddt.

Der volle Inhalt der Quelle
Annotation:
Let G be a simple graph with vertex set V(G) and edge set E(G). For ∀νi∈V(G),di denotes the degree of νi in G. The Randić connectivity index of the graph G is defined as [1-3] χ(G)=∑e=v1v2є(G)(d1d2)-1/2. The sum-connectivity index is defined as χ(G)=∑e=v1v2є(G)(d1+d2)-1/2. The sum-connectivity index is a new variant of the famous Randić connectivity index usable in quantitative structure-property relationship and quantitative structure-activity relationship studies. The general m-connectivety and general m-sum connectivity indices of G are defined as mχ(G)=∑e=v1v2...vim+1(1/√(di1di2...dim+1)) and mχ(G)=∑e=v1v2...vim+1(1/√(di1+di2+...+dim+1)) where vi1vi2...vim+1 runs over all paths of length m in G. In this paper, we introduce a closed formula of the third-connectivity index and third-sum-connectivity index of nanostructure "Armchair Polyhex Nanotubes TUAC6[m,n]" (m,n≥1).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Grone, Robert, und Russell Merris. „Algebraic connectivity of trees“. Czechoslovak Mathematical Journal 37, Nr. 4 (1987): 660–70. http://dx.doi.org/10.21136/cmj.1987.102192.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

John, Lizy Kurian. „Connectivity! Connectivity! Connectivity! May You Be More Connected Than Ever!!“ IEEE Micro 40, Nr. 1 (01.01.2020): 4–5. http://dx.doi.org/10.1109/mm.2019.2961722.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kost, Gerald J. „Connectivity“. Archives of Pathology & Laboratory Medicine 124, Nr. 8 (01.08.2000): 1108–10. http://dx.doi.org/10.5858/2000-124-1108-c.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Angelopulo, George. „Connectivity“. Communicatio 40, Nr. 3 (03.07.2014): 209–22. http://dx.doi.org/10.1080/02500167.2014.953561.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Das, Pritha, und Jim Lagopoulos. „Connectivity“. Acta Neuropsychiatrica 21, Nr. 2 (April 2009): 91–92. http://dx.doi.org/10.1111/j.1601-5215.2009.00374.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hodgetts, Timothy. „Connectivity“. Environmental Humanities 9, Nr. 2 (01.11.2017): 456–59. http://dx.doi.org/10.1215/22011919-4215412.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

DuBois, Jeffrey A. „Connectivity“. Point of Care: The Journal of Near-Patient Testing & Technology 3, Nr. 1 (März 2004): 30–32. http://dx.doi.org/10.1097/00134384-200403000-00009.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Schaffner, Marilyn. „Connectivity“. Gastroenterology Nursing 28, Nr. 2 (März 2005): 148–49. http://dx.doi.org/10.1097/00001610-200503000-00012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Peckham, Haley. „Connectivity“. Neuropsychotherapist, Nr. 5 (01.04.2014): 82–85. http://dx.doi.org/10.12744/tnpt(5)082-085.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Ramani, Ramachandran. „Connectivity“. Current Opinion in Anaesthesiology 28, Nr. 5 (Oktober 2015): 498–504. http://dx.doi.org/10.1097/aco.0000000000000237.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Borowiecki, Mieczysław. „Partition numbers, connectivity and Hamiltonicity“. Časopis pro pěstování matematiky 112, Nr. 2 (1987): 173–76. http://dx.doi.org/10.21136/cpm.1987.118305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Galil, Zvi, und Giuseppe F. Italiano. „Reducing edge connectivity to vertex connectivity“. ACM SIGACT News 22, Nr. 1 (März 1991): 57–61. http://dx.doi.org/10.1145/122413.122416.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Mukungunugwa, Vivian, und Simon Mukwembi. „On Eccentric Connectivity Index and Connectivity“. Acta Mathematica Sinica, English Series 35, Nr. 7 (16.04.2019): 1205–16. http://dx.doi.org/10.1007/s10114-019-7320-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Ferreira, Kecia Aline M., Mariza A. S. Bigonha und Roberto S. Bigonha. „Reestruturação de Software Dirigida por Conectividade para Redução de Custo de Manutenção“. Revista de Informática Teórica e Aplicada 15, Nr. 2 (12.12.2008): 155–80. http://dx.doi.org/10.22456/2175-2745.7031.

Der volle Inhalt der Quelle
Annotation:
Most of the software cost is due to maintenance. In the last years, there has been a great deal of interest in developing cost estimation and effort prediction instruments for software maintenance. This work proposes that module connectivityis a key factor to predict maintenance cost and uses this thesis as the basis to develop a Connectivity Evaluation Model in OO Systems (MACSOO), which is a refactoring model based on connectivity whose aim is to minimize maintenance cost. We describe experiments whose results provide an example of the model application and expose the correlation between connectivity and maintainability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Li, Shi. „Faculty of Applied & Creative Arts, Universiti Malaysia Sarawak“. Studies in Social Science & Humanities 2, Nr. 9 (September 2023): 35–39. http://dx.doi.org/10.56397/sssh.2023.09.07.

Der volle Inhalt der Quelle
Annotation:
The advent of globalised connectivity has intricately linked local communities with worldwide information dissemination, forming a global consciousness among individuals. This essay explores the interplay between globalised connectivity and the “risk society,” analyzing its impact on democracy. Through cases such as Cambridge Analytica, the Arab Spring, and the ICIJ, it reveals the dual nature of globalised connectivity, fostering democratic advancement while compromising data privacy. The essay underscores the need for active democratic participation while managing associated risks. As society navigates this transformative phase, harnessing globalised connectivity’s potential to amplify voices and ensure accountability is crucial for a balanced future of enhanced global democracy and personal information security.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Zhao, Yang, Shicun Zhao, Yi Zhang und Da Wang. „On the Connectivity Measurement of the Fractal Julia Sets Generated from Polynomial Maps: A Novel Escape-Time Algorithm“. Fractal and Fractional 5, Nr. 2 (13.06.2021): 55. http://dx.doi.org/10.3390/fractalfract5020055.

Der volle Inhalt der Quelle
Annotation:
In this paper, a novel escape-time algorithm is proposed to calculate the connectivity’s degree of Julia sets generated from polynomial maps. The proposed algorithm contains both quantitative analysis and visual display to measure the connectivity of Julia sets. For the quantitative part, a connectivity criterion method is designed by exploring the distribution rule of the connected regions, with an output value Co in the range of [0,1]. The smaller the Co value outputs, the better the connectivity is. For the visual part, we modify the classical escape-time algorithm by highlighting and separating the initial point of each connected area. Finally, the Julia set is drawn into different brightnesses according to different Co values. The darker the color, the better the connectivity of the Julia set. Numerical results are included to assess the efficiency of the algorithm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Kende, Michael, Sonia Livingstone, Scott Minehane, Michael Minges, Simon Molloy und George Sciadas. „GLOBAL CONNECTIVTY REPORT 2022. CHAPTER 1. UNIVERSAL AND MEANINGFUL CONNECTIVITY: THE NEW IMPERATIVE“. SYNCHROINFO JOURNAL 8, Nr. 2 (2022): 35–45. http://dx.doi.org/10.36724/2664-066x-2022-8-2-35-45.

Der volle Inhalt der Quelle
Annotation:
In the 30 years since the creation of the ITU Telecommunication Development Sector in 1992, the number of Internet users surged from a few million to almost five billion. This trend has enabled a digital transformation that has been, and is, transforming our societies and our economies. Yet the potential of the Internet for social and economic good remains largely untapped: one-third of humanity (2.9 billion people) remains offline and many users only enjoy basic connectivity. Universal and meaningful connectivity – defined as the possibility of a safe, satisfying, enriching, productive, and affordable online experience for everyone – has become the new imperative for the 2020-2030 Decade of Action to deliver on the Sustainable Development Goals (SDGs). The Global Connectivity Report 2022 takes stock of the progress in digital connectivity over the past three decades. It provides a detailed assessment of the current state of connectivity and how close the world is to achieving universal and meaningful connectivity, using a unique analytical framework. It goes on to showcase solutions and good practices to accelerate progress. This article presents a short version of the report (Part I).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Kulli, V. R. „ATOM BOND CONNECTIVITY E-BANHATTI INDICES“. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER RESEARCH 11, Nr. 01 (30.01.2023): 3201–8. http://dx.doi.org/10.47191/ijmcr/v11i1.13.

Der volle Inhalt der Quelle
Annotation:
In this paper, we introduce the atom bond connectivity E-Banhatti index and the sum atom bond connectivity E-Banhatti index of a graph. Also we compute these newly defined atom bond connectivity E-Banhatti indices for wheel graphs, friendship graphs, chain silicate networks, honeycomb networks and nanotubes.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Kende, Michael, Sonia Livingstone, Scott Minehane, Michael Minges, Simon Molloy und George Sciadas. „GLOBAL CONNECTIVTY REPORT 2022. CHAPTERS 3-4. ACCELERATING PROGRESS TOWARDS UNIVERSAL AND MEANINGFUL CONNECTIVITY & THE CRITICAL ROLE OF MIDDLE-MILE CONNECTIVITY“. SYNCHROINFO JOURNAL 8, Nr. 4 (2022): 22–32. http://dx.doi.org/10.36724/2664-066x-2022-8-4-22-32.

Der volle Inhalt der Quelle
Annotation:
The Global Connectivity Report 2022 takes stock of the progress in digital connectivity over the past three decades. It provides a detailed assessment of the current state of connectivity and how close the world is to achieving universal and meaningful connectivity, using a unique analytical framework. It goes on to showcase solutions and good practices to accelerate progress. The second part of the report consists of seven thematic deep dives on infrastructure, affordability, financing, the pandemic, regulation, youth, and data. Chapter 3 explores options to accelerate progress towards universal and meaningful connectivity. Expanding broadband networks is needed to eliminate the remaining blind spots and improve the quality of connectivity. Measures include reducing constraints on foreign direct investment to attract capital for upgrading and expanding digital infrastructure; ensuring sound ICT sector regulation to help build competitive markets and enhance predictability; promoting infrastructure sharing to reduce costs; ensuring the supply of adequate, inexpensive spectrum to help reduce coverage gaps; and ensuring sufficient capacity and a shift to new generations of mobile broadband. Solutions to ensure an adequate energy provision to power ICT infrastructure include policy incentives, reducing duties and taxes on green power equipment and allowing independent power producers. Chapter 4 explores the importance of middle-mile connectivity as countries develop digital economies – achieving better quality, lower costs and greater redundancy. The “middle mile” consists of infrastructure responsible for storing and exchanging data. It is an overlooked yet critical link in the connectivity chain, between international connectivity – or “first-mile” connectivity – and “last-mile” connectivity, made of the infrastructure that connects the users, which is hence more visible and tangible. The three key components of a domestic data infrastructure ecosystem are Internet exchange points (IXPs), data centres and cloud computing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Kende, Michael, Sonia Livingstone, Scott Minehane, Michael Minges, Simon Molloy und George Sciadas. „GLOBAL CONNECTIVTY REPORT 2022. CHAPTER 2. THE JOURNEY TO UNIVERSAL AND MEANINGFUL CONNECTIVITY“. SYNCHROINFO JOURNAL 8, Nr. 3 (2022): 29–37. http://dx.doi.org/10.36724/2664-066x-2022-8-3-29-37.

Der volle Inhalt der Quelle
Annotation:
The Global Connectivity Report 2022 takes stock of the progress in digital connectivity over the past three decades. It provides a detailed assessment of the current state of connectivity and how close the world is to achieving universal and meaningful connectivity, using a unique analytical framework. It goes on to showcase solutions and good practices to accelerate progress. The second part of the report consists of seven thematic deep dives on infrastructure, affordability, financing, the pandemic, regulation, youth, and data. Chapter 2 relies on the framework for universal and meaningful connectivity and the associated targets for 2030, developed by ITU and the Office of the Secretary-General’s Envoy on Technology, to analyse the current state of digital connectivity globally and progress towards reaching the targets by 2030. The framework considers usage by various stakeholders (universal dimension of connectivity) and the five enablers of connectivity (meaningful dimension of connectivity): infrastructure, device, affordability, skills, and safety and security. The assessment reveals that the world is still far from universal and meaningful connectivity. Infrastructure needs to be rolled out or improved to bridge the coverage gap. There are still significant differences between and within countries in network availability and quality. Fixed broadband is a costly investment and is not available or is unaffordable for many. Mobile broadband offers greater flexibility and is less expensive, and most rely on this technology to go online. But in many rural areas of developing countries, only 3G is available, when meaningful connectivity requires 4G. The coverage gap, currently at 5%, is dwarfed by the usage gap: 32% of people who are within range of a mobile broadband network and could therefore connect, remain offline. Data compiled by ITU make it possible to classify the offline population based on who they are and where they live. The main reasons cited by people for not using the Internet are the lack of affordability, of awareness about the Internet, of need, as well as the inability to use the Internet. Globally, connectivity became more expensive in 2021 due to the global economic downturn triggered by the COVID-19 pandemic. After years of steady decline, the share of income spent on telecommunication and Internet services increased in 2021. The global median price of an entry-level broadband plan in the majority of countries amounts to more than 2% of the gross national income per capita, which is the affordability threshold set by the Broadband Commission for Sustainable Development. People should not be forced to use the Internet. However, evidence suggests that introducing people to the Internet usually entices them to stay online. Based on activities people reported, use of the Internet leads to an improved social life, with the use of social networks, making Internet calls and streaming video the most common activities.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Lin, Xiaoxia, Keke Wang, Meng Zhang und Hong-Jian Lai. „Bounding ℓ-edge-connectivity in edge-connectivity“. Discrete Applied Mathematics 321 (November 2022): 350–56. http://dx.doi.org/10.1016/j.dam.2022.07.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Vukicevic, Damir, Nenad Trinajstic, Sonja Nikolic, Bono Lucic und Bo Zhou. „Master Connectivity Index and Master Connectivity Polynomial“. Current Computer Aided-Drug Design 6, Nr. 4 (01.12.2010): 235–39. http://dx.doi.org/10.2174/1573409911006040235.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Lin, Cheng-Kuan, Lili Zhang, Jianxi Fan und Dajin Wang. „Structure connectivity and substructure connectivity of hypercubes“. Theoretical Computer Science 634 (Juni 2016): 97–107. http://dx.doi.org/10.1016/j.tcs.2016.04.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Bonchev, Danail. „Overall connectivity — a next generation molecular connectivity“. Journal of Molecular Graphics and Modelling 20, Nr. 1 (Dezember 2001): 65–75. http://dx.doi.org/10.1016/s1093-3263(01)00101-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Zhang, Zhao. „Extra edge connectivity and isoperimetric edge connectivity“. Discrete Mathematics 308, Nr. 20 (Oktober 2008): 4560–69. http://dx.doi.org/10.1016/j.disc.2007.08.066.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Zhao, Shu-Li, und Jou-Ming Chang. „Connectivity, super connectivity and generalized 3-connectivity of folded divide-and-swap cubes“. Information Processing Letters 182 (August 2023): 106377. http://dx.doi.org/10.1016/j.ipl.2023.106377.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Bell, Gelsey. „Profound Connectivity“. TDR: The Drama Review 65, Nr. 1 (März 2021): 180–88. http://dx.doi.org/10.1017/s1054204320000155.

Der volle Inhalt der Quelle
Annotation:
Online musical performances in the first few months of the pandemic and lockdown in New York City bring to light the sonic and temporal challenges, unique acoustic space, and aesthetic possibilities of performing on Zoom. The social connection gained through these performance events is the key to their efficacy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Walsh, John, Ruth Roberts, Richard Morris und Lutz Heinemann. „Device Connectivity“. Journal of Diabetes Science and Technology 9, Nr. 3 (21.01.2015): 701–5. http://dx.doi.org/10.1177/1932296814568806.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

MacNeil, Melanie, Edilma L. Yearwood und Elizabeth Poster. „Cultural Connectivity“. Journal of Child and Adolescent Psychiatric Nursing 21, Nr. 3 (August 2008): 123–24. http://dx.doi.org/10.1111/j.1744-6171.2008.00143.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Silverajan, Bilhanan, Sari Kinnari, Antti Vekkeli und Tuure Vartiainen. „Beyond connectivity“. IEEE Vehicular Technology Magazine 4, Nr. 3 (September 2009): 55–61. http://dx.doi.org/10.1109/mvt.2009.933476.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Godskesen, Jens Chr. „Connectivity Testing“. Formal Methods in System Design 25, Nr. 1 (Juli 2004): 5–38. http://dx.doi.org/10.1023/b:form.0000033961.36239.68.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Hirschheim, Rudy, und Dennis Adams. „Organizational Connectivity“. Journal of General Management 17, Nr. 2 (Dezember 1991): 65–76. http://dx.doi.org/10.1177/030630709101700206.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Gong, Gaolang, Yong He und Alan C. Evans. „Brain Connectivity“. Neuroscientist 17, Nr. 5 (28.04.2011): 575–91. http://dx.doi.org/10.1177/1073858410386492.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Pillai, Jay J. „Functional Connectivity“. Neuroimaging Clinics of North America 27, Nr. 4 (November 2017): i. http://dx.doi.org/10.1016/s1052-5149(17)30097-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

KOLB, DARL G., PAUL D. COLLINS und E. ALLAN LIND. „Requisite Connectivity:“. Organizational Dynamics 37, Nr. 2 (April 2008): 181–89. http://dx.doi.org/10.1016/j.orgdyn.2008.02.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

van Dijck, José. „After Connectivity“. Social Media + Society 1, Nr. 1 (29.04.2015): 205630511557887. http://dx.doi.org/10.1177/2056305115578873.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

NEHANIV, CHRYSTOPHER LEV. „ALGEBRAIC CONNECTIVITY“. International Journal of Algebra and Computation 01, Nr. 04 (Dezember 1991): 445–71. http://dx.doi.org/10.1142/s0218196791000316.

Der volle Inhalt der Quelle
Annotation:
Let [Formula: see text] be a type of algebra in the sense of universal algebra. By defining singular simplices in algebras and emulating singular [co] homology, we introduce for each variety, pseudo-variety, and divisional class V of type [Formula: see text], a homology and cohomology theory which measure the V-connectivity of type-[Formula: see text] algebras. Intuitively, if we were to think of an algebra as a space and subalgebras which lie in V as simplices, then V-connectivity describes the failure of subalgebras to lie in V, i.e., it describes the "holes" in this space. These [co]homologies are functorial on the class of type-[Formula: see text] algebras and are characterized by a natural topological interpretation. All these notions extend to subsets of algebras. One obtains for this algebraic connectivity, the long exact sequences, relative [co]homologies, and the analogues of the usual [co]homological notions of the algebraic topologists. In fact, we show that the [co]homologies are actually the same as the simplicial [co]homology of simplicial complexes that depend functorially on the algebras. Thus the connectivities in question have a natural geometric meaning. This allows the wholesale import into algebra of the concepts, results, and techniques of algebraic topology. In particular, functoriality implies that the [co]homology of a pair of algebras A ⊆ B is an invariant of the position of A in B. When one V contains another, we obtain relationships between the [co] homology theories in the form of long exact sequences. Furthermore for finite algebras, V-[co]homology is effectively computable if membership in V is. We obtain an analogue of the Poincaré lemma (stating that subsets of an algebra in V are V-homologically trivial), extremely general guarantees of the existence of subsets with non-trivial V-homology for algebras not in V, long exact V-homotopy sequences, as well as analogues of the powerful Eilenberg-Zilber theorems and Kunneth theorems in the setting of V-connectivity for V a variety or pseudo-variety. Also in the more general case of any divisionally closed V, we construct the long exact Mayer-Vietoris sequences for V-homology. Results for homomorphisms include an algebraic version of contiguity for homomorphisms (which implies they are V-homotopic) and a proof that V-surmorphisms are V-homotopy equivalences. If we allow the divisional classes to vary, then algebraic connectivity may be viewed as a functor from the category of pairs W ⊆ V of divisional classes of [Formula: see text]-algebras with inclusions as morphisms' to the category of functors from pairs of [Formula: see text]-algebras to pairs of simplicial complexes. Examples show the non-triviality of this theory (e.g. "associativity tori"), and two preliminary applications to semigroups are given: 1) a proof that the group connectivity of a torsion semigroup S is homotopy equivalent to a space whose points are the maximal subgroups of S, and 2) an aperiodic connectivity analogue of the fundamental lemma of complexity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Yakushev, Igor, Alexander Drzezga und Christian Habeck. „Metabolic connectivity“. Current Opinion in Neurology 30, Nr. 6 (Dezember 2017): 677–85. http://dx.doi.org/10.1097/wco.0000000000000494.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Pillai, Jay J. „Functional Connectivity“. Neuroimaging Clinics of North America 27, Nr. 4 (November 2017): xvii. http://dx.doi.org/10.1016/j.nic.2017.08.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Mukherji, Suresh K. „Functional Connectivity“. Neuroimaging Clinics of North America 27, Nr. 4 (November 2017): xv. http://dx.doi.org/10.1016/j.nic.2017.08.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Cieslik, D., A. Dress, K. T. Huber und V. Moulton. „Connectivity calculus“. Applied Mathematics Letters 16, Nr. 3 (April 2003): 395–99. http://dx.doi.org/10.1016/s0893-9659(03)80063-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Zenklusen, Rico. „Connectivity interdiction“. Operations Research Letters 42, Nr. 6-7 (September 2014): 450–54. http://dx.doi.org/10.1016/j.orl.2014.07.010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Magasic, Michelangelo, und Ulrike Gretzel. „Travel connectivity“. Tourist Studies 20, Nr. 1 (13.01.2020): 3–26. http://dx.doi.org/10.1177/1468797619899343.

Der volle Inhalt der Quelle
Annotation:
The use of information and communication technology (ICT) devices has been recognised as a significant component of travel experiences. However, the portrayal of internet connectivity as a binary entity within literature has overlooked the significant experiential breadth that exists within the state of being connected. Drawing on the contexts of roaming and the digital divide, this article demonstrates the variable and dynamic nature of connectivity on a worldwide basis, thus highlighting the variety of states of connectivity which may be encountered by tourists. Research was conducted using an autoethnographic methodology employed during a 3-month period of multi-country fieldwork. As its research findings, the article first defines travel connectivity and presents a travel connectivity typology featuring four principal modes based on network quality and range. Second, impacts of each mode of connectivity upon the travel experience are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Heintzel, Alexander. „Productive Connectivity“. MTZ worldwide 75, Nr. 12 (31.10.2014): 3. http://dx.doi.org/10.1007/s38313-014-0259-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Sporns, Olaf. „Brain connectivity“. Scholarpedia 2, Nr. 10 (2007): 4695. http://dx.doi.org/10.4249/scholarpedia.4695.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Bauerfeld, Wulf, und Peter Holleczek. „Global connectivity“. Computer Networks and ISDN Systems 17, Nr. 4-5 (Oktober 1989): 300–304. http://dx.doi.org/10.1016/0169-7552(89)90044-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie