Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Connectivity infrastructure“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Connectivity infrastructure" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Connectivity infrastructure"
Sandee, Henry. „Infrastructure for Asian Connectivity“. Bulletin of Indonesian Economic Studies 49, Nr. 3 (Dezember 2013): 390–91. http://dx.doi.org/10.1080/00074918.2013.850648.
Der volle Inhalt der QuelleBhattacharyay, Biswa Nath, Masahiro Kawai und Rajat M. Nag. „Infrastructure for Asian Connectivity“. Southeast Asian Economies 30, Nr. 3 (2013): 337. http://dx.doi.org/10.1355/ae30-3j.
Der volle Inhalt der QuelleKende, Michael, Sonia Livingstone, Scott Minehane, Michael Minges, Simon Molloy und George Sciadas. „GLOBAL CONNECTIVTY REPORT 2022. CHAPTERS 3-4. ACCELERATING PROGRESS TOWARDS UNIVERSAL AND MEANINGFUL CONNECTIVITY & THE CRITICAL ROLE OF MIDDLE-MILE CONNECTIVITY“. SYNCHROINFO JOURNAL 8, Nr. 4 (2022): 22–32. http://dx.doi.org/10.36724/2664-066x-2022-8-4-22-32.
Der volle Inhalt der QuelleNetirith, Narthsirinth, und Mingjun Ji. „Analysis of the Efficiency of Transport Infrastructure Connectivity and Trade“. Sustainability 14, Nr. 15 (04.08.2022): 9613. http://dx.doi.org/10.3390/su14159613.
Der volle Inhalt der QuelleHill, Hal, Takatoshi Ito, Kazumasa Iwata, Colin McKenzie und Shujiro Urata. „Connectivity and Infrastructure: Editors' Overview“. Asian Economic Policy Review 11, Nr. 2 (Juli 2016): 161–75. http://dx.doi.org/10.1111/aepr.12150.
Der volle Inhalt der QuelleHakman, M. „Connectivity Infrastructure and Components for POCT Environments - Overall Infrastructure“. Journal of the Association for Laboratory Automation 6, Nr. 3 (01.07.2001): 60–68. http://dx.doi.org/10.1016/s1535-5535(04)00138-8.
Der volle Inhalt der QuelleHakman, Mikael, und Torgny Groth. „Connectivity Infrastructure and Components for POCT Environments — Overall Infrastructure“. JALA: Journal of the Association for Laboratory Automation 6, Nr. 3 (Juni 2001): 60–68. http://dx.doi.org/10.1016/s1535-5535-04-00138-8.
Der volle Inhalt der QuelleBHATTACHARYAY, BISWA NATH. „INSTITUTIONS FOR ASIAN CONNECTIVITY“. Journal of International Commerce, Economics and Policy 01, Nr. 02 (Oktober 2010): 309–35. http://dx.doi.org/10.1142/s1793993310000172.
Der volle Inhalt der QuelleBhattacharyay, Biswa Nath. „Infrastructure for ASEAN Connectivity and Integration“. Asean Economic Bulletin 27, Nr. 2 (2010): 200. http://dx.doi.org/10.1355/ae27-2d.
Der volle Inhalt der QuelleMa, Mingxin, und Jing Liang. „Research on the connectivity of port infrastructure along the 21st Century Maritime Silk Road“. SHS Web of Conferences 192 (2024): 01009. http://dx.doi.org/10.1051/shsconf/202419201009.
Der volle Inhalt der QuelleDissertationen zum Thema "Connectivity infrastructure"
Bliss-Ketchum, Leslie Lynne. „The Impact of Infrastructure on Habitat Connectivity for Wildlife“. PDXScholar, 2019. https://pdxscholar.library.pdx.edu/open_access_etds/4832.
Der volle Inhalt der QuelleBormpoudakis, Dimitrios. „Green infrastructure and landscape connectivity in England : a political ecology approach“. Thesis, University of Kent, 2016. https://kar.kent.ac.uk/56639/.
Der volle Inhalt der QuelleAbdullah, Nayeem Mohammad. „Development of distributed generation infrastructure for microgrid connectivity to operational power systems“. FIU Digital Commons, 2010. http://digitalcommons.fiu.edu/etd/1099.
Der volle Inhalt der QuelleMahmoud, Noha Gamal El-Din Abdel Hamid Hassan. „Green infrastructure in a Middle Eastern environment : promoting social-ecological connectivity in Greater Cairo“. Thesis, University of Sheffield, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.554214.
Der volle Inhalt der QuelleAhlmer, Anna-Klara. „Integrating remotely sensed hydrologic parameters into an index of sediment connectivity“. Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235791.
Der volle Inhalt der QuelleDe förväntade ökningarna i nederbörd och temperatur i Skandinavien, och speciellt extrem korttidsnederbörd, kommer att öka frekvensen av översvämningar. Urbana områden är de mest sårbara, och speciellt väginfrastrukturen. Ackumuleringen av stora volymer av vatten och sediment där väg och vattendrag möts leder till allvarliga konsekvenser för dräneringskonstruktionerna. Behovet av ett verktyg för att identifiera egenskaper som påverkar förekomsten av översvämningar, och för att förutsäga framtida händelser är väsentligt. Studien integrerar markfuktighet både rumsligt och tidsmässigt i forskningen om metoder för översvämningsrisker. Markfuktighetsdata är inkluderat från fjärranalysteknik, med fokus på de specifika satelliterna för markfuktighet, ASCAT och SMOS. Vidare är flertalet faktorer (PCDs) inkluderade för att identifiera egenskaper i avrinningsområden som är benägna till översvämning samt en inventering av nuvarande vägdräneringskonstruktioner. Slutligen är ett index med sediment connectivity (Cavalli et al., 2013) implementerat för att se flödet av vatten och sediment inom avrinningsområdet. En fallstudie med två områden i Sverige, Västra Götaland och Värmland, som drabbades av allvarliga översvämningar i augusti 2014 är inkluderat. Resultaten visar att metoden att använda markfuktighet från satellitdata är lovande för inkludering i uppskattningar av översvämningsrisk och i indexet med sediment connectivity.
Mudali, Pragasen. „Topology control for wireless mesh networks and its effect on network performance“. Thesis, University of Zululand, 2017. http://hdl.handle.net/10530/1565.
Der volle Inhalt der QuelleInfrastructureWireless Mesh Networks (I-WMNs) are increasingly used to provide network connectivity and Internet access to previously under-served areas in the developing world. It is common for some of these deployments to be battery-powered due to a lack of electrical infrastructure in the targeted areas. Thus, the energy-efficiency of these networks gains additional importance. Topology Control (TC) has been previously reported to improve the energy-efficiency and network performance of wireless ad-hoc networks, including I-WMNs. However,simulation-based studies have been relied upon to reach these conclusions and the study of TC prototypes applicable to I-WMNs has largely been limited to design issues. Thus, the study of the efficacy of TC prototypes as a mechanism for improving energy-fficiency and network performance remains an open issue. The thesis addresses this knowledge gap by studying the dynamic, run-time behaviours and the network topologies created by two standards-compatible TC prototypes. This study provides unique insight into how the prototypes consume computational resources, maintain network connectivity, produce cumulative transceiver power savings and affect the workings of the routing protocol being employed. This study also documents the topology instability caused by transceiver power oscillations produced by the PlainTC prototype. A context-based solution to reduce transceiver power oscillations and the subsequent topology instability is proposed. This solution applies the Principal Component Analysis statistical method to historical network data in order to derive the weights associated with each of the identified context variables. A threshold value is defined that only permits a node to adjust its transceiver power output if the observed change in a node’s context exceeds the threshold. The threshold mechanism is incorporated into the PlainTC+ prototype and is shown to reduce topology instability whilst improving network performance when compared to PlainTC.The results obtained in this study suggest that I-WMN topologies formed by TC are able to closely match the performance of networks that do not employ TC. However, this study shows that TC negatively affects the energy efficiency of the network despite achieving cumulative transceiver power savings.
Baker, John Garrett. „Ecological Infrastructure: A Framework for Planning and Design: "Addressing Landscape Connectivity and Wildlife Resources for Interstate Highway Systems"“. Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/32990.
Der volle Inhalt der QuelleMaster of Landscape Architecture
Håkansson, Martin, und Tom Åkerström. „Business Ecosystem for Cellular Connectivity in Manufacturing Factories : - A case study to investigate how infrastructure developing telecom companies can establish a viable buisness ecosystem for cellular connectivity in manufacturing factories“. Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264195.
Der volle Inhalt der QuelleTillverkande fabriker har börjat inse att de fasta nätverkskablarna borde ersättas med trådlös kommunikation med högre kapacitet, för att deras fabriker ska vara anpassade till dagens förhållanden som krävs för toppmodern tillverkning. Cellulär uppkoppling har denna förmåga, men för att leverera tekniken till tillverkande fabriker borde en lämplig ekosystem-design etableras. Syftet med denna studie är att undersöka hur infrastrukturutvecklande telekomföretag kan arbeta för att etablera detta ekosystem för cellulär uppkoppling i tillverkande fabriker samt se till att vara konkurrenskraftiga över tid. Syftet uppnåddes genom en kvalitativ fallstudie bestående av 20 halvstrukturerade intervjuer som genomfördes på ett företag. Fallstudien kompletterades med en kvantitativ studie för att förstå statusen på nuvarande relationer i ekosystemet. Studiens resultat påvisar att: • Eftersom cellulär uppkoppling för fabriker är i ett tidigt skede av sin livscykel så är det av större betydelse att övertyga kunder om teknikens fördelar för att expandera marknaden snarare än att främja företagets egen produkt. • Vart eftersom tekniken mognar är det viktigt att ha en differentieringsstrategi, för att få en tillfredsställande marknadsandel. En konkurrensfördel uppnås inte garanterat genom komponenter och komplement via att företaget får ut en tidig fungerande produkt på marknaden. Den tidigt fungerande produkten bör dock ge upphov till en möjlighet att etablera viktiga relationer och erfarenheter över hela ekosystemet. • Affärsrelationer till alla parter i ekosystemet anses vara viktiga. Relationerna skiljer sig åt i styrka, eftersom de befinner sig i olika mognadsfaser och behöver olika mängder uppmärksamhet och resurser. Följaktligen måste en viss ansträngning sättas in i alla relationer, men förståelse av den optimala mängden uppmärksamhet och resurser för varje relation kan underlätta valet av lämpliga insatsnivåer.
Conficconi, Michele. „Analysis of time-sensitive networking technologies for the design of a unified communication infrastructure for Industrial Automation and IoT connectivity“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Den vollen Inhalt der Quelle findenLawrence, Molly. „Experiential Graphic Design: Generating Urban Renewal by Improving Safety and Connectivity in Bicycle Pathways“. Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1460734967.
Der volle Inhalt der QuelleBücher zum Thema "Connectivity infrastructure"
Institute, Asian Development Bank, Hrsg. Infrastructure for Asian connectivity. Cheltenham, UK: Edward Elgar, 2012.
Den vollen Inhalt der Quelle findenZhang, Yunling. Development of China's transportation infrastructure and international connectivity. Jakarta]: Economic Research Institute for ASEAN and East Asia, 2010.
Den vollen Inhalt der Quelle findenPakistan) Pakistan-China-Iran : A Trident of Regional Connectivity (2017 Islāmābād. Pakistan-China-Iran : A Trident of Regional Connectivity, December 19, 2017: Seminor report. Islamabad: Institute of Strategic Studies, 2017.
Den vollen Inhalt der Quelle findenUniversiti Brunei Darussalam. Institute of Asian Studies, Hrsg. One Belt-One Road initiative and ASEAN connectivity: Synergy issues and potentialities. Gadong: Institute of Asian Studies, Universiti Brunei Darussalam, 2017.
Den vollen Inhalt der Quelle findenLi, Ping. "Yi dai yi lu" zhan lüe: Hu lian hu tong, gong tong fa zhan--neng yuan ji chu she shi jian she yu Ya Tai qu yu neng yuan shi chang yi ti hua = One belt, one road : connectivity and common development--energy infrastructure development and energy market integration in Asia-Pacific region. Beijing: Zhongguo she hui ke xue chu ban she, 2015.
Den vollen Inhalt der Quelle findenChettri, Mona, und Michael Eilenberg, Hrsg. Development Zones in Asian Borderlands. NL Amsterdam: Amsterdam University Press, 2021. http://dx.doi.org/10.5117/9789463726238.
Der volle Inhalt der QuelleBhattacharyay, Biswa, Masahiro Kawai und Rajat Nag. Infrastructure for Asian Connectivity. Edward Elgar Publishing, 2012. http://dx.doi.org/10.4337/9781781003138.
Der volle Inhalt der QuelleNag, Rajat M., Masahiro Kawai und Biswa Nath Bhattacharyay. Infrastructure for Asian Connectivity. Elgar Publishing Limited, Edward, 2014.
Den vollen Inhalt der Quelle findenEnhancing Connectivity through Transport Infrastructure. OECD, 2018. http://dx.doi.org/10.1787/9789264304505-en.
Der volle Inhalt der QuelleStrusani, Davide, und Georges V. Houngbonon. Accelerating Digital Connectivity Through Infrastructure Sharing. International Finance Corporation, Washington, DC, 2020. http://dx.doi.org/10.1596/33616.
Der volle Inhalt der QuelleBuchteile zum Thema "Connectivity infrastructure"
Kararach, George. „Infrastructure and Connectivity“. In Development Policy in Africa, 98–121. London: Palgrave Macmillan UK, 2014. http://dx.doi.org/10.1057/9781137360595_5.
Der volle Inhalt der QuelleTianguo, Li. „Connectivity of infrastructure“. In Routledge Handbook of the Belt and Road, 178–81. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Series: Routledge international handbooks: Routledge, 2019. http://dx.doi.org/10.4324/9780429203039-32.
Der volle Inhalt der QuelleLynn, Theo, Pierangelo Rosati, Edel Conway, Declan Curran, Grace Fox und Colm O’Gorman. „Infrastructure for Digital Connectivity“. In Digital Towns, 109–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91247-5_6.
Der volle Inhalt der QuelleVagadia, Bharat. „Data Connectivity and Digital Infrastructure“. In Future of Business and Finance, 21–63. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54494-2_3.
Der volle Inhalt der QuelleGong, Ding. „Thematic Session on Infrastructure Connectivity“. In Routledge Handbook of the Belt and Road, 390–93. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Series: Routledge international handbooks: Routledge, 2019. http://dx.doi.org/10.4324/9780429203039-74.
Der volle Inhalt der QuelleRoy, Suvendu. „Transportation Infrastructure and Geomorphic Connectivity“. In Disturbing Geomorphology by Transportation Infrastructure, 49–107. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37897-3_3.
Der volle Inhalt der QuelleShrivastava, Shailesh Kumar, S. K. Mahendran und Amar Nath Pandey. „GIS Based Smart Energy Infrastructure Architecture and Revenue Administration“. In Digital Connectivity – Social Impact, 237–46. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-3274-5_19.
Der volle Inhalt der QuelleInnocenti, Giorgio M. „Cortical Connectivity: The Infrastructure of Thoughts“. In Towards a Theory of Thinking, 337–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03129-8_22.
Der volle Inhalt der QuelleZhongyuan, Zhang. „Case Studies of Infrastructure Connectivity Building“. In The Routledge Handbook of the Belt and Road, 635–40. 2. Aufl. London: Routledge, 2022. http://dx.doi.org/10.4324/9781003286202-139.
Der volle Inhalt der QuelleZhongyuan, Zhang. „Case studies of infrastructure connectivity building“. In Routledge Handbook of the Belt and Road, 571–76. Abingdon, Oxon ; New York, NY : Routledge, 2019. | Series: Routledge international handbooks: Routledge, 2019. http://dx.doi.org/10.4324/9780429203039-112.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Connectivity infrastructure"
Jude, Dylan, Bumseok Lee, Yong Jung, Jannik Petermann, Bharath Govindarajan und James Baeder. „Application of a Heterogeneous CFD Framework Towards Simulating Complete Rotorcraft Configurations“. In Vertical Flight Society 74th Annual Forum & Technology Display, 1–18. The Vertical Flight Society, 2018. http://dx.doi.org/10.4050/f-0074-2018-12835.
Der volle Inhalt der QuelleJung, Yong, Dylan Jude, Bharath Govindarajan und James Baeder. „Line-Based Unstructured/Structured Heterogenous CPU/GPU Framework for Complex Aerodynamic Flows“. In Vertical Flight Society 73rd Annual Forum & Technology Display, 1–21. The Vertical Flight Society, 2017. http://dx.doi.org/10.4050/f-0073-2017-12007.
Der volle Inhalt der QuelleSchmitt, Paul, und Elizabeth Belding. „Navigating connectivity in reduced infrastructure environments“. In LIMITS '16: Workshop on Computing within Limits. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2926676.2926691.
Der volle Inhalt der QuelleHamouda, Ossama, Mohamed Kaaniche, Erling Matthiesen Moller, Jakob Gulddahl Rasmussen und Hans-Peter Schwefel. „Connectivity dynamics in vehicular freeway scenarios“. In 2009 Global Information Infrastructure Symposium (GIIS). IEEE, 2009. http://dx.doi.org/10.1109/giis.2009.5307090.
Der volle Inhalt der QuelleSukarev, Vidiin. „PRESERVE OF CULTURAL AND HISTORICAL HERITAGE DURING 1945-1989. A CONSTRUCTION OF PROSPECTIVE TOURIST RESOURCES“. In TOURISM AND CONNECTIVITY 2020. University publishing house "Science and Economics", University of Economics - Varna, 2020. http://dx.doi.org/10.36997/tc2020.214.
Der volle Inhalt der QuelleAleksandrova, Desislava. „MEDICAL FACILITIES AS A BASIS FOR THE DEVELOPMENT OF MEDICAL TOURISM“. In TOURISM AND CONNECTIVITY 2020. University publishing house "Science and Economics", University of Economics - Varna, 2020. http://dx.doi.org/10.36997/tc2020.408.
Der volle Inhalt der QuelleRafailova, Genka, und Antonio Hadzhikolev. „ASSESSMENT OF SMART EXPERIENCE OF TOURISTS AND LOCAL CITIZENS IN TOURIST DESTINATION“. In TOURISM AND CONNECTIVITY 2020. University publishing house "Science and Economics", University of Economics - Varna, 2020. http://dx.doi.org/10.36997/tc2020.563.
Der volle Inhalt der QuelleZhang, Xuewei, und Gang Zong. „Transport Infrastructure, Spatial connectivity and Inclusive Economic Growth“. In the 2019 3rd International Conference. New York, New York, USA: ACM Press, 2019. http://dx.doi.org/10.1145/3355166.3355167.
Der volle Inhalt der QuelleMohácsi, János. „KIFÜ nemzetközi együttműködései és projektjei“. In Networkshop. HUNGARNET Egyesület, 2021. http://dx.doi.org/10.31915/nws.2021.22.
Der volle Inhalt der QuelleCetinkaya, Egemen K., Mohammed J. F. Alenazi, Justin P. Rohrer und James P. G. Sterbenz. „Topology connectivity analysis of internet infrastructure using graph spectra“. In 2012 IV International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT 2012). IEEE, 2012. http://dx.doi.org/10.1109/icumt.2012.6459764.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Connectivity infrastructure"
Coyner, Kelley, und Jason Bittner. Automated Vehicles and Infrastructure Enablers: Connectivity. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, Juni 2023. http://dx.doi.org/10.4271/epr2023013.
Der volle Inhalt der QuellePuig Gabarró, Pau. Digital Connectivity: The Infrastructure of the Future. Inter-American Development Bank, Mai 2020. http://dx.doi.org/10.18235/0002352.
Der volle Inhalt der QuelleBliss-Ketchum, Leslie. The Impact of Infrastructure on Habitat Connectivity for Wildlife. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.6708.
Der volle Inhalt der QuelleOkala, Odiraa. The Power of Connectivity: Exploring the Role of Mobility Infrastructure. Orange Sparkle Ball, Juli 2023. http://dx.doi.org/10.61152/dtui5808.
Der volle Inhalt der QuelleHayashi, Tadateru, Sanchita Basu Das, Manbar Singh Khadka, Ikumo Isono, Souknilanh Keola, Kenmei Tsubota und Kazunobu Hayakawa. Economic Impact Analysis of Improved Connectivity in Nepal. Asian Development Bank, November 2020. http://dx.doi.org/10.22617/wps200312-2.
Der volle Inhalt der QuelleHusar, Arndt, Yoonee Jeong und John Garrity. Cross-Sector Infrastructure Co-deployment: Closing Digital Connectivity Gaps through Collaboration and Sharing. Asian Development Bank, Juli 2023. http://dx.doi.org/10.22617/wps230262-2.
Der volle Inhalt der QuelleKunz, Johannes S., Carol Propper und Trong-Anh Trinh. The Impact of Internet Access on COVID-19 Spread in Indonesia. Asian Development Bank, April 2024. http://dx.doi.org/10.22617/wps240232-2.
Der volle Inhalt der QuelleMeem, Fatma Zaman, und Wahid bin Ahsan. Urban Community Strategies: Enhancing Neighborhood Connectivity and Sustainability for Resilient Cities. Userhub, Mai 2024. http://dx.doi.org/10.58947/wxkf-ktds.
Der volle Inhalt der QuelleLambermont, Serge, und Niels De Boer. Unsettled Issues Concerning Automated Driving Services in the Smart City Infrastructure. SAE International, Dezember 2021. http://dx.doi.org/10.4271/epr2021030.
Der volle Inhalt der QuelleGarcía Zaballos, Antonio, Pau Puig Gabarró und Enrique Iglesias Rodriguez. Digital Infrastructure in Trinidad and Tobago: Analysis, Challenges, and Action Plan. Inter-American Development Bank, Februar 2022. http://dx.doi.org/10.18235/0003997.
Der volle Inhalt der Quelle