Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Congestion modelling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Congestion modelling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Congestion modelling"
Bulckaen, Fabrizio, und Alberto Pench. „Modelling congestion“. STUDI ECONOMICI, Nr. 106 (Februar 2013): 41–51. http://dx.doi.org/10.3280/ste2012-106003.
Der volle Inhalt der QuelleJanic, Milan. „Modelling airport congestion charges“. Transportation Planning and Technology 28, Nr. 1 (Februar 2005): 1–26. http://dx.doi.org/10.1080/0308106052000340369.
Der volle Inhalt der QuelleSchneider, Volker, und Rainer Könnecke. „Congestion in Computational Evacuation Modelling“. Collective Dynamics 5 (12.08.2020): A102. http://dx.doi.org/10.17815/cd.2020.102.
Der volle Inhalt der QuelleWang, Zongzhi, und Tao Chen. „Pedestrian Evacuation Modelling with Dynamics Congestion Avoidance“. Collective Dynamics 5 (12.08.2020): A87. http://dx.doi.org/10.17815/cd.2020.87.
Der volle Inhalt der QuelleMelo, Rafael C., Julio E. Normey-Rico und Jean-Marie Farines. „TCP modelling and predictive congestion control“. IFAC Proceedings Volumes 42, Nr. 14 (2009): 72–77. http://dx.doi.org/10.3182/20090901-3-ro-4009.00009.
Der volle Inhalt der QuelleHumphries, Michael Peter. „Modelling Congestion At Refuse Reception Installations“. Waste Management & Research 4, Nr. 1 (Januar 1986): 279–91. http://dx.doi.org/10.1177/0734242x8600400134.
Der volle Inhalt der QuellePollett, P. K. „Modelling congestion in closed queueing networks“. International Transactions in Operational Research 7, Nr. 4-5 (September 2000): 319–30. http://dx.doi.org/10.1111/j.1475-3995.2000.tb00202.x.
Der volle Inhalt der QuelleRaheja, Tushar. „Modelling traffic congestion using queuing networks“. Sadhana 35, Nr. 4 (August 2010): 427–31. http://dx.doi.org/10.1007/s12046-010-0033-x.
Der volle Inhalt der QuelleHan, Qi, Benedict Dellaert, Fred Van Raaij und Harry Timmermans. „MODELLING STRATEGIC BEHAVIOUR IN ANTICIPATION OF CONGESTION“. Transportmetrica 3, Nr. 2 (Januar 2007): 119–38. http://dx.doi.org/10.1080/18128600708685669.
Der volle Inhalt der QuelleAl-Kashoash, Hayder A. A., Fadoua Hassen, Harith Kharrufa und Andrew H. Kemp. „Analytical modelling of congestion for 6LoWPAN networks“. ICT Express 4, Nr. 4 (Dezember 2018): 209–15. http://dx.doi.org/10.1016/j.icte.2017.11.001.
Der volle Inhalt der QuelleDissertationen zum Thema "Congestion modelling"
Chandakas, Ektoras. „Modelling congestion in passenger transit networks“. Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1011/document.
Der volle Inhalt der QuelleA structural model is provided to capture capacity phenomena in passenger traffic assignment to a transit network. That has been founded on a bi-layer representation of the transit network : on the lower layer the model addresses each network sub-system (line, station and access-egress) separately, on the basis of specific capacity effects ; on the upper layer a leg-based representation is used with respect to the sub-systems' costs and operating characteristics to address the trip maker's path choices. We establish a novel framework for modelling capacity effects and develop the CapTA network model (for Capacitated Transit Assignment). It is systemic and modular and addresses in particular the following capacity phenomena, the in-vehicle quality of service is linked to the comfort of the passengers on-board. The occupation of heterogeneous comfort states (seats, folding seats and standing at different passenger densities) influences the perceived arduousness of the travel ; the vehicle capacity at boarding influences the waiting time of the passengers and their distribution to the transit services ; the track infrastructure capacity relates the dwelling time of the vehicles (and by extent the alighting and boarding flows) with the performance of the transit services and their service frequency. These phenomena are dealt with by line of operations on the basis of a set of local models yielding specific flows and costs. Accordingly, they modify the local conditions of a transit trip for each individual passenger. However, these should be addressed within the transit network in order to capture their effect on the network path choices; essentially the economic trade-offs that influence the choice between different network itineraries. Their treatment in a network level assures the coherence of the path choice. Equivalently, a station sub-model addresses specific capacity constraints and yields the local walking conditions, sensible to the interaction of the passengers in the interior of a station : the instant bottleneck created at the entry of the circulation elements delays the evacuation of the station platforms; the passenger density and presence of heterogeneous passenger flows slows down the passengers who circulate in the station; and the presence of real-time information influences the decision making process of the transit users exposed to. These effects do not only impact locally the in-station path choice, but most notably they modify the choices of transit routes and itineraries on a network level. The Paris Metropolitan Region provides an ideal application field of the capacity constrained transit assignment model. It is mainly used as a showcase of the simulation capabilities and of the finesse of the modelling approach. The transit network involves 1 500 bus routes together with 260 trains routes that include 14 metro lines and 4 light rail lines. Traffic assignment at the morning peak hour is characterized by heavy passenger loads along the central parts of the railway lines. Increased train dwelling, due to boarding and alighting flows, and reduction in the service frequency impact the route and the line capacity. The generalized time of a transit trip is impacted mainly though its in-vehicle comfort component. Detailed results have been provided for the RER A, the busiest commuter rail line in the transit network
Voice, Thomas David. „Stability of congestion control algorithms with multi-path routing and linear stochastic modelling of congestion control“. Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614022.
Der volle Inhalt der QuelleZernis, Rudolfs. „Modelling urban traffic congestion due to construction transports - The Case of Norrköping“. Thesis, Linköpings universitet, Kommunikations- och transportsystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177545.
Der volle Inhalt der QuelleExamensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet
Hong, Tianyang. „Congestion modelling and optimisation of routers with correlated traffic and arbitrary service times“. Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542951.
Der volle Inhalt der QuelleWang, Yunyu. „The interaction of context and demography in equity effects of congestion pricing“. Thesis, KTH, Trafik och logistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152338.
Der volle Inhalt der QuelleFerreira, Marina Amado. „Congestion in many-particle systems with volume exclusion constraints : algorithms and applications to modelling in biology“. Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/62322.
Der volle Inhalt der QuelleSmit, Robin, und n/a. „An Examination of Congestion in Road Traffic Emission Models and Their Application to Urban Road Networks“. Griffith University. School of Environmental Science, 2007. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20070724.155421.
Der volle Inhalt der QuelleTampère, Chris M. J. „Human-kinetic multiclass traffic flow theory and modelling. With application to Advanced Driver Assistance Systems in congestion“. Diss., Delft University of Technology, 2004. http://hdl.handle.net/10919/71567.
Der volle Inhalt der QuelleSaifuzzaman, Mohammad. „Modelling the effects of Stockholm Congestion Charges – A comparison of the two dynamic models: Metropolis and Silvester“. Thesis, KTH, Transportvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-42355.
Der volle Inhalt der QuelleKotze, Daniel Johannes Van Wyk. „Minimum congestion routing for a 17 GHz wireless ad hoc network“. Thesis, Stellenbosch : University of Stellenbosch, 2011. http://hdl.handle.net/10019.1/6510.
Der volle Inhalt der QuelleENGLISH ABSTRACT: An investigation is made to find a suitable routing protocol for a millimeter wave ad hoc wireless network. It is discovered that a hierarchical routing protocol is ideal for a high node density. Due to the high bandwidth that is possibly available, with millimeter wave transmission, packets are used to keep links between nodes active and to control data packet congestion. Cluster leaders are elected and use token packets to provide nodes with more queued messages with more transmission chances, assisting the network in congestion control. Hello messages are sent frequently to keep routing information at nodes fresh and to detect broken links quickly. If a broken link is found a new route is readily available, within a second. A simulation is created to test the protocol. Changes are made to the original proactive cluster routing protocol to reduce the route length and lessen routing overhead. A theoretical model is developed to estimate the mean waiting time for a packet. Although insight is gained by modelling the latency with queueing theory it is suggested, due to the protocol’s complexity, to use other mathematical modelling techniques such as a Markov state model or a Petri net.
AFRIKAANSE OPSOMMING: Ondersoek word ingestel na ’n geskikte roete protokol vir ’n millimeter golflengte ad hoc radio pakkie netwerk. Daar word gevind dat ’n hi¨erargiese kluster roete protokol ideaal is vir ’n ho¨e digtheid van nodusse. As gevolg van die ho¨e bandwydte, wat moontlik beskikbaar is met millimeter golflengte transmissie, word pakkies gebruik om kommunikasie skakels tussen nodes in stand te hou en data pakkie verkeersopeenhoping te beheer. Kluster leiers word verkies en gebruik teken-pakkies om nodes met ’n groter data pakkie las meer transmissie kanse te gee. Sodoende word die verkeersopeenhoping van data pakkies verminder. Hallo pakkies word gereeld gestuur om die roete inligting vars te hou en gebroke kommunikasie skakels vinnig op te spoor. As ’n gebroke skakel gevind word, word ’n alternatiewe roete vinnig opgestel, binne ’n sekonde. ’n Simulasie word opgestel om die protokol te toets. Veranderinge aan die oorspronklike proaktiewe kluster protokol word aangebring om roete lengte te verklein en oorhoofse roete inligting kommunikasie te verminder. ’n Teoretiese model gebasseer op tou-staan teorie word ontwikkel om die wagtyd van ’n pakkie te bepaal. Alhoewel, insig verkry is deur die protokol te analiseer deur middel van tou-staan teorie, word daar voorgestel, as gevolg van die protokol se kompleksiteit, om eerder ander wiskundige modelleeringstegnieke te gebruik soos ’n Markov toestands model of ’n Petri net.
Bücher zum Thema "Congestion modelling"
Lindsey, Robin. Congestion modelling. Edmonton, Alta: Dept. of Economics, University of Alberta, 1999.
Den vollen Inhalt der Quelle findenEliahu, Stern, Salomon Ilan und Bovy, Piet H. L., 1943-, Hrsg. Travel behaviour: Spatial patterns, congestion and modelling. Cheltenham, UK: E. Elgar Pub., 2002.
Den vollen Inhalt der Quelle findenModelling urban congestion, social ostracization, and ecologically constrained environment. Allahabad: Govind Ballabh Pant Social Science Institute, 1987.
Den vollen Inhalt der Quelle finden(Editor), Eliahu Stern, Ilan Salomon (Editor) und Piet H. L. Bovy (Editor), Hrsg. Travel Behaviour: Spatial Patterns, Congestion and Modelling (Transport Economics, Management, and Policy). Edward Elgar Publishing, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Congestion modelling"
Emmerink, Richard H. M. „Simulation Modelling: Recurrent Congestion“. In Advances in Spatial Science, 187–213. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72143-4_11.
Der volle Inhalt der QuelleEmmerink, Richard H. M. „Simulation Modelling: Non-Recurrent Congestion“. In Advances in Spatial Science, 214–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-72143-4_12.
Der volle Inhalt der QuelleFilipiak, Janusz. „Congestion Offloading Procedure“. In Modelling and Control of Dynamic Flows in Communication Networks, 122–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83205-5_11.
Der volle Inhalt der QuelleHearn, Donald W., und Motakuri V. Ramana. „Solving Congestion Toll Pricing Models“. In Equilibrium and Advanced Transportation Modelling, 109–24. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5757-9_6.
Der volle Inhalt der QuelleFrantti, Tapio. „Fuzzy Congestion Control In Packet Networks“. In Computational Intelligence for Modelling and Prediction, 291–308. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/10966518_21.
Der volle Inhalt der QuellePyatkova, Katya, Albert S. Chen, David Butler und Slobodan Djordjević. „Modelling Road Transport Congestion Due to Flooding“. In New Trends in Urban Drainage Modelling, 517–21. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99867-1_89.
Der volle Inhalt der QuelleZhang, Xiao-Ping, Christian Rehtanz und Bikash Pal. „Congestion Management and Loss Optimization with FACTS“. In Flexible AC Transmission Systems: Modelling and Control, 269–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28241-6_8.
Der volle Inhalt der QuelleUrhahne, Joseph A., Patrick Piastowski und Mascha C. van der Voort. „Modelling and Experimental Study for Automated Congestion Driving“. In Advances in Visual Computing, 784–94. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27857-5_70.
Der volle Inhalt der QuelleMelo, Rafael C., Jean-Marie Farines und Julio E. Normey-Rico. „Modelling and Predictive Congestion Control of TCP Protocols“. In Time Delay Systems: Methods, Applications and New Trends, 383–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25221-1_29.
Der volle Inhalt der QuelleIsreb, M., und A. I. Khan. „Internet Traffic Congestion Modelling and Parallel Distributed Analysis“. In Parallel and Distributed Processing and Applications, 145–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-37619-4_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Congestion modelling"
Gran, Ernst Gunnar, und Sven-Arne Reinemo. „InfiniBand Congestion Control, Modelling and validation“. In 4th International ICST Conference on Simulation Tools and Techniques. ACM, 2011. http://dx.doi.org/10.4108/icst.simutools.2011.245509.
Der volle Inhalt der QuelleHossain, Bushra, Kazi Abir Adnan, Md Fazle Rabbi und Mohammed Eunus Ali. „Modelling Road Traffic Congestion from Trajectories“. In DSIT 2020: 2020 3rd International Conference on Data Science and Information Technology. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3414274.3414491.
Der volle Inhalt der QuelleIto, Teruaki. „Simulation-Based Approaches Towards Congestion Problems“. In 2008 Second Asia International Conference on Modelling & Simulation (AMS). IEEE, 2008. http://dx.doi.org/10.1109/ams.2008.192.
Der volle Inhalt der QuelleAlikhanzadeh, Samaneh, und Mohammad Hossein Yaghmaee. „A Congestion Control Mechanism for WSN in Nonstationary Q-Model Environment using Learning Automata“. In Modelling and Simulation. Calgary,AB,Canada: ACTAPRESS, 2011. http://dx.doi.org/10.2316/p.2011.735-039.
Der volle Inhalt der QuelleFiems, Dieter, und Balakrishna Prabhu. „Macroscopic modelling and analysis of rush-hour congestion“. In VALUETOOLS '20: 13th EAI International Conference on Performance Evaluation Methodologies and Tools. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3388831.3388849.
Der volle Inhalt der QuelleNishimura, K., und K. Takahashi. „A Multi-Agent Routing Protocol With Congestion Control For MANET“. In 21st Conference on Modelling and Simulation. ECMS, 2007. http://dx.doi.org/10.7148/2007-0164.
Der volle Inhalt der Quelle„Comparing de-congestion scenarios using a hospital event simulation model“. In 22nd International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2017. http://dx.doi.org/10.36334/modsim.2017.i3.hou.
Der volle Inhalt der QuelleNappu, M. B., und T. K. Saha. „A comprehensive tool for congestion-based nodal price modelling“. In Energy Society General Meeting (PES). IEEE, 2009. http://dx.doi.org/10.1109/pes.2009.5275530.
Der volle Inhalt der QuelleLingen, Wouter v., und Paul C. Roling. „Modelling the effects of gate planning on apron congestion“. In AIAA Aviation 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-3047.
Der volle Inhalt der QuelleKulkarni, Nandkumar, Dnyaneshwar Mantri, Pranav Pawar und Neeli Rashmi Prasad. „Averaging Based Predictive Modelling for Traffic Congestion in IoT“. In 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). IEEE, 2018. http://dx.doi.org/10.1109/gcwcn.2018.8668649.
Der volle Inhalt der Quelle