Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Confocal microscopy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Confocal microscopy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Confocal microscopy"
J. H., Youngblom, Wilkinson J. und Youngblom J.J. „Telepresence Confocal Microscopy“. Microscopy and Microanalysis 6, S2 (August 2000): 1164–65. http://dx.doi.org/10.1017/s1431927600038319.
Der volle Inhalt der QuelleYoungblom, J. H., J. Wilkinson und J. J. Youngblom. „Telepresence Confocal Microscopy“. Microscopy Today 8, Nr. 10 (Dezember 2000): 20–21. http://dx.doi.org/10.1017/s1551929500054146.
Der volle Inhalt der QuelleJester, J. V., H. D. Cavanagh und M. A. Lemp. „In vivo confocal imaging of the eye using tandem scanning confocal microscopy (TSCM)“. Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 56–57. http://dx.doi.org/10.1017/s0424820100102365.
Der volle Inhalt der QuelleYoungblom, J. H., J. Wilkinson und J. J. Youngblom. „Confocal Laser Scanning Microscopy By Remote Access“. Microscopy Today 7, Nr. 7 (September 1999): 32–33. http://dx.doi.org/10.1017/s1551929500064798.
Der volle Inhalt der QuelleStefani, Caroline, Adam Lacy-Hulbert und Thomas Skillman. „ConfocalVR: Immersive Visualization for Confocal Microscopy“. Journal of Molecular Biology 430, Nr. 21 (Oktober 2018): 4028–35. http://dx.doi.org/10.1016/j.jmb.2018.06.035.
Der volle Inhalt der QuelleJason Kirk. „Beyond the Hype - Is 2-Photon Microscopy Right for You?“ Microscopy Today 11, Nr. 2 (April 2003): 26–29. http://dx.doi.org/10.1017/s1551929500052469.
Der volle Inhalt der QuelleChapman, George B., und T. Wilson. „Confocal Microscopy“. Transactions of the American Microscopical Society 110, Nr. 2 (April 1991): 194. http://dx.doi.org/10.2307/3226760.
Der volle Inhalt der QuelleWilson, T., und Barry R. Masters. „Confocal microscopy“. Applied Optics 33, Nr. 4 (01.02.1994): 565. http://dx.doi.org/10.1364/ao.33.000565.
Der volle Inhalt der QuelleBeuerman, Roger W. „Confocal Microscopy“. Cornea 14, Nr. 1 (Januar 1995): 1???2. http://dx.doi.org/10.1097/00003226-199501000-00001.
Der volle Inhalt der QuelleLichtman, Jeff W. „Confocal Microscopy“. Scientific American 271, Nr. 2 (August 1994): 40–45. http://dx.doi.org/10.1038/scientificamerican0894-40.
Der volle Inhalt der QuelleDissertationen zum Thema "Confocal microscopy"
Naredi-Rainer, Nikolaus. „Advanced confocal microscopy“. Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-168349.
Der volle Inhalt der QuellePacheco, Shaun, und Shaun Pacheco. „Array Confocal Microscopy“. Diss., The University of Arizona, 2017. http://hdl.handle.net/10150/623252.
Der volle Inhalt der QuelleYe, Peng. „Compressive confocal microscopy“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 50 p, 2009. http://proquest.umi.com/pqdweb?did=1889084501&sid=3&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Der volle Inhalt der QuelleOwen, Gabrielle M. „Coherence gated confocal microscopy“. Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12434.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 33-34).
by Gabrielle M. Owen.
B.S.
Sfalcin, Ravana Angelini 1985. „Avaliação de propriedades físico-químicas de infiltrantes experimentais com adição de partículas de vidro bioativas = Evaluation of the physical-chemical properties of experimental infiltrants incorporated with bioactive glass particles“. [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/288423.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba
Made available in DSpace on 2018-08-27T03:22:53Z (GMT). No. of bitstreams: 1 Sfalcin_RavanaAngelini_D.pdf: 1513616 bytes, checksum: bd6dc4a4843283522343b56a58ef8ec7 (MD5) Previous issue date: 2015
Resumo: O objetivo neste trabalho foi avaliar as propriedades físico-químicas de infiltrantes resinosos com adição de partículas bioativas, bem como sua capacidade de penetração e dureza da profundidade em lesões subsuperficiais de esmalte. Uma blenda contendo TEGDMA (75% em peso) e BisEMA (25% em peso) foi manipulada e a partir dela foram incorporados 5 tipos de partículas bioativas (10% em peso): hidroxiapatita (HAp), fosfato de cálcio amorfo (ACP), vidro bioativo policarboxilato de zinco (BAG Zn), vidro bioativo 45S5 (BAG 45S5), cimento de silicato de cálcio modificado por ?-TCP (HCAT-?). Um material comercial foi utilizado (ICON®) como controle. Dez espécimes foram confeccionados para cada grupo de cada teste: rugosidade superficial (Ra) antes e após a escovação; Resistência à flexão por 3 pontos (RF) e módulo de elasticidade (ME); resistência coesiva à tração (RC); dureza Knoop (KHN); densidade de ligação cruzada (DLC); grau de conversão (GC); sorção (S) e solubilidade (SL) em água; e micro-dureza (KHN). Os dados foram submetidos a ANOVA e teste Tukey (?=0.05). A penetração dos infiltrantes resinosos no esmalte humano desmineralizado foi qualitativamente avaliada em Microscopia Confocal de Varredura a Laser (n=5). Os resultados mostraram que os menores valores de rugosidade (antes e após a escovação foram apresentados pelo ACP. Com relação à resistência a flexão e módulo de elasticidade, T+B apresentou o maior valor e ICON® mostrou o menor valor. ICON® também mostrou o menor valor de resistência coesiva à tração; não houve diferença significativa entre os grupos T+B, HAp, ACP, BAG Zn, BAG 45S5 e HCAT-?. Para o teste de dureza Knoop, ICON® obteve o menor valor e BAG Zn mostrou o maior valor. Para densidade de ligação cruzada, ICON® apresentou maior quantidade de ligação cruzada e HAp, menor quantidade de ligação cruzada. ICON® apresentou grau de conversão significantemente menor que os infiltrantes experimentais, que não diferiram entre eles. ICON® apresentou a maior sorção de água e HAp a menor. Não houve diferença significativa entre os demais grupos. Para solubilidade, ICON® apresentou os maiores valores, mas sem diferença de ACP. BAG 45S5 apresentou a menor solubilidade. Com relação a micro-dureza, não houve diferença estatisticamente significante entre as profundidades avaliadas (50 µm, 200 µm, 350 µm e 500 µm). BAG 45S5, BAG Zn e HCAT-? não mostraram diferença estatística entre eles. Entretanto, HCAT-? e BAG Zn foram similares ao ICON® e ACP. O grupo cariado mostrou menor valor quando comparado a todos os grupos testados. A análise em microscopia confocal mostrou que todos os materiais apresentaram boa capacidade de penetração nas lesões iniciais, exceto para FCA. Pôde ser concluído que adição de partículas bioativas em um infiltrante experimental melhorou as propriedades mecânicas e não afetou a capacidade de penetração dos infiltrantes. O infiltrante resinoso contendo fosfato de cálcio amorfo foi o que apresentou o melhor desempenho no teste de rugosidade de superfície antes e após a escovação
Abstract: The aim of this study was to evaluate the physical-chemical properties of the experimental infiltrants with the addition of bioactive particles as well as their capability of penetration and depth Knoop hardness into caries-like lesions. A control blend was made with TEGDMA (75 wt%) and BisEMA (25 wt%). Five bioactive fillers were added in the control blend (10 wt%): Hydroxyapatite (Hap), amorphous calcium phosphate (ACP), Zinc-polycarboxylated bioactive glass (BAG-Zn), bioactive glass 45S5 (BAG 45S5), and ?-TCP modified calcium silicate cements (HCAT-?). An available commercially material was used (ICON®). Ten specimens were comprised by each group for the following tests: Surface roughness (Ra) before and after brushing abrasion; flexural strength (FS) and elastic modulus (E-Modulus); tensile cohesive strength (TCS); Knoop hardness (KHN); softnening ratio (SR); degree of conversion (DC); water sorption (WS) and solubility (SL); and micro-hardness (micro-KHN). Data were subjected to ANOVA and Tukey¿s test (?=0.05). Confocal Scanning Laser Microscopy was used to evaluate qualitatively the penetration capability of resin infiltrants into demineralized human enamel. Results showed that ACP had the lowest Ra before and after brushing abrasion. Regarding to the FS and E-modulus, T+B showed the higher value and ICON® showed the lower value. Also, ICON® showed the lower value of TCS, but there was no significant statistically difference among the groups T+B, HAp, ACP, BAG Zn, BAG 45S5 e HCAT-?. To the KHN, ICON® obtained the lower value and BAG Zn showed the higher value. According to the SR, ICON® showed lower SR and HAp, the higher SR. ICON showed DC significantly lower than experimental resin infiltrants. Regarding to the WS, ICON® presented the highest water sorption and HAp the lowest one. There was no significant statistically difference among the other groups. ICON showed the highest SL results; however, the results were similar to ACP. The lowest SL was found for BAG 45S5. Regarding to the micro-KHN, there was no statistically difference among the analyzed depths (50 µm, 200 µm, 350 µm and 500 µm). BAG 45S5, BAG Zn and HCAT- ? did not show statistical difference among them. However, HCAT- ? and BAG Zn were similar to ICON® and ACP. Carious group showed lower value when compared to all the tested groups. Confocal microscopy analysis showed good capability of penetration into the initial lesions for all materials, except for ACP. It could be concluded that the addition of bioactive particles into an experimental infiltrant improved the mechanical properties and did not affect the capability of penetration into the experimental infiltrants. The resin infiltrant with amorphous calcium phosphate presented the best performance to the roughness surface before and after brushing abrasion
Doutorado
Materiais Dentarios
Doutora em Materiais Dentários
Booth, Martin J. „Adaptive optics for confocal microscopy“. Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393566.
Der volle Inhalt der QuelleCarlini, A. R. „Imaging modes of confocal scanning microscopy“. Thesis, University of Oxford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233485.
Der volle Inhalt der QuelleAlawadhi, Fahimah. „Statistical image analysis and confocal microscopy“. Thesis, University of Bath, 2001. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341639.
Der volle Inhalt der QuelleLewin, Erland. „Approaches to Optimizing High Content Confocal Microscopy“. Licentiate thesis, KTH, Applied Physics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10691.
Der volle Inhalt der QuelleThis thesis presents two methods for improving high contentconfocal microscopy.
The author's part in the first, "Toward a confocal subcellular atlasof the human proteome" was automating image capture of foursimultaneously tagged structures in cells in 96 well plates. In total,thousands of images of hundreds of proteins in cells. The authorwas also part of deciding which imaging methods should be used tomaximize image information content and quality, given the limitedtime available per well in order to scan large numbers of wells.
The second project, "Improved water permeability measurementsbased on fluorescence normalization" involves increasing the sensitivityof measurements of protein function by normalizing with anestimate of the amount of protein in the cell - the fluorescentsignal of a co-transfected protein. This could lead to achievingsufficient confidence in measurements with fewer experiments(thus increasing the information content in each experiment). Asurprisingly high level of noise in the relationship between thefluorescent signal and the protein function was measured.
Denna avhandling presenterar två projekt för att förbättrametoder för experiment med stora informationsmängderbaserade på konfokalmikroskopi.
Författarens del i det första projektet, "Toward a ConfocalSubcellular Atlas of the Human Proteome" (Mot en konfokal,subcellulär atlas av det mänskliga proteomet) var att automatiserabildinsamlingen av fyra samtidigt inmärkta strukturer i celler iplattor med 96 brunnar. Sammanlagt togs tusentals bilder avhundratals proteiner i celler. Författaren var även del i att fastställavilka bildinsamlingsmetoder som skulle användas för att maximeramängd och kvalitet på bild-informationen givet den begränsade tidper brunn som var tillgänglig för att kunna avbilda många brunnar.
Den andra studien, "Improved water permeability measurementsbased on fluorescence normalization" (Förbättrade vattenpermeabilitetsmätningargenom normalisering av fluorescens) syftade till att ökakänsligheten hos mätningar av proteiners funktion genom attnormalisera mätningarna med signalen från fluorescensen från ettkotransfekterat protein. Det skulle kunna leda till att nå tillräckligtillförlitlighet i mätresultaten med färre experiment (därmed ökainformationsinnehållet i varje experiment). En förvånansvärt högbrusnivå i förhållandet mellan fluorescenssignalen ochproteinfunktionen uppmättes
Apeldoorn, Aart Alexander van. „Confocal Raman microscopy applications in tissue engineering /“. Enschede : University of Twente [Host], 2005. http://doc.utwente.nl/50895.
Der volle Inhalt der QuelleBücher zum Thema "Confocal microscopy"
Paddock, Stephen W. Confocal Microscopy. New Jersey: Humana Press, 1998. http://dx.doi.org/10.1385/159259722x.
Der volle Inhalt der QuelleBrzostowski, Joseph, und Haewon Sohn, Hrsg. Confocal Microscopy. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1402-0.
Der volle Inhalt der QuellePaddock, Stephen W., Hrsg. Confocal Microscopy. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-60761-847-8.
Der volle Inhalt der QuelleTony, Wilson, Hrsg. Confocal microscopy. London: Academic Press, 1990.
Den vollen Inhalt der Quelle findenMichael, Conn P., Hrsg. Confocal microscopy. San Diego: Academic Press, 1999.
Den vollen Inhalt der Quelle findenBrian, Matsumoto, und American Society for Cell Biology., Hrsg. Cell biological applications of confocal microscopy. 2. Aufl. Amsterdam: Academic Press, 2002.
Den vollen Inhalt der Quelle findenPrice, Robert L., und W. Gray (Jay) Jerome, Hrsg. Basic Confocal Microscopy. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-78175-4.
Der volle Inhalt der QuelleJerome, W. Gray, und Robert L. Price, Hrsg. Basic Confocal Microscopy. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97454-5.
Der volle Inhalt der QuelleToporski, Jan, Thomas Dieing und Olaf Hollricher, Hrsg. Confocal Raman Microscopy. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75380-5.
Der volle Inhalt der QuelleDieing, Thomas, Olaf Hollricher und Jan Toporski, Hrsg. Confocal Raman Microscopy. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-12522-5.
Der volle Inhalt der QuelleBuchteile zum Thema "Confocal microscopy"
Bühren, Jens. „Confocal Microscopy“. In Encyclopedia of Ophthalmology, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-35951-4_429-4.
Der volle Inhalt der QuelleCox, Guy. „Confocal Microscopy“. In Springer Protocols Handbooks, 1009–25. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-375-6_55.
Der volle Inhalt der QuelleSheppard, Colin J. R., und Shakil Rehman. „Confocal Microscopy“. In Biomedical Optical Imaging Technologies, 213–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28391-8_6.
Der volle Inhalt der QuelleBorlinghaus, Rolf Theodor. „Confocal Microscopy“. In The White Confocal, 47–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55562-1_3.
Der volle Inhalt der QuelleWiora, Georg, Mark Weber und Sirichanok Chanbai. „Confocal Microscopy“. In Encyclopedia of Tribology, 426–34. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_314.
Der volle Inhalt der QuelleNaredi-Rainer, Nikolaus, Jens Prescher, Achim Hartschuh und Don C. Lamb. „Confocal Microscopy“. In Fluorescence Microscopy, 165–202. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527687732.ch5.
Der volle Inhalt der QuelleNaredi-Rainer, Nikolaus, Jens Prescher, Achim Hartschuh und Don C. Lamb. „Confocal Microscopy“. In Fluorescence Microscopy, 175–213. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527671595.ch5.
Der volle Inhalt der QuelleBühren, Jens. „Confocal Microscopy“. In Encyclopedia of Ophthalmology, 475–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-540-69000-9_429.
Der volle Inhalt der QuelleSanderson, Jeremy. „Confocal Microscopy“. In Principles of Light Microscopy: From Basic to Advanced, 105–38. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04477-9_5.
Der volle Inhalt der QuelleDebarbieux, Sébastien, Amélie Boespflug, Bruno Labeille und Luc Thomas. „Confocal Microscopy“. In Baran & Dawber's Diseases of the Nails and their Management, 204–11. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119323396.ch8.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Confocal microscopy"
Dixon, A. E. „Confocal microscopy“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.tue.1.
Der volle Inhalt der QuelleMasters, Barry R., und Andreas A. Thaer. „Confocal Microscopy of the Human In Vivo Cornea“. In Ophthalmic and Visual Optics. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/ovo.1993.osab.2.
Der volle Inhalt der QuelleWebb, Robert H. „Confocal microscopy“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.ms1.
Der volle Inhalt der QuelleLindek, Steffen, und Ernst H. Stelzer. „Confocal theta microscopy and 4Pi-confocal theta microscopy“. In IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, herausgegeben von Carol J. Cogswell und Kjell Carlsson. SPIE, 1994. http://dx.doi.org/10.1117/12.172093.
Der volle Inhalt der QuelleZhao, Bingying, Minoru Koyama und Jerome Mertz. „High-resolution multi-z confocal microscopy“. In Imaging Systems and Applications. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/isa.2023.itu3e.4.
Der volle Inhalt der QuelleYe, P., J. L. Paredes, G. R. Arce, Y. Wu, C. Chen und D. W. Prather. „Compressive confocal microscopy“. In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4959612.
Der volle Inhalt der QuelleChmelik, Radim. „Holographic confocal microscopy“. In 12th Czech-Slovak-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, herausgegeben von Jan Perina, Sr., Miroslav Hrabovsky und Jaromir Krepelka. SPIE, 2001. http://dx.doi.org/10.1117/12.417815.
Der volle Inhalt der QuelleHanna, Philip M., Brian D. Rigling und Edmund G. Zelnio. „Virtual confocal microscopy“. In Electronic Imaging 2006, herausgegeben von Brian D. Corner, Peng Li und Matthew Tocheri. SPIE, 2006. http://dx.doi.org/10.1117/12.650778.
Der volle Inhalt der QuelleSheppard, Colin J., Douglas K. Hamilton und Hubert J. Matthews. „Confocal Interference Microscopy“. In 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950317.
Der volle Inhalt der QuelleSheppard, Colin J. R., und Hao Zhou. „Confocal interference microscopy“. In BiOS '97, Part of Photonics West, herausgegeben von Carol J. Cogswell, Jose-Angel Conchello und Tony Wilson. SPIE, 1997. http://dx.doi.org/10.1117/12.271254.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Confocal microscopy"
Hoffmeyer, Michaela. In Vivo Fluorescence Confocal Microscopy to Investigate the Role of RhoC in Inflammatory Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada435616.
Der volle Inhalt der QuelleDarrow, C., T. Huser, C. Campos, M. Yan, S. Lane und R. Balhorn. Single Fluorescent Molecule Confocal Microscopy: A New Tool for Molecular Biology Research and Biosensor Development. Office of Scientific and Technical Information (OSTI), März 2000. http://dx.doi.org/10.2172/792442.
Der volle Inhalt der QuelleWickramaratne, Chathuri, Emily Sappington und Hanadi Rifai. Confocal Laser Fluorescence Microscopy to Measure Oil Concentration in Produced Water: Analyzing Accuracy as a Function of Optical Settings. Journal of Young Investigators, Juni 2018. http://dx.doi.org/10.22186/jyi.34.6.39-47.
Der volle Inhalt der QuelleYANG, JUNYA, und NAN ZHANG ZHANG. Changes of the corneal nerve in painful diabetic neuropathy compared to painless diabetic neuropathy under corneal confocal microscopy: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, März 2023. http://dx.doi.org/10.37766/inplasy2023.3.0023.
Der volle Inhalt der QuelleTan, Li, Qiong Liu, Yun Chen, Ya-Qiong Zhao, Jie Zhao, Marie Aimee Dusenge, Yao Feng et al. Efficacy of sonic activation techniques on tubular dentin sealer penetration:A systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, Juli 2022. http://dx.doi.org/10.37766/inplasy2022.7.0116.
Der volle Inhalt der QuelleGeorge, J. S., D. M. Rector, D. M. Ranken, B. Peterson und J. Kesteron. Virtual pinhole confocal microscope. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/353183.
Der volle Inhalt der QuelleOr, Dani, Shmulik Friedman und Jeanette Norton. Physical processes affecting microbial habitats and activity in unsaturated agricultural soils. United States Department of Agriculture, Oktober 2002. http://dx.doi.org/10.32747/2002.7587239.bard.
Der volle Inhalt der QuelleMartinez-Rodriguez, M. J. Laser confocal microscope for analysis of 3013 inner container closure weld region. Office of Scientific and Technical Information (OSTI), Oktober 2017. http://dx.doi.org/10.2172/1406122.
Der volle Inhalt der QuelleGalbraith, David. Final Report: Confocal Laser Scanning Microscope, April 15, 1995 - April 14, 1997. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/765740.
Der volle Inhalt der QuelleWendelberger, James. Template size and proper overlap detection in Laser Confocal Microscope (LCM) images. Office of Scientific and Technical Information (OSTI), August 2021. http://dx.doi.org/10.2172/1812643.
Der volle Inhalt der Quelle