Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Confocal imaging on living cells“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Confocal imaging on living cells" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Confocal imaging on living cells"
Williams, D. A., S. H. Cody, C. A. Gehring, R. W. Parish und P. J. Harris. „Confocal imaging of ionised calcium in living plant cells“. Cell Calcium 11, Nr. 4 (April 1990): 291–97. http://dx.doi.org/10.1016/0143-4160(90)90006-g.
Der volle Inhalt der QuelleFilić, Vedrana, und Igor Weber. „A young researcher’s guide to three-dimensional fluorescence microscopy of living cells“. Periodicum Biologorum 125, Nr. 1-2 (25.10.2023): 133–37. http://dx.doi.org/10.18054/pb.v125i1-2.25140.
Der volle Inhalt der QuelleSCHWARZLÄNDER, M., M. D. FRICKER, C. MÜLLER, L. MARTY, T. BRACH, J. NOVAK, L. J. SWEETLOVE, R. HELL und A. J. MEYER. „Confocal imaging of glutathione redox potential in living plant cells“. Journal of Microscopy 231, Nr. 2 (August 2008): 299–316. http://dx.doi.org/10.1111/j.1365-2818.2008.02030.x.
Der volle Inhalt der QuelleHe, Fang, Ze-Yu Ye, Li-Dong Zhao, Bin-Cheng Yin und Bang-Ce Ye. „Probing exosome internalization pathways through confocal microscopy imaging“. Chemical Communications 55, Nr. 93 (2019): 14015–18. http://dx.doi.org/10.1039/c9cc07491k.
Der volle Inhalt der QuelleZoladek, A., F. Pascut, P. Patel und I. Notingher. „Development of Raman Imaging System for time-course imaging of single living cells“. Spectroscopy 24, Nr. 1-2 (2010): 131–36. http://dx.doi.org/10.1155/2010/521962.
Der volle Inhalt der QuelleSkiba, Joanna, Aleksandra Kowalczyk, Marta A. Fik, Magdalena Gapińska, Damian Trzybiński, Krzysztof Woźniak, Valerije Vrček, Rafał Czerwieniec und Konrad Kowalski. „Luminescent pyrenyl-GNA nucleosides: synthesis, photophysics and confocal microscopy studies in cancer HeLa cells“. Photochemical & Photobiological Sciences 18, Nr. 10 (2019): 2449–60. http://dx.doi.org/10.1039/c9pp00271e.
Der volle Inhalt der QuelleHe, Zhaoshuai, Yajie Chou, Hanxin Zhou, Han Zhang, Tanyu Cheng und Guohua Liu. „A nitroreductase and acidity detecting dual functional ratiometric fluorescent probe for selectively imaging tumor cells“. Organic & Biomolecular Chemistry 16, Nr. 17 (2018): 3266–72. http://dx.doi.org/10.1039/c8ob00670a.
Der volle Inhalt der QuelleWANG, XIAO-PING, HUAI-NA YU und TONG-SHENG CHEN. „QUANTITATIVE FRET MEASUREMENT BASED ON CONFOCAL MICROSCOPY IMAGING AND PARTIAL ACCEPTOR PHOTOBLEACHING“. Journal of Innovative Optical Health Sciences 05, Nr. 03 (Juli 2012): 1250015. http://dx.doi.org/10.1142/s1793545812500150.
Der volle Inhalt der QuelleOkuno, Masanari, und Hiro-o. Hamaguchi. „Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells“. Optics Letters 35, Nr. 24 (02.12.2010): 4096. http://dx.doi.org/10.1364/ol.35.004096.
Der volle Inhalt der QuelleFeofanov, Alexei V., Alexei I. Grichine, Larissa A. Shitova, Tatyana A. Karmakova, Raisa I. Yakubovskaya, Marguerite Egret-Charlier und Paul Vigny. „Confocal Raman Microspectroscopy and Imaging Study of Theraphthal in Living Cancer Cells“. Biophysical Journal 78, Nr. 1 (Januar 2000): 499–512. http://dx.doi.org/10.1016/s0006-3495(00)76612-4.
Der volle Inhalt der QuelleDissertationen zum Thema "Confocal imaging on living cells"
Bokhari, Ramiz Ahmed. „Confocal Imaging and Analysis of Quantum Dots on living Cells“. Thesis, KTH, Tillämpad fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129972.
Der volle Inhalt der QuelleBayard, Anaïs. „Study of the Physiological Response of NucS to Genotoxic Stress in Actinobacteria“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX063.
Der volle Inhalt der QuelleDNA replication accuracy ensures proper genetic transmission. Damage from external factors or internal events threatens genomic integrity. Actinobacteria, lacking canonical MMR proteins, possess NucS (EndoMS), an ATP-independent enzyme involved in a non-canonical mismatch repair pathway. While NucS's activity on mismatches is documented, its in vivo role and implications in DNA Damage Repair systems require further understanding.This study aims to characterise NucS's role in Double-Strand Break Repair (DSBR). Our findings show that mScarlet1-NucSD144A forms polar foci in response to DNA damage, especially DSBs and complex recruitment in apoptosis-like cells.Corynebacterium glutamicum, CglΔnucS bacteria exhibits higher homologous recombination (HR) activation and increased DSBs compared to CglWT, indicating NucS's role in DSBR efficiency and regulation. CglΔnucS bacteria have a growth advantage under genotoxic stress, likely due to altered DSBR mechanisms. Bioinformatic analyses predict NucS interactions with key enzymes of RH and other DNA repair pathways and metabolism and energy regulation.NucS may bind and stabilise free DNA ends generated by DSBs, balancing HR and participating in DSB repair through microhomology-mediated end joining (MMEJ). Future studies should explore post-translational modifications and metabolic conditions regulating NucS reponse and its in vitro activity on DSBs and HR intermediates
Zoladek, Alina. „Confocal Raman imaging of live cells“. Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/13338/.
Der volle Inhalt der QuelleZeskind, Benjamin J. „Quantitative imaging of living cells by deep ultraviolet microscopy“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38693.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 139-145).
Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy received attention in the 1950s as a way to generate image contrast from the strong absorbance of proteins and nucleic acids at wavelengths shorter than 300 nm. However, the lethal effects of these wavelengths limited their usefulness in studies of cell function, separating the contributions of protein and nucleic acid proved difficult, and scattering artifacts were a significant concern. We have used short exposures of deep-ultraviolet light synchronized with an ultraviolet-sensitive camera to observe mitosis and motility in living cells without causing necrosis, and quantified absorbance at 280 nm and 260 nm together with tryptophan native fluorescence in order to calculate maps of nucleic acid mass, protein mass, and quantum yield in unlabeled cells. We have also developed a method using images acquired at 320nm and 340nm, and an equation for Mie scattering, to determine a scattering correction factor for each pixel at 260nm and 280nm. These developments overcome the three main obstacles to previous deep UV microscopy efforts, creating a new approach to imaging unlabeled living cells that acquires quantitative information about protein and nucleic acid as a function of position and time.
by Benjamin J. Zeskind.
Ph.D.
Chen, Wei. „Analysis of mass transport properties of plant cells by confocal microscopy and imaging techniques /“. free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9953850.
Der volle Inhalt der QuelleTabone, Roberta. „Sinthesys of heteroleptic zinc complexes for imaging in living cells“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19188/.
Der volle Inhalt der QuelleZou, Peng 1985. „Enzyme-based reporters for mapping proteome and imaging proteins in living cells“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79264.
Der volle Inhalt der QuelleVita. Cataloged from PDF version of thesis.
Includes bibliographical references.
Each eukaryotic cell is exquisitely divided into organellar compartments whose functions are uniquely defined by the set of proteins they possess. For each individual protein, precise targeting to a specific sub-cellular location and trafficking between compartments are often key to its proper function. In fact, many human diseases are linked to mutations that cause mistargeting and/or defective trafficking. This thesis describes the development of enzyme-based reporters for measuring protein localization and trafficking. We employ two complementary approaches: a top-down approach, involving proteomics, to simultaneously acquire the subcellular localization information for hundreds of proteins; and a bottom-up approach, involving fluorescence imaging, to record detailed spatial information for proteins on an individual basis. This thesis is therefore divided into the following two parts. Part A describes a promiscuous protein labeling technique for proteomic mapping of organelles. This method capitalizes on peroxidase as a source of free radical generator. Compared to traditional sub-cellular fractionation methods, this novel approach obviates the need of organelle purification, thereby not only eliminating the potential artifacts associated with purification, but also greatly improving the temporal resolution of the proteomic mapping. Applying this technique to study the proteome of mitochondrial matrix and endoplasmic reticulum lumen has led to the discovery of several mitochondrial proteins whose localizations have previously been unknown or ambiguous. Part B discusses the development and application of site-specific protein labeling methods for studying receptor trafficking mechanisms. Building upon previous work in our lab, we utilized the Escherichia coli biotin ligase BirA and its acceptor peptide to site-specifically label the low-density lipoprotein receptor and studied its internalization and trafficking both at the ensemble imaging and single-molecule level. We discovered that this receptor internalizes as an oligomer into cells.
by Peng Zou.
Ph.D.
Hammar, Petter. „lac of Time : Transcription Factor Kinetics in Living Cells“. Doctoral thesis, Uppsala universitet, Beräknings- och systembiologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-198814.
Der volle Inhalt der QuelleTamura, Tomonori. „Endogenous protein imaging and analysis in living cells by selective chemical labeling methods“. 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174965.
Der volle Inhalt der QuellePerez, Cota Fernando. „Opto-acoustic thin-film transducers for imaging of Brillouin oscillations on living cells“. Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/32946/.
Der volle Inhalt der QuelleBücher zum Thema "Confocal imaging on living cells"
1959-, Fasolato Cristina, und Rizzuto Rosario 1962-, Hrsg. Imaging living cells. Berlin: Springer, 1999.
Den vollen Inhalt der Quelle findenRizzuto, Rosario, und Cristina Fasolato, Hrsg. Imaging Living Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60003-6.
Der volle Inhalt der QuelleL, Farkas Daniel, Tromberg Bruce J, International Biomedical Optics Society, Society of Photo-optical Instrumentation Engineers. und American Society for Laser Medicine and Surgery., Hrsg. Proceedings of functional imaging and optical manipulation of living cells: 10-11 February 1997, San Jose, California. Bellingham, Wash., USA: SPIE, 1997.
Den vollen Inhalt der Quelle finden1934-, Asakura Toshimitsu, Society of Photo-optical Instrumentation Engineers. und Carnegie-Mellon University. Center for Light Microscope Imaging and Biotechnology., Hrsg. Proceedings of optical diagnostics of living cells and biofluids: 28 January-1 February 1996, San Jose, California. Bellingham, Wash., USA: SPIE, 1996.
Den vollen Inhalt der Quelle findenL, Farkas Daniel, Leif Robert C, Society of Photo-optical Instrumentation Engineers. und International Biomedical Optics Society, Hrsg. Optical diagnostics of living cells III: 24-25 January 2000, San Jose, California. Bellingham, Wash., USA: SPIE, 2000.
Den vollen Inhalt der Quelle findenImaging Living Cells. Island Press, 1998.
Den vollen Inhalt der Quelle findenRizzuto, Rosario, und Cristina Fasolato. Imaging Living Cells. Springer London, Limited, 2012.
Den vollen Inhalt der Quelle findenQian, Weijun. Dynamic imaging of secretion from pancreatic beta-cells by confocal fluorescence microscopy. 2002.
Den vollen Inhalt der Quelle findenQian, Weijun. Dynamic Imaging of Secretion From Pancreatic Beta-cells by Confocal Fluorescence Microscopy. Dissertation Discovery Company, 2019.
Den vollen Inhalt der Quelle findenQian, Weijun. Dynamic Imaging of Secretion From Pancreatic Beta-cells by Confocal Fluorescence Microscopy. Dissertation Discovery Company, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Confocal imaging on living cells"
Bolsover, Stephen. „Confocal Calcium Imaging“. In Imaging Living Cells, 92–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60003-6_4.
Der volle Inhalt der QuelleLemasters, John J., Ting Qian, Donna R. Trollinger, Barbara J. Muller-Borer, Steven P. Elmore und Wayne E. Cascio. „Laser Scanning Confocal Microscopy Applied to Living Cells and Tissues“. In Methods in Cellular Imaging, 66–87. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_5.
Der volle Inhalt der QuelleFeofanov, A. V., A. I. Grichine, L. A. Shitova, T. A. Karmakova, R. I. Iakubovskaya, M. Egret-Charlier und P. Vigny. „Confocal Raman imaging study of uptake and distribution of antitumor agent Teraftal in living A549 cancer cells“. In Spectroscopy of Biological Molecules: New Directions, 491–92. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_219.
Der volle Inhalt der QuelleChourpa, Igor, Serguei Charonov und Michel Manfait. „Comparison of surface-enhanced and non-enhanced Raman techniques as used for confocal multispectral imaging on living cells“. In Spectroscopy of Biological Molecules: New Directions, 461–62. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_207.
Der volle Inhalt der QuelleFeofanov, Alexei V. „Molecular interactions of antitumor drugs: from solution to living cells and tissue structures. Confocal spectral imaging (CSI) approach“. In Spectroscopy of Biological Molecules: New Directions, 487–88. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_217.
Der volle Inhalt der QuelleFeofanov, A. V., I. A. Kudelina, A. I. Grichine, L. A. Shitova, T. A. Karmakova, R. I. Iakubovskaya, A. F. Mironov, M. Egret-Charlier und P. Vigny. „Pharmacodynamics and localization of 3-devinyl-3-formylchlorin p6 in living cancer cells as studied with confocal spectral imaging (CSI) technique“. In Spectroscopy of Biological Molecules: New Directions, 493–94. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_220.
Der volle Inhalt der QuelleHibbs, Alan R. „Imaging Live Cells“. In Confocal Microscopy for Biologists, 279–323. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-306-48565-7_12.
Der volle Inhalt der QuelleMoreno, Nuno, Susan Bougourd, Jim Haseloff und José A. Feijó. „Imaging Plant Cells“. In Handbook Of Biological Confocal Microscopy, 769–87. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_44.
Der volle Inhalt der QuelleDailey, Michael E., Erik Manders, David R. Soll und Mark Terasaki. „Confocal Microscopy of Living Cells“. In Handbook Of Biological Confocal Microscopy, 381–403. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_19.
Der volle Inhalt der QuelleTerasaki, M., und M. E. Dailey. „Confocal Microscopy of Living Cells“. In Handbook of Biological Confocal Microscopy, 327–46. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-5348-6_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Confocal imaging on living cells"
Miccio, Lisa, Daniele Pirone, Jaromir Behal, Giusy Giugliano, Michela Schiavo, Marika Valentino, Vittorio Bianco, Pasquale Memmolo und Pietro Ferraro. „Living cells behave as micro-lenses: label-free biomarkers for diagnosis and biocompatible optical components“. In Digital Holography and Three-Dimensional Imaging, W1A.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w1a.4.
Der volle Inhalt der QuelleEnloe, L. Charity, und Lawrence R. Griffing. „Improved volume rendering for the visualization of living cells examined with confocal microscopy“. In Electronic Imaging, herausgegeben von Robert F. Erbacher, Philip C. Chen, Jonathan C. Roberts und Craig M. Wittenbrink. SPIE, 2000. http://dx.doi.org/10.1117/12.378915.
Der volle Inhalt der QuelleBaiazitova, Larisa, Vratislav Cmiel, Josef Skopalik, Ondrej Svoboda und Ivo Provaznik. „Three-dimensional fluorescence lifetime imaging in confocal microscopy of living cells“. In 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017. http://dx.doi.org/10.23919/eusipco.2017.8081245.
Der volle Inhalt der QuelleMitra, Debasis, Rostyslav Boutchko, Judhajeet Ray und Marit Nilsen-Hamilton. „Detecting cells in time varying intensity images in confocal microscopy for gene expression studies in living cells“. In SPIE Medical Imaging, herausgegeben von Metin N. Gurcan und Anant Madabhushi. SPIE, 2015. http://dx.doi.org/10.1117/12.2081691.
Der volle Inhalt der QuellePitkeathly, William T. E., Joshua Z. Rappoport und Ela Claridge. „Co-registration of total internal reflection fluorescence and confocal microscopy images for studying vesicle trafficking in living cells“. In 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012). IEEE, 2012. http://dx.doi.org/10.1109/isbi.2012.6235514.
Der volle Inhalt der QuelleTang, Xin, Tony Cappa, Theresa B. Kuhlenschmidt, Mark S. Kuhlenschmidt und Taher A. Saif. „Studying the Mechanical Sensitivity of Human Colon Cancer Cells Through a Novel Bio-MEMS Force Sensor“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13237.
Der volle Inhalt der QuelleChourpa, Igor, Serguei Charonov und Michel Manfait. „Raman and/or surface-enhanced Raman: advantages and limitations when applied for confocal multispectral imaging with living cells“. In BiOS 2000 The International Symposium on Biomedical Optics, herausgegeben von Anita Mahadevan-Jansen und Gerwin J. Puppels. SPIE, 2000. http://dx.doi.org/10.1117/12.384960.
Der volle Inhalt der QuelleChourpa, Igor, Manuela Pereira, Jean-Marc Millot, Hamid Morjani und Michel Manfait. „Confocal spectral imaging by microspectrofluorometry using two-photon excitation: application to the study of anticancer drugs within single living cancer cells“. In BiOS '99 International Biomedical Optics Symposium, herausgegeben von Daniel L. Farkas, Robert C. Leif und Bruce J. Tromberg. SPIE, 1999. http://dx.doi.org/10.1117/12.349215.
Der volle Inhalt der QuelleFujita, Katsumasa, Tomoyuki Kaneko, Osamu Nakamura, Masahito Oyamada, Tetsuro Takamatsu und Satoshi Kawata. „Real-time Ca ion wave imaging in living rat cardiac muscle cells by a confocal multiphoton microscope with a microlens-pinhole array scanner“. In BiOS 2000 The International Symposium on Biomedical Optics, herausgegeben von Daniel L. Farkas und Robert C. Leif. SPIE, 2000. http://dx.doi.org/10.1117/12.384225.
Der volle Inhalt der QuelleLasher, Richard A., Frank B. Sachse und Robert W. Hitchcock. „Confocal Microscopy and Image Processing Techniques for Online Monitoring of Engineered Tissue“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206758.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Confocal imaging on living cells"
Guttmann, G. Biological soft x-ray contact microscopy: Imaging living CHO-SC1 cells and other biological materials. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/7001378.
Der volle Inhalt der QuelleVenedicto, Melissa, und Cheng-Yu Lai. Facilitated Release of Doxorubicin from Biodegradable Mesoporous Silica Nanoparticles. Florida International University, Oktober 2021. http://dx.doi.org/10.25148/mmeurs.009774.
Der volle Inhalt der QuelleHorwitz, Benjamin, und Nicole M. Donofrio. Identifying unique and overlapping roles of reactive oxygen species in rice blast and Southern corn leaf blight. United States Department of Agriculture, Januar 2017. http://dx.doi.org/10.32747/2017.7604290.bard.
Der volle Inhalt der Quelle