Auswahl der wissenschaftlichen Literatur zum Thema „Confocal imaging on living cells“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Confocal imaging on living cells" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Confocal imaging on living cells"

1

Williams, D. A., S. H. Cody, C. A. Gehring, R. W. Parish und P. J. Harris. „Confocal imaging of ionised calcium in living plant cells“. Cell Calcium 11, Nr. 4 (April 1990): 291–97. http://dx.doi.org/10.1016/0143-4160(90)90006-g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Filić, Vedrana, und Igor Weber. „A young researcher’s guide to three-dimensional fluorescence microscopy of living cells“. Periodicum Biologorum 125, Nr. 1-2 (25.10.2023): 133–37. http://dx.doi.org/10.18054/pb.v125i1-2.25140.

Der volle Inhalt der Quelle
Annotation:
Three-dimensional imaging of fast intracellular processes by fluorescence microscopy should provide decent spatial and high temporal resolution while minimizing fluorophore bleaching and cytotoxicity. We give a condensed introductory overview of three contemporary methods mostly used for imaging of living cells in 3D and compare their performance in terms of temporal and spatial resolution, imaging flexibility and specimen photodamage: point-scanning confocal microscopy, spinning-disc confocal microscopy, and lattice light-sheet microscopy. While point-scanning instruments are unsurpassed in terms of confocal performance, flexibility and configurability of their optical path, spinning-disc and lattice light-sheet optical designs excel in acquisition speed and low levels of light-inflicted specimen deterioration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

SCHWARZLÄNDER, M., M. D. FRICKER, C. MÜLLER, L. MARTY, T. BRACH, J. NOVAK, L. J. SWEETLOVE, R. HELL und A. J. MEYER. „Confocal imaging of glutathione redox potential in living plant cells“. Journal of Microscopy 231, Nr. 2 (August 2008): 299–316. http://dx.doi.org/10.1111/j.1365-2818.2008.02030.x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

He, Fang, Ze-Yu Ye, Li-Dong Zhao, Bin-Cheng Yin und Bang-Ce Ye. „Probing exosome internalization pathways through confocal microscopy imaging“. Chemical Communications 55, Nr. 93 (2019): 14015–18. http://dx.doi.org/10.1039/c9cc07491k.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zoladek, A., F. Pascut, P. Patel und I. Notingher. „Development of Raman Imaging System for time-course imaging of single living cells“. Spectroscopy 24, Nr. 1-2 (2010): 131–36. http://dx.doi.org/10.1155/2010/521962.

Der volle Inhalt der Quelle
Annotation:
Development of novel inverted Raman micro-spectrometer with the ability to perform multi-hours spectral measurements on living cells is presented. Our system combines a Confocal Raman Micro-Spectrometer and Fluorescence Microscope with cell incubator enclosure allowing measurement of cells in extended time period. To illustrate the feasibility of this Raman micro-spectroscopy system forin vitrotime-course studies of cells we performed an experiment where the same group of cells were scanned with the laser at 2 hours intervals between the scans over 8 hours to build Raman spectral images and ensure that no changes occur due to laser damage or environmental conditions. Cell viability test was performed with fluorescence microscopy on exactly the same cells at the end of the time-course Raman measurements.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Skiba, Joanna, Aleksandra Kowalczyk, Marta A. Fik, Magdalena Gapińska, Damian Trzybiński, Krzysztof Woźniak, Valerije Vrček, Rafał Czerwieniec und Konrad Kowalski. „Luminescent pyrenyl-GNA nucleosides: synthesis, photophysics and confocal microscopy studies in cancer HeLa cells“. Photochemical & Photobiological Sciences 18, Nr. 10 (2019): 2449–60. http://dx.doi.org/10.1039/c9pp00271e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

He, Zhaoshuai, Yajie Chou, Hanxin Zhou, Han Zhang, Tanyu Cheng und Guohua Liu. „A nitroreductase and acidity detecting dual functional ratiometric fluorescent probe for selectively imaging tumor cells“. Organic & Biomolecular Chemistry 16, Nr. 17 (2018): 3266–72. http://dx.doi.org/10.1039/c8ob00670a.

Der volle Inhalt der Quelle
Annotation:
A dual functional ratiometric fluorescent probe can obviously distinguish acidity, nitroreductase, and nitroreductase in an acidic environment. Confocal fluorescence imaging of A549 cells indicates the probe can detect acidity and expressed nitroreductase in living cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

WANG, XIAO-PING, HUAI-NA YU und TONG-SHENG CHEN. „QUANTITATIVE FRET MEASUREMENT BASED ON CONFOCAL MICROSCOPY IMAGING AND PARTIAL ACCEPTOR PHOTOBLEACHING“. Journal of Innovative Optical Health Sciences 05, Nr. 03 (Juli 2012): 1250015. http://dx.doi.org/10.1142/s1793545812500150.

Der volle Inhalt der Quelle
Annotation:
Fluorescence resonance energy transfer (FRET) technology had been widely used to study protein–protein interactions in living cells. In this study, we developed a ROI-PbFRET method to real-time quantitate the FRET efficiency of FRET construct in living cells by combining the region of interest (ROI) function of confocal microscope and partial acceptor photobleaching. We validated the ROI-PbFRET method using GFPs-based FRET constructs including 18AA and SCAT3, and used it to quantitatively monitor the dynamics of caspase-3 activation in single live cells stably expressing SCAT3 during staurosporine (STS)-induced apoptosis. Our results for the first demonstrate that ROI-PbFRET method is a powerful potential tool for detecting the dynamics of molecular interactions in live cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Okuno, Masanari, und Hiro-o. Hamaguchi. „Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells“. Optics Letters 35, Nr. 24 (02.12.2010): 4096. http://dx.doi.org/10.1364/ol.35.004096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Feofanov, Alexei V., Alexei I. Grichine, Larissa A. Shitova, Tatyana A. Karmakova, Raisa I. Yakubovskaya, Marguerite Egret-Charlier und Paul Vigny. „Confocal Raman Microspectroscopy and Imaging Study of Theraphthal in Living Cancer Cells“. Biophysical Journal 78, Nr. 1 (Januar 2000): 499–512. http://dx.doi.org/10.1016/s0006-3495(00)76612-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Confocal imaging on living cells"

1

Bokhari, Ramiz Ahmed. „Confocal Imaging and Analysis of Quantum Dots on living Cells“. Thesis, KTH, Tillämpad fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-129972.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bayard, Anaïs. „Study of the Physiological Response of NucS to Genotoxic Stress in Actinobacteria“. Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX063.

Der volle Inhalt der Quelle
Annotation:
La précision de la réplication de l'ADN assure la fidélité de la transmission génétique. Les dommages causés par des facteurs externes ou internes menacent l'intégrité génomique. Les Actinobactéries, dépourvues des protéines majeur de la Réparation des Mésappariements (MMR) canonique, possèdent NucS (EndoMS), une enzyme qui répare ces erreurs indépendamment de l'ATP. Bien que l'activité de NucS dans ce mécanisme soit étudiée, sa fonction in vivo et dans d’autres systèmes de réparation de l'ADN conservent des zones d’ombre.Cette étude vise à caractériser la fonction de NucS dans la réparation des cassures double brin (DSB). Nos résultats montrent que mScarlet1-NucSD144A forme des foyers polaires en réponse aux dommages de l'ADN, particulièrement les DSB. Chez Corynebacterium glutamicum, les cellules CglΔnucS présentent une activation plus élevée de la Recombinaison Homologue (HR) et un nombre accru de DSB par rapport aux CglWT, indiquant un rôle de NucS dans l'efficacité et la sélectivité de la réparation des DSBs. Les bactéries CglΔnucS présentent un avantage de croissance en présence de stress génotoxiques, probablement en raison de mécanismes de réparation des DSB altérés. Nos analyses bioinformatiques prédisent l’interaction de NucS avec des enzymes clés de la RH et d'autres voies de réparation de l'ADN, ainsi que des gènes impliqués dans la réparation des dommages, le métabolisme et la régulation énergétique.NucS pourrait stabiliser les extrémités libres de l'ADN générées par les DSBs rapidement après leur formation, favorisant leur réparation par une voie alternative telle que la Jonction des Extrémités par Microhomologie (MMEJ). Les études futures devraient explorer les modifications post-traductionnelles et les conditions métaboliques régulant l'activité de NucS et son activité in vitro sur les DSB et les intermédiaires de HR
DNA replication accuracy ensures proper genetic transmission. Damage from external factors or internal events threatens genomic integrity. Actinobacteria, lacking canonical MMR proteins, possess NucS (EndoMS), an ATP-independent enzyme involved in a non-canonical mismatch repair pathway. While NucS's activity on mismatches is documented, its in vivo role and implications in DNA Damage Repair systems require further understanding.This study aims to characterise NucS's role in Double-Strand Break Repair (DSBR). Our findings show that mScarlet1-NucSD144A forms polar foci in response to DNA damage, especially DSBs and complex recruitment in apoptosis-like cells.Corynebacterium glutamicum, CglΔnucS bacteria exhibits higher homologous recombination (HR) activation and increased DSBs compared to CglWT, indicating NucS's role in DSBR efficiency and regulation. CglΔnucS bacteria have a growth advantage under genotoxic stress, likely due to altered DSBR mechanisms. Bioinformatic analyses predict NucS interactions with key enzymes of RH and other DNA repair pathways and metabolism and energy regulation.NucS may bind and stabilise free DNA ends generated by DSBs, balancing HR and participating in DSB repair through microhomology-mediated end joining (MMEJ). Future studies should explore post-translational modifications and metabolic conditions regulating NucS reponse and its in vitro activity on DSBs and HR intermediates
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zoladek, Alina. „Confocal Raman imaging of live cells“. Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/13338/.

Der volle Inhalt der Quelle
Annotation:
The objective of this thesis is to present the development of Raman microscopy for biochemical imaging of living cells. The main aim was to construct a Raman micro-spectrometer with the ability to perform time-course spectral measurements for the non-invasive study of biochemical processes in individual cells. The work can be divided into two parts: first, the development and characterization of the instrument; and second, completion of two experiments that demonstrate the suitability of Raman technique for studies of live cells. Instrumental development includes the design of optics and software for automated measurement. The experiments involve data collection and development of mathematical methods for analysis of the data. Chapter One provides an overview of techniques used in cell biology, with a special focus on Raman spectroscopy. It also highlights the importance of experiments on living cells, especially at the single cell level. Chapter Two explains the theoretical background of Raman spectroscopy. Furthermore, it presents the Raman spectroscopy techniques suitable for cell and biological studies. Chapter Three details the instrumentation and software development. The main parts of the confocal Raman micro-spectrometer, as designed for studying living cells, are: inverted microscope, 785 nm laser and high quality optics, environmental enclosure for maintaining physiological conditions during measurements of cells, and fluorescence wide-field microscopy facility for validation and confirmation of biochemical findings by Raman studies. Chapter Four focuses on the evaluation of the performance of the Raman setup and explains calibration and analysis methods applied to the data. Chapter Five and Six describe experiments performed on living cells. Chapter Five focuses on studies of the immunological synapse formed between primary dendritic and T cells indicating the polarisation of actin. Chapter Six describes time-course experiment performed on cancerous cells in the early phases of the apoptosis process, which enabled detection of the DNA condensation and accumulation of unsaturated lipids. Chapter Seven summarizes the work and gives concluding remarks.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Zeskind, Benjamin J. „Quantitative imaging of living cells by deep ultraviolet microscopy“. Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/38693.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, 2006.
Includes bibliographical references (p. 139-145).
Developments in light microscopy over the past three centuries have opened new windows into cell structure and function, yet many questions remain unanswered by current imaging approaches. Deep ultraviolet microscopy received attention in the 1950s as a way to generate image contrast from the strong absorbance of proteins and nucleic acids at wavelengths shorter than 300 nm. However, the lethal effects of these wavelengths limited their usefulness in studies of cell function, separating the contributions of protein and nucleic acid proved difficult, and scattering artifacts were a significant concern. We have used short exposures of deep-ultraviolet light synchronized with an ultraviolet-sensitive camera to observe mitosis and motility in living cells without causing necrosis, and quantified absorbance at 280 nm and 260 nm together with tryptophan native fluorescence in order to calculate maps of nucleic acid mass, protein mass, and quantum yield in unlabeled cells. We have also developed a method using images acquired at 320nm and 340nm, and an equation for Mie scattering, to determine a scattering correction factor for each pixel at 260nm and 280nm. These developments overcome the three main obstacles to previous deep UV microscopy efforts, creating a new approach to imaging unlabeled living cells that acquires quantitative information about protein and nucleic acid as a function of position and time.
by Benjamin J. Zeskind.
Ph.D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Chen, Wei. „Analysis of mass transport properties of plant cells by confocal microscopy and imaging techniques /“. free to MU campus, to others for purchase, 1999. http://wwwlib.umi.com/cr/mo/fullcit?p9953850.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tabone, Roberta. „Sinthesys of heteroleptic zinc complexes for imaging in living cells“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/19188/.

Der volle Inhalt der Quelle
Annotation:
This thesis arose from an interest in luminescence heteroleptic bis(dipyrrinato) Zn (II) complexes and their application in cell imaging, due to their attractive and fascinating characteristics. Among imaging technologies, near-infrared fluorescence imaging has been dedicated immense attention owing to its low absorption and autofluorescence from surrounding organism and tissues in this specific spectral region, which minimize background interference and improve tissue depth penetration. An ideal near-infrared probe should be equipped with excellence chemical and photophysical properties. The target of this work is the synthesis of new heteroleptic bis(dipyrrinato) Zn (II) complexes having two main features: the emission in the near-infrared region and water-solubility. In order to purse these intentions, the low-energy emission was achieved by expansion of π-conjugation of simple dipyrrins using Knoevenagel condensation106 and tri(ethylene)glycol chain was introduced to increase the water solubility of the final complex. Photophysical and luminescent properties of the new complexes were investigated. Finally, with a view to a potential biological use of these new complexes in biological environments, their biocompatibility was tested using a cell viability assay: (3-(4,5-dimethylthiazol-2-yl)-2’-5’-diphenyltetrazolium bromide (MTT) assay.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zou, Peng 1985. „Enzyme-based reporters for mapping proteome and imaging proteins in living cells“. Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/79264.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2013.
Vita. Cataloged from PDF version of thesis.
Includes bibliographical references.
Each eukaryotic cell is exquisitely divided into organellar compartments whose functions are uniquely defined by the set of proteins they possess. For each individual protein, precise targeting to a specific sub-cellular location and trafficking between compartments are often key to its proper function. In fact, many human diseases are linked to mutations that cause mistargeting and/or defective trafficking. This thesis describes the development of enzyme-based reporters for measuring protein localization and trafficking. We employ two complementary approaches: a top-down approach, involving proteomics, to simultaneously acquire the subcellular localization information for hundreds of proteins; and a bottom-up approach, involving fluorescence imaging, to record detailed spatial information for proteins on an individual basis. This thesis is therefore divided into the following two parts. Part A describes a promiscuous protein labeling technique for proteomic mapping of organelles. This method capitalizes on peroxidase as a source of free radical generator. Compared to traditional sub-cellular fractionation methods, this novel approach obviates the need of organelle purification, thereby not only eliminating the potential artifacts associated with purification, but also greatly improving the temporal resolution of the proteomic mapping. Applying this technique to study the proteome of mitochondrial matrix and endoplasmic reticulum lumen has led to the discovery of several mitochondrial proteins whose localizations have previously been unknown or ambiguous. Part B discusses the development and application of site-specific protein labeling methods for studying receptor trafficking mechanisms. Building upon previous work in our lab, we utilized the Escherichia coli biotin ligase BirA and its acceptor peptide to site-specifically label the low-density lipoprotein receptor and studied its internalization and trafficking both at the ensemble imaging and single-molecule level. We discovered that this receptor internalizes as an oligomer into cells.
by Peng Zou.
Ph.D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hammar, Petter. „lac of Time : Transcription Factor Kinetics in Living Cells“. Doctoral thesis, Uppsala universitet, Beräknings- och systembiologi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-198814.

Der volle Inhalt der Quelle
Annotation:
Gene regulation mediated by transcription factors (TFs) is essential for all organisms. The functionality of TFs can largely be described by the fraction of time they occupy their regulatory binding sites on the chromosome. DNA-binding proteins have been shown to find their targets through facilitated diffusion in vitro. In its simplest form this means that the protein combines a random 3D search in the cytoplasm with 1D sliding along DNA. This has been proposed to speed up target location. It is difficult to mimic the in vivo conditions for gene regulation in biochemistry experiments; i.e. the ionic strength, chromosomal structure, and the presence of other DNA-binding macromolecules.    In this thesis single molecule imaging assays for live cell measurements were developed to study the kinetics of the Escherichia coli transcription factor LacI. The low copy number LacI, in fusion with a fluorescent protein (Venus) is detected as a localized near-diffraction limited spot when being DNA-bound for longer than the exposure time. An allosteric inducer is used to control binding and release. Using this method we can measure the time it takes for LacI to bind to different operator sequences. We then extend the assay and show that LacI slides in to and out from the operator site, and that it is obstructed by another DNA-binding protein positioned next to its target. We present a new model where LacI redundantly passes over the operator many times before binding.    By combining experiments with molecular dynamics simulations we can characterize the details of non-specific DNA-binding. In particular, we validate long-standing assumptions that the non-specific association is diffusion-controlled. In addition it is seen that the non-specifically bound protein diffuses along DNA in a helical path.    Using microfluidics we design a chase assay to measure in vivo dissociation rates for the LacI-Venus dimer. Based on the comparison of these rates with association rates and equilibrium binding data we suggest that there might be a short time following TF dissociation when transcription initiation is silenced. This implies that the fraction of time the operator is occupied is not enough to describe the regulatory range of the promoter.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tamura, Tomonori. „Endogenous protein imaging and analysis in living cells by selective chemical labeling methods“. 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174965.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Perez, Cota Fernando. „Opto-acoustic thin-film transducers for imaging of Brillouin oscillations on living cells“. Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/32946/.

Der volle Inhalt der Quelle
Annotation:
In any given media, the speed of sound is considerably slower than speed of light, and the exploration of the acoustic regime in the GHz range gives access to very short acoustic wavelengths. Short acoustic wavelengths is an intriguing path for high resolution live-cell imaging. At low frequencies, ultrasound has proved to be a valuable tool for the mechanical characterisation and imaging of biological tissues. There is much interest in using high frequency ultrasound to investigate single cells due to its mechanical contrast mechanism. Mechanical characterisation of cells has been performed by a number of techniques, such as atomic force microscopy, acoustic microscopy or Brillouin microscopy. Recently, Brillouin oscillations measurements on vegetal and mammal cells have been demonstrated in the GHz range. In this thesis, a method to extend this technique, from the previously reported single point measurements and line scans, into a high resolution acoustic imaging tool is presented. A novel approach based around a three-layered metal-dielectric-metal film is used as a transducer to launch acoustic waves into the cell being studied. The design of this transducer and imaging system is optimised to overcome the vulnerability of a cell to the exposure of laser light and heat without sacrificing the signal to noise ratio. The transducer substrate shields the cell from the laser radiation by detecting in transmission rather than reflection. It also generates acoustic waves efficiently by a careful selection of materials and wavelengths. Facilitates optical detection in transmission due to simplicity of arrangement and aids to dissipate heat away from the cell. The design of the transducers and instrumentation is discussed and Brillouin frequency images (two and three dimensions) on phantom, fixed and living cells are presented.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Confocal imaging on living cells"

1

1959-, Fasolato Cristina, und Rizzuto Rosario 1962-, Hrsg. Imaging living cells. Berlin: Springer, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rizzuto, Rosario, und Cristina Fasolato, Hrsg. Imaging Living Cells. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60003-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

L, Farkas Daniel, Tromberg Bruce J, International Biomedical Optics Society, Society of Photo-optical Instrumentation Engineers. und American Society for Laser Medicine and Surgery., Hrsg. Proceedings of functional imaging and optical manipulation of living cells: 10-11 February 1997, San Jose, California. Bellingham, Wash., USA: SPIE, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

1934-, Asakura Toshimitsu, Society of Photo-optical Instrumentation Engineers. und Carnegie-Mellon University. Center for Light Microscope Imaging and Biotechnology., Hrsg. Proceedings of optical diagnostics of living cells and biofluids: 28 January-1 February 1996, San Jose, California. Bellingham, Wash., USA: SPIE, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

L, Farkas Daniel, Leif Robert C, Society of Photo-optical Instrumentation Engineers. und International Biomedical Optics Society, Hrsg. Optical diagnostics of living cells III: 24-25 January 2000, San Jose, California. Bellingham, Wash., USA: SPIE, 2000.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Imaging Living Cells. Island Press, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rizzuto, Rosario, und Cristina Fasolato. Imaging Living Cells. Springer London, Limited, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Qian, Weijun. Dynamic imaging of secretion from pancreatic beta-cells by confocal fluorescence microscopy. 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Qian, Weijun. Dynamic Imaging of Secretion From Pancreatic Beta-cells by Confocal Fluorescence Microscopy. Dissertation Discovery Company, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Qian, Weijun. Dynamic Imaging of Secretion From Pancreatic Beta-cells by Confocal Fluorescence Microscopy. Dissertation Discovery Company, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Confocal imaging on living cells"

1

Bolsover, Stephen. „Confocal Calcium Imaging“. In Imaging Living Cells, 92–114. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-60003-6_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lemasters, John J., Ting Qian, Donna R. Trollinger, Barbara J. Muller-Borer, Steven P. Elmore und Wayne E. Cascio. „Laser Scanning Confocal Microscopy Applied to Living Cells and Tissues“. In Methods in Cellular Imaging, 66–87. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4614-7513-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Feofanov, A. V., A. I. Grichine, L. A. Shitova, T. A. Karmakova, R. I. Iakubovskaya, M. Egret-Charlier und P. Vigny. „Confocal Raman imaging study of uptake and distribution of antitumor agent Teraftal in living A549 cancer cells“. In Spectroscopy of Biological Molecules: New Directions, 491–92. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_219.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chourpa, Igor, Serguei Charonov und Michel Manfait. „Comparison of surface-enhanced and non-enhanced Raman techniques as used for confocal multispectral imaging on living cells“. In Spectroscopy of Biological Molecules: New Directions, 461–62. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Feofanov, Alexei V. „Molecular interactions of antitumor drugs: from solution to living cells and tissue structures. Confocal spectral imaging (CSI) approach“. In Spectroscopy of Biological Molecules: New Directions, 487–88. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_217.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Feofanov, A. V., I. A. Kudelina, A. I. Grichine, L. A. Shitova, T. A. Karmakova, R. I. Iakubovskaya, A. F. Mironov, M. Egret-Charlier und P. Vigny. „Pharmacodynamics and localization of 3-devinyl-3-formylchlorin p6 in living cancer cells as studied with confocal spectral imaging (CSI) technique“. In Spectroscopy of Biological Molecules: New Directions, 493–94. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_220.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hibbs, Alan R. „Imaging Live Cells“. In Confocal Microscopy for Biologists, 279–323. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-306-48565-7_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Moreno, Nuno, Susan Bougourd, Jim Haseloff und José A. Feijó. „Imaging Plant Cells“. In Handbook Of Biological Confocal Microscopy, 769–87. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_44.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dailey, Michael E., Erik Manders, David R. Soll und Mark Terasaki. „Confocal Microscopy of Living Cells“. In Handbook Of Biological Confocal Microscopy, 381–403. Boston, MA: Springer US, 2006. http://dx.doi.org/10.1007/978-0-387-45524-2_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Terasaki, M., und M. E. Dailey. „Confocal Microscopy of Living Cells“. In Handbook of Biological Confocal Microscopy, 327–46. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-5348-6_19.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Confocal imaging on living cells"

1

Miccio, Lisa, Daniele Pirone, Jaromir Behal, Giusy Giugliano, Michela Schiavo, Marika Valentino, Vittorio Bianco, Pasquale Memmolo und Pietro Ferraro. „Living cells behave as micro-lenses: label-free biomarkers for diagnosis and biocompatible optical components“. In Digital Holography and Three-Dimensional Imaging, W1A.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w1a.4.

Der volle Inhalt der Quelle
Annotation:
Biological cells are presented as bio-lenses and their projections on next future biomedical applications are discussed. Static or in-flow conditions combined with Digital Holography figure out the interaction between bio-lensing properties and cell morphology.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Enloe, L. Charity, und Lawrence R. Griffing. „Improved volume rendering for the visualization of living cells examined with confocal microscopy“. In Electronic Imaging, herausgegeben von Robert F. Erbacher, Philip C. Chen, Jonathan C. Roberts und Craig M. Wittenbrink. SPIE, 2000. http://dx.doi.org/10.1117/12.378915.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Baiazitova, Larisa, Vratislav Cmiel, Josef Skopalik, Ondrej Svoboda und Ivo Provaznik. „Three-dimensional fluorescence lifetime imaging in confocal microscopy of living cells“. In 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2017. http://dx.doi.org/10.23919/eusipco.2017.8081245.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Mitra, Debasis, Rostyslav Boutchko, Judhajeet Ray und Marit Nilsen-Hamilton. „Detecting cells in time varying intensity images in confocal microscopy for gene expression studies in living cells“. In SPIE Medical Imaging, herausgegeben von Metin N. Gurcan und Anant Madabhushi. SPIE, 2015. http://dx.doi.org/10.1117/12.2081691.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pitkeathly, William T. E., Joshua Z. Rappoport und Ela Claridge. „Co-registration of total internal reflection fluorescence and confocal microscopy images for studying vesicle trafficking in living cells“. In 2012 IEEE 9th International Symposium on Biomedical Imaging (ISBI 2012). IEEE, 2012. http://dx.doi.org/10.1109/isbi.2012.6235514.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tang, Xin, Tony Cappa, Theresa B. Kuhlenschmidt, Mark S. Kuhlenschmidt und Taher A. Saif. „Studying the Mechanical Sensitivity of Human Colon Cancer Cells Through a Novel Bio-MEMS Force Sensor“. In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13237.

Der volle Inhalt der Quelle
Annotation:
Cancer deaths are primarily caused by metastases, not by the parent tumor. During the metastasis, malignant cancer cells detach from the parent tumor, and spread through the patient’s circulatory system to invade new tissues and organs [1]. To study the role played by the mechanical microenvironment on the cancer cell growth and malignancy promotion, we cultured human colon carcinoma (HCT-8) cells in vitro on substrates with varied mechanical stiffness, from the physiologically relevant 1 kPa, 20 kPa to very stiff 3.5 GPa. A novel and versatile micro-electromechanical systems (Bio-MEMS) force sensor [2] is developed to quantify the strength of non-specific adhesion between living cancer cells membrane and probe, an important hallmark of cancer cell malignancy level. Immunoflurescent staining and Confocal microscopy imaging are used to visualize the cellular organelle organization and cooperate to explore the underlying mechanism.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Chourpa, Igor, Serguei Charonov und Michel Manfait. „Raman and/or surface-enhanced Raman: advantages and limitations when applied for confocal multispectral imaging with living cells“. In BiOS 2000 The International Symposium on Biomedical Optics, herausgegeben von Anita Mahadevan-Jansen und Gerwin J. Puppels. SPIE, 2000. http://dx.doi.org/10.1117/12.384960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chourpa, Igor, Manuela Pereira, Jean-Marc Millot, Hamid Morjani und Michel Manfait. „Confocal spectral imaging by microspectrofluorometry using two-photon excitation: application to the study of anticancer drugs within single living cancer cells“. In BiOS '99 International Biomedical Optics Symposium, herausgegeben von Daniel L. Farkas, Robert C. Leif und Bruce J. Tromberg. SPIE, 1999. http://dx.doi.org/10.1117/12.349215.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Fujita, Katsumasa, Tomoyuki Kaneko, Osamu Nakamura, Masahito Oyamada, Tetsuro Takamatsu und Satoshi Kawata. „Real-time Ca ion wave imaging in living rat cardiac muscle cells by a confocal multiphoton microscope with a microlens-pinhole array scanner“. In BiOS 2000 The International Symposium on Biomedical Optics, herausgegeben von Daniel L. Farkas und Robert C. Leif. SPIE, 2000. http://dx.doi.org/10.1117/12.384225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lasher, Richard A., Frank B. Sachse und Robert W. Hitchcock. „Confocal Microscopy and Image Processing Techniques for Online Monitoring of Engineered Tissue“. In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206758.

Der volle Inhalt der Quelle
Annotation:
Evaluation of engineered tissue is often limited to endpoint analyses, such as characterizing histology, gene expression and solutes [1]. Most of these applied analysis approaches are based on immunochemistry procedures that require excision, fixation and sectioning of the tissue as well as cell membrane perforation and labeling of proteins [2]. These analyses are time-consuming, do not facilitate high throughput processing and do not allow for online monitoring of engineered tissue. Because of these limitations, there is a need for online, high throughput monitoring techniques to evaluate engineered tissue. In this work, we introduce an approach for microscopic imaging and online analysis of living engineered tissue. The approach is based on application of a non-toxic dye specific for the extracellular space and subsequent interrogation by in vivo confocal microcopy. We hypothesized that the approach will allow for online characterization of cell structure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Confocal imaging on living cells"

1

Guttmann, G. Biological soft x-ray contact microscopy: Imaging living CHO-SC1 cells and other biological materials. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/7001378.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Venedicto, Melissa, und Cheng-Yu Lai. Facilitated Release of Doxorubicin from Biodegradable Mesoporous Silica Nanoparticles. Florida International University, Oktober 2021. http://dx.doi.org/10.25148/mmeurs.009774.

Der volle Inhalt der Quelle
Annotation:
Cervical cancer is one of the most common causes of cancer death for women in the United States. The current treatment with chemotherapy drugs has significant side effects and may cause harm to healthy cells rather than cancer cells. In order to combat the potential side effects, nanoparticles composed of mesoporous silica were created to house the chemotherapy drug doxorubicin (DOX). The silica network contains the drug, and a pH study was conducted to determine the conditions for the nanoparticle to disperse the drug. The introduction of disulfide bonds within the nanoparticle created a framework to efficiently release 97% of DOX in acidic environments and 40% release in neutral environments. The denotation of acidic versus neutral environments was important as cancer cells are typically acidic. The chemistry was proved with the incubation of the loaded nanoparticle into HeLa cells for a cytotoxicity report and confocal imaging. The use of the framework for the anticancer drug was shown to be effective for the killing of cancerous cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Horwitz, Benjamin, und Nicole M. Donofrio. Identifying unique and overlapping roles of reactive oxygen species in rice blast and Southern corn leaf blight. United States Department of Agriculture, Januar 2017. http://dx.doi.org/10.32747/2017.7604290.bard.

Der volle Inhalt der Quelle
Annotation:
Plants and their fungal pathogens both produce reactive oxygen species (ROS). CytotoxicROS act both as stressors and signals in the plant-fungal interaction. In biotrophs, a compatible interaction generates little ROS, but is followed by disease. An incompatible interaction results in a strong oxidative burst by the host, limiting infection. Necrotrophs, in contrast, thrive on dead and dying cells in an oxidant-rich local environment. Rice blast, Magnaportheoryzae, a hemibiotroph, occurs worldwide on rice and related hosts and can decimate enough rice each year to feed sixty million people. Cochliobolusheterostrophus, a necrotroph, causes Southern corn leaf blight (SLB), responsible for a major epidemic in the 1970s. The objectives of our study of ROS signaling and response in these two cereal pathogens were: Confocal imaging of ROS production using genetically encoded redox sensor in two pathosystems over time. Forward genetic screening of HyPer sensor lines in two pathosystems for fungal genes involved in altered ROSphenotypes. RNA-seq for discovery of genes involved in ROS-related stress and signaling in two pathosystems. Revisions to the research plan: Library construction in SLB was limited by low transformation efficiency, compounded by a protoplasting enzyme being unavailable during most of year 3. Thus Objective 2 for SLB re-focused to construction of sensor lines carrying deletion mutations in known or candidate genes involved in ROS response. Imaging on rice proved extremely challenging, so mutant screening and imaging were done with a barley-infecting line, already from the first year. In this project, ROS imaging at unprecedented time and spatial resolution was achieved, using genetically-encoded ratio sensors in both pathogens. This technology is currently in use for a large library of rice blast mutants in the ROS sensor background, and Southern corn leaf blight mutants in final stages of construction. The imaging methods developed here to follow the redox state of plant pathogens in the host tissue should be applicable to fungal pathogens in general. Upon completion of mutant construction for SCLB we hope to achieve our goal of comparison between intracellular ROS status and response in hemibiotroph and necrotroph cereal pathogens.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie