Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Confocal fluorescence microscopy“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Confocal fluorescence microscopy" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Confocal fluorescence microscopy"
Zhibin Wang, Zhibin Wang, Guohua Shi Guohua Shi und Yudong Zhang Yudong Zhang. „Adaptive aberration correction in confocal scanning fluorescence microscopy“. Chinese Optics Letters 12, s1 (2014): S11103–311105. http://dx.doi.org/10.3788/col201412.s11103.
Der volle Inhalt der QuelleVolkov, I. A., N. V. Frigo, L. F. Znamenskaya und O. R. Katunina. „Application of Confocal Laser Scanning Microscopy in Biology and Medicine“. Vestnik dermatologii i venerologii 90, Nr. 1 (24.02.2014): 17–24. http://dx.doi.org/10.25208/0042-4609-2014-90-1-17-24.
Der volle Inhalt der QuelleWright, S. J., J. S. Walker, H. Schatten, C. Simerly, J. J. McCarthy und G. Schatten. „Confocal fluorescence microscopy with the tandem scanning light microscope“. Journal of Cell Science 94, Nr. 4 (01.12.1989): 617–24. http://dx.doi.org/10.1242/jcs.94.4.617.
Der volle Inhalt der QuelleWelzel, J., Raphaela Kästle und Elke C. Sattler. „Fluorescence (Multiwave) Confocal Microscopy“. Dermatologic Clinics 34, Nr. 4 (Oktober 2016): 527–33. http://dx.doi.org/10.1016/j.det.2016.06.002.
Der volle Inhalt der QuelleNie, Shuming, Daniel T. Chiu und Richard N. Zare. „Real-time observation of single molecules by confocal fluorescence microscopy“. Proceedings, annual meeting, Electron Microscopy Society of America 53 (13.08.1995): 60–61. http://dx.doi.org/10.1017/s0424820100136672.
Der volle Inhalt der QuelleJason Kirk. „Beyond the Hype - Is 2-Photon Microscopy Right for You?“ Microscopy Today 11, Nr. 2 (April 2003): 26–29. http://dx.doi.org/10.1017/s1551929500052469.
Der volle Inhalt der QuelleCheng, P. C., S. J. Pan, A. Shih, W. S. Liou, M. S. Park, T. Watson, J. Bhawalkar und P. Prasard. „Two-Photon Laser Scanning Confocal Microscopy“. Microscopy and Microanalysis 3, S2 (August 1997): 847–48. http://dx.doi.org/10.1017/s1431927600011120.
Der volle Inhalt der QuelleOostveldt, P., und S. Bauwens. „Quantitative fluorescence in confocal microscopy“. Journal of Microscopy 158, Nr. 2 (Mai 1990): 121–32. http://dx.doi.org/10.1111/j.1365-2818.1990.tb02985.x.
Der volle Inhalt der QuelleVISSCHER, K., G. J. BRAKENHOFF und T. D. VISSER. „Fluorescence saturation in confocal microscopy“. Journal of Microscopy 175, Nr. 2 (August 1994): 162–65. http://dx.doi.org/10.1111/j.1365-2818.1994.tb03479.x.
Der volle Inhalt der QuelleRagazzi, Moira, Simonetta Piana, Caterina Longo, Fabio Castagnetti, Monica Foroni, Guglielmo Ferrari, Giorgio Gardini und Giovanni Pellacani. „Fluorescence confocal microscopy for pathologists“. Modern Pathology 27, Nr. 3 (13.09.2013): 460–71. http://dx.doi.org/10.1038/modpathol.2013.158.
Der volle Inhalt der QuelleDissertationen zum Thema "Confocal fluorescence microscopy"
Eigenbrot, Ilya Vladimirovich. „A time-resolved confocal fluorescence microscope“. Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342331.
Der volle Inhalt der QuelleAlawadhi, Fahimah. „Statistical image analysis and confocal microscopy“. Thesis, University of Bath, 2001. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341639.
Der volle Inhalt der QuelleJiang, Shihong. „Non-scanning fluorescence confocal microscopy using laser speckle illumination“. Thesis, University of Nottingham, 2005. http://eprints.nottingham.ac.uk/10139/.
Der volle Inhalt der QuelleWang, Xiao. „Confocal angle resolved linear dichroism microscopy for structural fluorescence imaging“. Ecole centrale de Marseille, 2013. http://tel.archives-ouvertes.fr/docs/00/87/10/10/PDF/Wang-Thesis.pdf.
Der volle Inhalt der QuelleBased on the fact that the absorption of light is a molecular-orientation sensitive process, fluorescence microscopy has been recently completed by a technique called angle-resolved linear dichroism. By analyzing the fluorescence emission response with respect to the polarization orientation of the exciting light, this technique allows retrieving orientation information of an ensemble of fluorescent molecules, namely the average orientation angle and the amplitude of the angular fluctuations around this average. In this PhD thesis, we implement new methods and instrumentation tools able to improve the robustness and speed of the polarization resolved data analysis, the rate of the data acquisition, and at last to explore the possibility to record molecular 3D orientation information. A scheme able to monitor the real-time orientation properties of fluorescent lipid probes is proposed using a high-speed spinning disk coupled to camera imaging, combined with fast switching of the polarization state by an electro optical modulator. A new data processing method is developed which considerably improves the speed and the precision of the retrieved information by investigating the sources of bias and uncertainty due to noise and instrumentation factors. The technique has been successfully tested on giant unilamellar vesicles and on living cells labeled with different fluorescent lipid probes, DiIC18 and di-8-ANEPPQ. It was able to acquire precise molecular orientation images at full frame rates in the range of one frame per second. At last in order to probe unambiguously the 3D orientation information of an ensemble of molecules, a new method is proposed and supported by simulations, based on the out-of-plane tuning of the excitation polarization realized in the focusing volume by coherently summing linearly and radially polarized fields
Gösch, Michael. „Microfluidic analysis and parallel confocal detection of single molecules /“. Stockholm, 2003. http://diss.kib.ki.se/2003/91-7349-663-4/.
Der volle Inhalt der QuelleRisi, Matthew D. „Advances In Combined Endoscopic Fluorescence Confocal Microscopy And Optical Coherence Tomography“. Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/332772.
Der volle Inhalt der QuelleSlimani, Amel. „Photonic approach for the study of dental hard tissues and carious lesion detection“. Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTT125.
Der volle Inhalt der QuellePhotonic properties of dental hard tissues allowed us to proceed to in vitro analysis of enamel and dentin on a molecular level. Confocal Raman microscopy has been used to produce a mapping of collagen cross-link and crystallinity of human dentin–enamel junction (DEJ) with a spatial resolution not achieved up to now. The method is a non-invasive, label-free and a high spatial resolution imaging technique. This chemical analysis of DEJ led us to redefine a wider width of this transition zone and advance our understanding of dental histology. A study on the intrinsic fluorescence changes of sound and carious tissues using conventional fluorescence microscopy suggests the involvement of protoporphyrin IX and pentosidine in the fluorescence red-shift observed in carious tissues. Multiphoton microscopy allowed to detect nonlinear optical signal changes during caries process using second harmonic generation (SHG) and two-photon excitation fluorescence (2PEF). Our studies led us to propose the ratio SHG/2PEF as valuable parameter to monitor caries lesion. Collectively, advances described in this thesis show the potential of photonic properties of enamel and dentin using Raman and multiphoton microcopies for molecular investigations on sound as much as on carious tissues. It opens new perspective in dental research and clinical applications
Tsutae, Fernando Massayuki. „Espectroscopia de correlação de fluorescência aplicada em estudos de sistemas moleculares, biológicos e celulares“. Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/76/76132/tde-14102016-101124/.
Der volle Inhalt der QuelleFluorescence correlation spectroscopy (FCS) is one of the many different modes of high-resolution spatial and temporal analysis of extremely low concentrated biomolecules. It has become a powerful and sensitive tool in fields like biochemistry and biophysics. As a well established technique, it is used to measure local concentrations of fluorescently labeled biomolecules, diffusion coefficients, kinetic constants and single molecule studies. Through a combination of high quantum yield fluorescent dyes, stable light sources (lasers), ultrasensitive detection and confocal microscopy is possible to perform FCS measurements in femtoliters volumes and nanomolar concentrations in aquous solution or in live cells. Unlike with other fluorescence technics, its sensibility increases with the decrease of dye concentrarion, because the main factor is not the emission intensity itself. Instead this, spontaneous statistical fluctuation of fluorescence becomes the main factor in FCS analisys. During the time that the conjugated-dye cross the volume detection can occur conformational changes, chemical reaction and photophysical processes that can change the emission properties of the dye and, then, change the detected sinal. This fluctuations are tracked and changed into a autocorrelation curve, by a specific software, appropriate to perform FCS analisys. In our study, we use comercial dye (Alexa 488) to label proteins. Firstly, we applied FCS to measure extremally diluted concentrations of dyes (~1 nM). We have performed experiments testing the influence of the viscosity medium in the free difusion of the dyes and the optical apparatus and conditions that result in the best FCS signal. We also have studied protein diffusion (PUC II e IV) in aquous medium (PBS) and toward the inner of the cells.
Kakade, Rohan. „Improved resolution and signal-to-noise ratio performance of a confocal fluorescence microscope“. Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/33699/.
Der volle Inhalt der QuelleFerro, Daniela Peixoto 1981. „Aplicação da biofotônica para o estudo de cicatrizes“. [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/312786.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-26T20:44:11Z (GMT). No. of bitstreams: 1 Ferro_DanielaPeixoto_D.pdf: 2964245 bytes, checksum: 202d309cf65f632d47c7811d4958535d (MD5) Previous issue date: 2015
Resumo: A aplicação integrada de técnicas modernas, como a Geração do Segundo Harmônico (SHG) e os tempos de vida da fluorescência (FLIM), com análise de imagens matemáticas nos permitem visualizar detalhes não vistos por microscopia de luz convencional. O objetivo deste estudo foi investigar se isto também pode ser aplicado para a investigação de tecido cicatricial. Foram estudados 28 casos de preparações histológicas de rotina, de quelóides, cicatrizes hipertróficas e normais. A Fluorescência de dois fótons e SHG foram obtidas por um microscópio multifóton (LSM 780 NLO-Zeiss), em objetiva de 40X e excitados por um laser Mai Tai de Ti: Safira (comprimento de onda de 940 nm). Foram adquiridas imagens em 3D e foram criadas imagens justapostas a fim de comparar diferentes cicatrizes ou várias regiões no interior da mesma cicatriz com análise de imagens informatizadas. Variáveis de Textura derivadas a partir da matriz de coocorrência das imagens de fluorescência mostraram diferenças significativas entre as cicatrizes normais, cicatrizes hipertróficas e quelóides. Para a análise do FLIM, foi utilizado um sistema composto por um microscópio confocal (LSM780-NLO- Zeiss), com objetiva de 40x e um sistema FLIM acoplado. As amostras foram excitadas por um laser de diodo a 405nm. Estudamos secções não coradas de 32 casos processados rotineiramente de tecido cicatricial incluídos em parafina. As áreas das regiões centrais e periféricas foram selecionadas aleatoriamente e comparadas. Os tempos de vida de fluorescência das hemácias serviram como padrão interno. Os tempos de vida do colágeno em áreas centrais em todos os tipos de cicatrizes foram significativamente mais longo do que em áreas periféricas. Houve correlação positiva entre os tempos de vida de fluorescência das hemácias e as fibras de colágeno entre os casos. Em resumo, o SHG e a técnica Flim revelam em cicatrizes rotineiramente processadas, características morfológicas dos tecidos, que não podem ser detectadas por microscopia de luz convencional
Abstract: The integrated application of modern techniques such as Second Harmonic Generation (SHG) and fluorescence lifetime imaging (FLIM) with mathematical image analysis enable us to visualize details not seen by conventional light microscopy. The aim of this study was to investigate whether this could also be true for the investigation of scar tissue. 28 routine histological preparations of keloids, hypertrophic and normal scars were studied. Two-photon fluorescence and SHG was obtained by a multiphoton microscope (LSM 780 NLO-Zeiss (at 40X objective magnification) and a Mai Tai Ti: Sapphire laser with excitation at 940 nm wavelength. 3D reconstructed patchwork images were created in order to compare different scars or various regions inside the same scar with computerized image analysis. Texture variables derived from the co- occurrence matrix of the fluorescence images showed significant differences between normal scars, hypertrophic scars and keloids. For FLIM analysis we used a system composed of a confocal microscope Zeiss LSM780 Upright-NLO with the 40x objective and a FLIM detection system. The samples were excited by a laser diode at 405nm. We studied unstained sections of 32 routinely processed and paraffin-embedded cases of scar tissue. Randomly selected areas of the central and peripheral regions were compared. The fluorescence lifetimes of red blood cells served as internal standard. Lifetimes of collagen in central areas of all scar types were significantly longer than in the periphery. There was a significant positive correlation between the fluorescence lifetimes of red blood cells and collagen fibers among the cases. In summary, SHG and FLIM techniques reveal in routinely processed scar tissue morphological characteristics, which cannot be detected by conventional light microscopy
Doutorado
Biologia Estrutural, Celular, Molecular e do Desenvolvimento
Doutora em Fisiopatologia Médica
Bücher zum Thema "Confocal fluorescence microscopy"
Muller, Michiel. Introduction to confocal fluorescence microscopy. 2. Aufl. Bellingham, Wash: SPIE Press, 2006.
Den vollen Inhalt der Quelle findenBrian, Matsumoto, und American Society for Cell Biology., Hrsg. Cell biological applications of confocal microscopy. 2. Aufl. Amsterdam: Academic Press, 2002.
Den vollen Inhalt der Quelle findenPeriasamy, Ammasi, und Wilson Tony. Confocal, multiphoton, and nonlinear microscopic imaging III: 17-18 June 2007, Munich, Germany. Herausgegeben von SPIE (Society), Optical Society of America, European Optical Society, Wissenschaftliche Gesellschaft Lasertechnik und Deutsche Gesellschaft für Lasermedizin. Bellingham, Wash., USA: SPIE, 2007.
Den vollen Inhalt der Quelle findenKevin, Foskett J., und Grinstein Sergio 1950-, Hrsg. Noninvasive techniques in cell biology. New York: Wiley-Liss, 1990.
Den vollen Inhalt der Quelle findenDavid, Shotton, Hrsg. Electronic light microscopy: The principles and practice of video-enhanced contrast, digital intensified fluorescence, and confocal scanning light microscopy. New York: Wiley-Liss, 1993.
Den vollen Inhalt der Quelle findenT, Mason W., Hrsg. Fluorescent and luminescent probes for biological activity: A practical guide to technology for quantitative real-time analysis. London: Academic Press, 1993.
Den vollen Inhalt der Quelle findenConference on Multidimensional Spectroscopy: Acquisition, Interpretation, and Automation (1998 San Jose, Calif.). Proceedings of three-dimensional and multidimensional microscopy: Image acquisition and processing V : 27-29 January 1998, San Jose, California. Herausgegeben von Cogswell Carol J, Society of Photo-optical Instrumentation Engineers. und International Biomedical Optics Society. Bellingham, Wash., USA: SPIE, 1998.
Den vollen Inhalt der Quelle findenname, No. Three-dimensional and multidimensional microscopy: Image acquisition and processing X : 28-29 January 2003, San Jose, California, USA. Bellingham, WA: SPIE, 2003.
Den vollen Inhalt der Quelle findenR, José-Angel Conchello, Carol J. Cogswell und Wilson Tony. Three-dimensional and multidimensional microscopy: Image acquisition and processing XIII : 24-26 January 2006, San Jose, California, USA. Herausgegeben von Society of Photo-optical Instrumentation Engineers. Bellingham, Wash: SPIE, 2006.
Den vollen Inhalt der Quelle findenJosé-Angel, Conchello R., Cogswell Carol J, Wilson Tony und Society of Photo-optical Instrumentation Engineers., Hrsg. Three-dimensional and multidimensional microscopy: Image acquisition and processing XII : 25-27 January 2005, San Jose, California, USA. Bellingham, Wash., USA: SPIE, 2005.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Confocal fluorescence microscopy"
Naredi-Rainer, Nikolaus, Jens Prescher, Achim Hartschuh und Don C. Lamb. „Confocal Microscopy“. In Fluorescence Microscopy, 165–202. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527687732.ch5.
Der volle Inhalt der QuelleNaredi-Rainer, Nikolaus, Jens Prescher, Achim Hartschuh und Don C. Lamb. „Confocal Microscopy“. In Fluorescence Microscopy, 175–213. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013. http://dx.doi.org/10.1002/9783527671595.ch5.
Der volle Inhalt der QuelleJerome, W. Gray, und Robert L. Price. „Fluorescence Microscopy“. In Basic Confocal Microscopy, 37–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97454-5_3.
Der volle Inhalt der QuelleJerome, W. Gray (Jay), und Robert L. Price. „Fluorescence Microscopy“. In Basic Confocal Microscopy, 29–59. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-78175-4_3.
Der volle Inhalt der QuelleGerritsen, Hans C. „Confocal Fluorescence Lifetime Imaging“. In Fluorescence Microscopy and Fluorescent Probes, 35–46. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1866-6_3.
Der volle Inhalt der QuelleDemandolx, Denis, und Jean Davoust. „Subcellular Cytofluorometry in Confocal Microscopy“. In Fluorescence Microscopy and Fluorescent Probes, 279–83. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-1866-6_43.
Der volle Inhalt der QuelleJerome, W. Gray. „The Theory of Fluorescence“. In Basic Confocal Microscopy, 21–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97454-5_2.
Der volle Inhalt der QuelleJerome, W. Gray (Jay). „The Theory of Fluorescence“. In Basic Confocal Microscopy, 17–28. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-78175-4_2.
Der volle Inhalt der QuelleHibbs, Alan R. „Fluorescence Immunolabelling“. In Confocal Microscopy for Biologists, 259–77. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-306-48565-7_11.
Der volle Inhalt der QuelleGomez-Lazaro, M., A. Freitas und C. C. Ribeiro. „Confocal Raman microscopy“. In Fluorescence Imaging and Biological Quantification, 65–83. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315121017-5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Confocal fluorescence microscopy"
Rüttinger, Steffen, Peter Kapusta, Volker Völlkopf, Felix Koberling, Rainer Erdmann und Rainer Macdonald. „Fluorescence performance standards for confocal microscopy“. In BiOS, herausgegeben von Ammasi Periasamy, Peter T. C. So und Karsten König. SPIE, 2010. http://dx.doi.org/10.1117/12.840501.
Der volle Inhalt der QuelleDoglia, Silvia M., L. Bianchi, Roberto Colombo, N. Allam, Hamid Morjani, Michel Manfait und A. M. Villa. „Confocal fluorescence microscopy of living cells“. In Laser Spectroscopy of Biomolecules: 4th International Conference on Laser Applications in Life Sciences, herausgegeben von Jouko E. Korppi-Tommola. SPIE, 1993. http://dx.doi.org/10.1117/12.146189.
Der volle Inhalt der QuelleStelzer, Ernst H. K., und Robert Bacallao. „Confocal Fluorescence Microscopy Of Epithelial Cells“. In 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950336.
Der volle Inhalt der QuelleWang, Yu, Konstantin Maslov, Chulhong Kim, Song Hu und Lihong V. Wang. „Integrated photoacoustic and fluorescence confocal microscopy“. In SPIE BiOS, herausgegeben von Alexander A. Oraevsky und Lihong V. Wang. SPIE, 2011. http://dx.doi.org/10.1117/12.874888.
Der volle Inhalt der QuelleLuo, Yuan, Chou-Min Chia, Hung-Chun Wang und Yu-hsin Chia. „Multi-focal holographic slit confocal fluorescence microscopy“. In Biomedical Imaging and Sensing Conference, herausgegeben von Osamu Matoba, Yasuhiro Awatsuji, Toyohiko Yatagai und Yoshihisa Aizu. SPIE, 2018. http://dx.doi.org/10.1117/12.2316615.
Der volle Inhalt der QuelleBertero, M., P. Boccacci und E. R. Pike. „Inverse Problems In Fluorescence Confocal Scanning Microscopy“. In 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950302.
Der volle Inhalt der QuelleRafeq, S., A. Ernst, A. Majid, G. Michaud, C. Reddy und F. Herth. „Bronchoscopic Imaging Using Fibered Confocal Fluorescence Microscopy.“ In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5772.
Der volle Inhalt der QuelleLoterie, Damien, Demetri Psaltis und Christophe Moser. „Confocal microscopy via multimode fibers: fluorescence bandwidth“. In SPIE BiOS, herausgegeben von Thomas G. Bifano, Joel Kubby und Sylvain Gigan. SPIE, 2016. http://dx.doi.org/10.1117/12.2208017.
Der volle Inhalt der QuelleRodrigues, Isabel, Joao Xavier und Joao Sanches. „Fluorescence Confocal Microscopy Imaging denoising with photobleaching“. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2008. http://dx.doi.org/10.1109/iembs.2008.4649633.
Der volle Inhalt der QuelleFersch, Daniel, Pavel Malý, Jessica Rühe, Victor Lisinetskii, Matthias Hensen, Frank Würthner und Tobias Brixner. „Single-Molecule Ultrafast Fluorescence-Detected Pump–Probe Microscopy“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.m4a.3.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Confocal fluorescence microscopy"
Hoffmeyer, Michaela. In Vivo Fluorescence Confocal Microscopy to Investigate the Role of RhoC in Inflammatory Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, April 2005. http://dx.doi.org/10.21236/ada435616.
Der volle Inhalt der QuelleWickramaratne, Chathuri, Emily Sappington und Hanadi Rifai. Confocal Laser Fluorescence Microscopy to Measure Oil Concentration in Produced Water: Analyzing Accuracy as a Function of Optical Settings. Journal of Young Investigators, Juni 2018. http://dx.doi.org/10.22186/jyi.34.6.39-47.
Der volle Inhalt der QuelleMorales García, María Dolores. Uso de la fluorescencia y la microscopía confocal en la investigación científica. Sociedad Española de Bioquímica y Biología Molecular (SEBBM), Juli 2012. http://dx.doi.org/10.18567/sebbmdiv_rpc.2012.07.1.
Der volle Inhalt der QuelleDarrow, C., T. Huser, C. Campos, M. Yan, S. Lane und R. Balhorn. Single Fluorescent Molecule Confocal Microscopy: A New Tool for Molecular Biology Research and Biosensor Development. Office of Scientific and Technical Information (OSTI), März 2000. http://dx.doi.org/10.2172/792442.
Der volle Inhalt der Quelle