Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Conditioning and processing electrical signal“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Conditioning and processing electrical signal" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Conditioning and processing electrical signal"
Rei, Silviu, Dan Chicea, Beriliu Ilie und Sorin Olaru. „Dynamic Light Scattering Signal Conditioning for Data Processing“. ACTA Universitatis Cibiniensis 69, Nr. 1 (20.12.2017): 130–35. http://dx.doi.org/10.1515/aucts-2017-0016.
Der volle Inhalt der QuelleZulkiflli, Nur Amira, Kaviarasu Nandaguru, Omar Fahmi Arm, Feisal Mohamed Khamis, Ahmad Ridhwan Wahap, Fatin Aliah Phang Abdullah, Kian Sek Tee, Nurul Hidayat und Jaysuman Pusppanathan. „Electrical Impedance Tomography Signal Conditioning for Lung Imaging Applications“. Journal of Human Centered Technology 2, Nr. 2 (06.08.2023): 78–87. http://dx.doi.org/10.11113/humentech.v2n2.58.
Der volle Inhalt der QuellePayo, Ismael, José L. Polo, Blanca López, Diana Serrano, Antonio M. Rodríguez, M. Antonia Herrero, Ana Martín-Pacheco, Inmaculada Sánchez und Ester Vázquez. „Signal conditioning circuit for gel strain sensors“. Smart Materials and Structures 31, Nr. 1 (25.11.2021): 015020. http://dx.doi.org/10.1088/1361-665x/ac36e0.
Der volle Inhalt der QuelleCelka, Patrick, Rolf Vetter, Philippe Renevey, Christophe Verjus, Victor Neuman, Jean Luprano, Jean-Dominique Decotignie und Christian Piguet. „Wearable biosensing: signal processing and communication architectures issues“. Journal of Telecommunications and Information Technology, Nr. 4 (30.12.2005): 90–104. http://dx.doi.org/10.26636/jtit.2005.4.340.
Der volle Inhalt der QuelleAllén, Markus, Jaakko Marttila und Mikko Valkama. „Modeling and mitigation of nonlinear distortion in wideband A/D converters for cognitive radio receivers“. International Journal of Microwave and Wireless Technologies 2, Nr. 2 (April 2010): 183–92. http://dx.doi.org/10.1017/s1759078710000292.
Der volle Inhalt der QuelleRiches, S. T., C. Johnston, M. Sousa und P. Grant. „High Temperature Endurance of Packaged SOI Devices for Signal Conditioning and Processing Applications“. Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2011, HITEN (01.01.2011): 000251–54. http://dx.doi.org/10.4071/hiten-paper8-sriches.
Der volle Inhalt der QuelleWu, Chenning, Martin Hutton und Manuchehr Soleimani. „Smart Water Meter Using Electrical Resistance Tomography“. Sensors 19, Nr. 14 (10.07.2019): 3043. http://dx.doi.org/10.3390/s19143043.
Der volle Inhalt der Quellede Faria, Gabriella Maria, Eugênia Gonzales Lopes, Eleonora Tobaldini, Nicola Montano, Tatiana Sousa Cunha, Karina Rabello Casali und Henrique Alves de Amorim. „Advances in Non-Invasive Neuromodulation: Designing Closed-Loop Devices for Respiratory-Controlled Transcutaneous Vagus Nerve Stimulation“. Healthcare 12, Nr. 1 (22.12.2023): 31. http://dx.doi.org/10.3390/healthcare12010031.
Der volle Inhalt der QuelleChen, Xiyuan, Loic Maxwell, Franklin Li, Amrita Kumar, Elliot Ransom, Tanay Topac, Sera Lee, Mohammad Faisal Haider, Sameh Dardona und Fu-Kuo Chang. „Design and Integration of a Wireless Stretchable Multimodal Sensor Network in a Composite Wing“. Sensors 20, Nr. 9 (29.04.2020): 2528. http://dx.doi.org/10.3390/s20092528.
Der volle Inhalt der QuelleNathan, Arokia. „Microsensors for physical signals: Principles, device design, and fabrication technologies“. Canadian Journal of Physics 74, S1 (01.12.1996): 115–30. http://dx.doi.org/10.1139/p96-844.
Der volle Inhalt der QuelleDissertationen zum Thema "Conditioning and processing electrical signal"
Valero, Daniel. „Wireless Signal Conditioning“. Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc862776/.
Der volle Inhalt der QuelleLee, Li 1975. „Distributed signal processing“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86436.
Der volle Inhalt der QuelleEldar, Yonina Chana 1973. „Quantum signal processing“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/16805.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 337-346).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Quantum signal processing (QSP) as formulated in this thesis, borrows from the formalism and principles of quantum mechanics and some of its interesting axioms and constraints, leading to a novel paradigm for signal processing with applications in areas ranging from frame theory, quantization and sampling methods to detection, parameter estimation, covariance shaping and multiuser wireless communication systems. The QSP framework is aimed at developing new or modifying existing signal processing algorithms by drawing a parallel between quantum mechanical measurements and signal processing algorithms, and by exploiting the rich mathematical structure of quantum mechanics, but not requiring a physical implementation based on quantum mechanics. This framework provides a unifying conceptual structure for a variety of traditional processing techniques, and a precise mathematical setting for developing generalizations and extensions of algorithms. Emulating the probabilistic nature of quantum mechanics in the QSP framework gives rise to probabilistic and randomized algorithms. As an example we introduce a probabilistic quantizer and derive its statistical properties. Exploiting the concept of generalized quantum measurements we develop frame-theoretical analogues of various quantum-mechanical concepts and results, as well as new classes of frames including oblique frame expansions, that are then applied to the development of a general framework for sampling in arbitrary spaces. Building upon the problem of optimal quantum measurement design, we develop and discuss applications of optimal methods that construct a set of vectors.
(cont.) We demonstrate that, even for problems without inherent inner product constraints, imposing such constraints in combination with least-squares inner product shaping leads to interesting processing techniques that often exhibit improved performance over traditional methods. In particular, we formulate a new viewpoint toward matched filter detection that leads to the notion of minimum mean-squared error covariance shaping. Using this concept we develop an effective linear estimator for the unknown parameters in a linear model, referred to as the covariance shaping least-squares estimator. Applying this estimator to a multiuser wireless setting, we derive an efficient covariance shaping multiuser receiver for suppressing interference in multiuser communication systems.
by Yonina Chana Eldar.
Ph.D.
Vasconcellos, Brett W. (Brett William) 1977. „Parallel signal-processing for everyone“. Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/9097.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 65-67).
We designed, implemented, and evaluated a signal-processing environment that runs on a general-purpose multiprocessor system, allowing easy prototyping of new algorithms and integration with applications. The environment allows the composition of modules implementing individual signal-processing algorithms into a functional application, automatically optimizing their performance. We decompose the problem into four independent components: signal processing, data management, scheduling, and control. This simplifies the programming interface and facilitates transparent parallel signal processing. For tested applications, our system both runs efficiently on single-processors systems and achieves near-linear speedups on symmetric-multiprocessor (SMP) systems.
by Brett W. Vasconcellos.
M.Eng.
Baran, Thomas A. (Thomas Anthony). „Conservation in signal processing systems“. Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/74991.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 205-209).
Conservation principles have played a key role in the development and analysis of many existing engineering systems and algorithms. In electrical network theory for example, many of the useful theorems regarding the stability, robustness, and variational properties of circuits can be derived in terms of Tellegen's theorem, which states that a wide range of quantities, including power, are conserved. Conservation principles also lay the groundwork for a number of results related to control theory, algorithms for optimization, and efficient filter implementations, suggesting potential opportunity in developing a cohesive signal processing framework within which to view these principles. This thesis makes progress toward that goal, providing a unified treatment of a class of conservation principles that occur in signal processing systems. The main contributions in the thesis can be broadly categorized as pertaining to a mathematical formulation of a class of conservation principles, the synthesis and identification of these principles in signal processing systems, a variational interpretation of these principles, and the use of these principles in designing and gaining insight into various algorithms. In illustrating the use of the framework, examples related to linear and nonlinear signal-flow graph analysis, robust filter architectures, and algorithms for distributed control are provided.
by Thomas A. Baran.
Ph.D.
South, Colin R. „Signal processing in a loudspeaking telephone“. Thesis, Aston University, 1985. http://publications.aston.ac.uk/8053/.
Der volle Inhalt der QuelleBoufounos, Petros T. 1977. „Signal processing for DNA sequencing“. Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/17536.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 83-86).
DNA sequencing is the process of determining the sequence of chemical bases in a particular DNA molecule-nature's blueprint of how life works. The advancement of biological science in has created a vast demand for sequencing methods, which needs to be addressed by automated equipment. This thesis tries to address one part of that process, known as base calling: it is the conversion of the electrical signal-the electropherogram--collected by the sequencing equipment to a sequence of letters drawn from ( A,TC,G ) that corresponds to the sequence in the molecule sequenced. This work formulates the problem as a pattern recognition problem, and observes its striking resemblance to the speech recognition problem. We, therefore, propose combining Hidden Markov Models and Artificial Neural Networks to solve it. In the formulation we derive an algorithm for training both models together. Furthermore, we devise a method to create very accurate training data, requiring minimal hand-labeling. We compare our method with the de facto standard, PHRED, and produce comparable results. Finally, we propose alternative HMM topologies that have the potential to significantly improve the performance of the method.
by Petros T. Boufounos.
M.Eng.and S.B.
Ponnala, Lalit. „Analysis of Genetic Translation using Signal Processing“. NCSU, 2007. http://www.lib.ncsu.edu/theses/available/etd-02072007-174200/.
Der volle Inhalt der QuelleWang, Yingying. „ADVANCED ANALOG SIGNAL PROCESSING FOR WIRELESS COMMUNICATIONS“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1585776428631869.
Der volle Inhalt der QuelleAli-Bakhshian, Mohammad. „Digital processing of analog information adopting time-mode signal processing“. Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114237.
Der volle Inhalt der QuelleLes technologies CMOS progressant vers les procédés 22 nm et au delà, la abrication des circuits analogiques dans ces technologies se heurte a de nombreuses limitations. Entre autres limitations on peut citer la réduction d'amplitude des signaux, la sensibilité aux effets du bruit thermique et la perte de fonctions précises de commutation. Le traitement de signal en mode temps (TMSP pour Time-Mode Signal Processing) est une technique que l'on croit être bien adapté pour résoudre un grand nombre de problèmes relatifs a ces limitations. TMSP peut être défini comme la détection, le stockage et la manipulation de l'information analogique échantillonnée en utilisant des quantités de temps comme variables. L'un des avantages importants de TMSP est la capacité à réaliser des fonctions analogiques en utilisant des structures logiques digitales. Cette technique a une longue histoire en terme d'application en électronique. Cependant, en raison du manque de certaines fonctions fondamentales, l'utilisation de variables en mode temps a été limitée à une utilisation comme étape intermédiaire dans le traitement d'un signal et toujours dans le contexte d'une conversion tension/courant-temps et temps-tension/courant. Ces conversions nécessitent l'inclusion de blocs analogiques qui vont a l'encontre de l'avantage numérique des TMSP. Cette thèse fournit un fondement approprié pour le développement de TMSP comme outil général de traitement de signal. En proposant le concept nouveau d'interruption de retard, une toute nouvelle approche asynchrone pour la manipulation de variables en mode temps est suggéré. Comme conséquence directe de cette approche, des techniques pratiques pour le stockage, l'addition et la soustraction de variables en mode temps sont présentées. Pour étendre l'implémentation digitale de TMSP à une large gamme d'applications, la conception d'un intégrateur (accumulateur) à double voie temps- à -temps est démontrée. cet intégrateur est ensuite utilisé pour implémenter un modulateur delta-sigma de second ordre.Enfin, pour démontrer l'avantage de TMSP, une Interface de très basse puissance, compacte et réglable pour capteurs capacitifs est présenté. Cette interface est composé d'un certain nombre de blocs de retard associés à des portes logiques typiques. Toutes les théories proposées sont soutenues par des résultats expérimentaux et des simulations post-layout. L'implémentation digitale des circuits proposés a été la première priorité de cette thèse. En effet, une implémentation des bloc avec des structures digitales permet des conceptions simples, synthétisable et reconfigurables où des circuits de calibration très abordables peuvent être adoptées pour éliminer les effets des variations de process.
Bücher zum Thema "Conditioning and processing electrical signal"
Larson, William E. Universal signal conditioning amplifier. [Washington, D.C: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenWebster, John G. Electrical measurement, signal processing, and displays. Boca Raton: CRC Press, 2003.
Den vollen Inhalt der Quelle finden1932-, Webster John G., Hrsg. Electrical measurement, signal processing, and displays. Boca Raton: CRC Press, 2004.
Den vollen Inhalt der Quelle findenSeippel, Robert G. Transducer interfacing: Signal conditioning for process control. Englewood Cliffs, N.J: Prentice-Hall, 1988.
Den vollen Inhalt der Quelle findenDas, Apurba. Signal Conditioning: An Introduction to Continuous Wave Communication and Signal Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenVeatch, Donald W. Analog signal conditioning for flight-test instrumentation. Washington, D.C: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Den vollen Inhalt der Quelle findenVeatch, Donald W. Analog signal conditioning for flight-test instrumentation. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.
Den vollen Inhalt der Quelle findenVeatch, Donald W. Analog signal conditioning for flight-test instrumentation. [Washington, DC]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.
Den vollen Inhalt der Quelle findenVeatch, Donald W. Analogue signal conditioning for flight test instrumentation. Neuilly sur Seine, France: North Atlantic Treaty Organization, Advisory Group for Aerospace Research and Development, 1986.
Den vollen Inhalt der Quelle findenAl-Bassiouni, Abdel-Aziz Mahmoud. Optimum signal processing in distributed sensor systems. Monterey, Calif: Naval Postgraduate School, 1987.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Conditioning and processing electrical signal"
Barboni, Leonardo, und Maunzio Valle. „Signal Conditioning System Analysis for Adaptive Signal Processing in Wireless Sensors“. In Lecture Notes in Electrical Engineering, 291–94. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3606-3_56.
Der volle Inhalt der QuelleDas, Apurba. „Wavelets: Multi-Resolution Signal Processing“. In Signal Conditioning, 243–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28818-0_10.
Der volle Inhalt der QuelleBerns, Karsten, Alexander Köpper und Bernd Schürmann. „Signal Processing“. In Lecture Notes in Electrical Engineering, 197–226. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65157-2_7.
Der volle Inhalt der QuelleLu, Julia Hsin-Lin, und Byunghoo Jung. „Sensor Conditioning Circuits“. In Integrated Circuits for Analog Signal Processing, 223–42. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1383-7_10.
Der volle Inhalt der QuelleSalvatori, Stefano, Sara Pettinato und Maria Cristina Rossi. „A Configurable Readout Circuit for Detector Signal Conditioning“. In Lecture Notes in Electrical Engineering, 220–29. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-48711-8_26.
Der volle Inhalt der QuelleSozański, Krzysztof. „Analog Signals Conditioning and Discretization“. In Digital Signal Processing in Power Electronics Control Circuits, 23–81. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7332-8_2.
Der volle Inhalt der QuelleSozański, Krzysztof. „Analog Signals Conditioning and Discretization“. In Digital Signal Processing in Power Electronics Control Circuits, 23–72. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5267-5_2.
Der volle Inhalt der QuelleYang, Zhengbo, Jiaquan Ye, Jing Liu, Ping Yang und Fei Liang. „Digital Signal Processing Technology of DVOR Navigation Signal“. In Lecture Notes in Electrical Engineering, 290–95. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6504-1_37.
Der volle Inhalt der QuelleNatarajan, Dhanasekharan. „Overview of Digital Signal Processing“. In Lecture Notes in Electrical Engineering, 1–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-36196-9_1.
Der volle Inhalt der QuelleAnand, G., T. Thyagarajan, B. Aashique Roshan, L. Rajeshwar und R. Shyam Balaji. „Signal Conditioning Circuits for GMR Sensor in Biomedical Applications“. In Lecture Notes in Electrical Engineering, 93–106. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4943-1_10.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Conditioning and processing electrical signal"
Franco-Piña, J. Alejandro, Luis Contreras und Juan C. Jauregui. „Real Time Conditioning Monitoring for Failure Prediction“. In ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/gt2017-65145.
Der volle Inhalt der QuelleDimcev, V., D. Taskovski, Z. Kokolanski, D. Denic, D. Zivanovic und M. Simic. „Signal conditioning for power quality“. In 2011 11th International Conference on Electrical Power Quality and Utilisation - (EPQU). IEEE, 2011. http://dx.doi.org/10.1109/epqu.2011.6128809.
Der volle Inhalt der QuelleStanco, J., G. Sliwinski, J. Konefał, P. Kukielło, G. Rabczuk, Z. Rozkwitalski und R. Zaremba. „Investigation of a transverse-excited high-power CO2 laser“. In International Laser Science Conference. Washington, D.C.: Optica Publishing Group, 1986. http://dx.doi.org/10.1364/ils.1986.thl7.
Der volle Inhalt der QuelleMazurek, Gustaw. „Signal Conditioning for DAB-Illuminated Passive Radar“. In 2021 Signal Processing Symposium (SPSympo). IEEE, 2021. http://dx.doi.org/10.1109/spsympo51155.2020.9593458.
Der volle Inhalt der QuelleLevonen, M. J., L. Persson und S. McLaughlin. „Conditioning Lofargrams Using Empirical Mode Decomposition“. In 2006 7th Nordic Signal Processing Symposium. IEEE, 2006. http://dx.doi.org/10.1109/norsig.2006.275220.
Der volle Inhalt der QuelleErtugrul, Omer Faruk, und Mehmet Emin Tagluk. „Learning with classical conditioning“. In 2014 22nd Signal Processing and Communications Applications Conference (SIU). IEEE, 2014. http://dx.doi.org/10.1109/siu.2014.6830382.
Der volle Inhalt der QuelleZhao, Guopeng, Zhiqi Shen, Chunyan Miao und Zhihong Man. „On improving the conditioning of extreme learning machine: A linear case“. In Signal Processing (ICICS). IEEE, 2009. http://dx.doi.org/10.1109/icics.2009.5397617.
Der volle Inhalt der QuelleSzakacs-Simon, Peter, Sorin-Aurel Moraru und Florian Neukart. „Signal conditioning techniques for health monitoring devices“. In 2012 35th International Conference on Telecommunications and Signal Processing (TSP). IEEE, 2012. http://dx.doi.org/10.1109/tsp.2012.6256369.
Der volle Inhalt der QuelleAmblard, Pierre-Olivier, und Olivier J. J. Michel. „Causal conditioning and instantaneous coupling in causality graphs“. In 2012 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2012. http://dx.doi.org/10.1109/ssp.2012.6319633.
Der volle Inhalt der QuelleUlaganathan, Abdul Lateef, K. M. Sadyojatha und Raymond Irudayaraj. „Design and implementation of front end biological signal conditioning“. In 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT). IEEE, 2017. http://dx.doi.org/10.1109/iceeccot.2017.8284586.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Conditioning and processing electrical signal"
Fayette, Daniel F., und Nancy A. Koziarz. Electrical Characterization of Signal Processing Microcircuit. Fort Belvoir, VA: Defense Technical Information Center, April 1989. http://dx.doi.org/10.21236/ada209078.
Der volle Inhalt der QuelleBruce und Fiore. L51629 Users Manual-Field Validation of the Low-Frequency Eddy Current Instrument-Software Listings. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 1990. http://dx.doi.org/10.55274/r0010602.
Der volle Inhalt der Quelle