Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Concurrent Component-Based Systems“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Concurrent Component-Based Systems" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Concurrent Component-Based Systems"
Cleaveland, Rance. „Specification formalisms for component-based concurrent systems“. ACM SIGSOFT Software Engineering Notes 25, Nr. 1 (Januar 2000): 42–43. http://dx.doi.org/10.1145/340855.340876.
Der volle Inhalt der QuelleKapová, Lucia, und Steffen Becker. „Systematic Refinement of Performance Models for Concurrent Component-based Systems“. Electronic Notes in Theoretical Computer Science 264, Nr. 1 (August 2010): 73–90. http://dx.doi.org/10.1016/j.entcs.2010.07.006.
Der volle Inhalt der QuelleLi, Yi, Weidi Sun und Meng Sun. „Mediator: A component-based modeling language for concurrent and distributed systems“. Science of Computer Programming 192 (Juni 2020): 102438. http://dx.doi.org/10.1016/j.scico.2020.102438.
Der volle Inhalt der QuelleAli, Awad, Mohammed Bakri Bashir, Alzubair Hassan, Rafik Hamza, Samar M. Alqhtani, Tawfeeg Mohmmed Tawfeeg und Adil Yousif. „Design-Time Reliability Prediction Model for Component-Based Software Systems“. Sensors 22, Nr. 7 (06.04.2022): 2812. http://dx.doi.org/10.3390/s22072812.
Der volle Inhalt der QuelleBajunaid, Noor, und Daniel A. Menascé. „Efficient modeling and optimizing of checkpointing in concurrent component-based software systems“. Journal of Systems and Software 139 (Mai 2018): 1–13. http://dx.doi.org/10.1016/j.jss.2018.01.032.
Der volle Inhalt der QuellePham, Thanh-Trung, Xavier Défago und Quyet-Thang Huynh. „Reliability prediction for component-based software systems: Dealing with concurrent and propagating errors“. Science of Computer Programming 97 (Januar 2015): 426–57. http://dx.doi.org/10.1016/j.scico.2014.03.016.
Der volle Inhalt der QuelleAutili, Marco, Leonardo Mostarda, Alfredo Navarra und Massimo Tivoli. „Synthesis of decentralized and concurrent adaptors for correctly assembling distributed component-based systems“. Journal of Systems and Software 81, Nr. 12 (Dezember 2008): 2210–36. http://dx.doi.org/10.1016/j.jss.2008.04.006.
Der volle Inhalt der QuelleAoumeur, Nasreddine, und Gunter Saake. „Dynamically evolving concurrent information systems specification and validation: a component-based Petri nets proposal“. Data & Knowledge Engineering 50, Nr. 2 (August 2004): 117–73. http://dx.doi.org/10.1016/j.datak.2003.10.005.
Der volle Inhalt der QuelleChen, Bin, Jie Hu, Jin Qi und Weixing Chen. „Concurrent multi-process graph-based design component synthesis: Framework and algorithm“. Engineering Applications of Artificial Intelligence 97 (Januar 2021): 104051. http://dx.doi.org/10.1016/j.engappai.2020.104051.
Der volle Inhalt der QuellePujari, Niharika, Abhishek Ray und Jagannath Singh. „An efficient and precise dynamic slicing for concurrent component-oriented programs“. International Journal of Knowledge-based and Intelligent Engineering Systems 25, Nr. 4 (18.02.2022): 449–64. http://dx.doi.org/10.3233/kes-210088.
Der volle Inhalt der QuelleDissertationen zum Thema "Concurrent Component-Based Systems"
Farhat, Salman. „Safe Dynamic Reconfiguration of Applications with Features“. Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILB014.
Der volle Inhalt der QuelleCloud applications and cyber-physical systems require frequent reconfiguration at run-time to adapt to changing needs and requirements, highlighting the importance of dynamic reconfiguration capabilities. Additionally, the environment platforms can extend and modify their services at run-time, which necessitates a compositional approach to allow the modifications of the configurations. To manage the variability of large systems' architecture, feature models are widely used at design-time with several operators defined to allow their composition. Existing approaches compute new valid configurations either at design time, at runtime, or both, leading to significant computational or validation overheads for each reconfiguration step. In addition, building correct-by-construction formal models to handle application reconfigurations is a complex and error-prone task, and there is a need to make it automated as far as possible.To address these challenges, we propose an approach named FeCo4Reco that leverages feature models to automatically generate, in a component-based formalism called JavaBIP, component-based run-time variability models that respect the feature model constraints. These component-based run-time variability models are executable and can be used at runtime to enforce the variability constraints, that is, to ensure the (partial) validity of all reachable configurations.As complex systems' architectures may evolve at run-time by acquiring new functionalities while respecting new constraints, we define composition operators for component-based run-time variability models that not only encode these feature model composition operators, but also ensure safe run-time reconfiguration. To prove the correctness and compositionality properties, we propose a novel multi-step UP-bisimulation equivalence and use it to show that the component-based run-time variability models preserve the semantics of the composed feature models.For the experimental evaluation, we demonstrated the applicability of our approach in real-world scenarios by generating a run-time model based on the feature model of the Heroku cloud platform using our approach. This model is then used to deploy a real-world web application on the Heroku platform. Furthermore, we measured the time and memory overheads induced by the generated run-time models on systems involving up to 300 features. The results show that the overheads are negligible, demonstrating the practical interest of our approach
„A Distributed Component-based Software Framework for Laboratory Automation Systems“. Master's thesis, 2012. http://hdl.handle.net/2286/R.I.15945.
Der volle Inhalt der QuelleDissertation/Thesis
Thesis Presentation
M.S. Computer Science 2012
Buchteile zum Thema "Concurrent Component-Based Systems"
Pujari, Niharika, Abhishek Ray und Jagannath Singh. „Slicing Based on Web Scrapped Concurrent Component“. In Advances in Intelligent Systems and Computing, 275–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5400-1_29.
Der volle Inhalt der QuelleAutili, Marco, Michele Flammini, Paola Inverardi, Alfredo Navarra und Massimo Tivoli. „Synthesis of Concurrent and Distributed Adaptors for Component-Based Systems“. In Software Architecture, 17–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11966104_3.
Der volle Inhalt der QuelleRodrigues, Genaína, David Rosenblum und Sebastian Uchitel. „Using Scenarios to Predict the Reliability of Concurrent Component-Based Software Systems“. In Fundamental Approaches to Software Engineering, 111–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31984-9_9.
Der volle Inhalt der QuelleBuchs, Didier, David Hurzeler und Sandro Costa. „Component Based Dependable System Modelling for Easier Verification“. In Concurrency in Dependable Computing, 61–83. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-3573-4_4.
Der volle Inhalt der QuelleBliudze, Simon, und Joseph Sifakis. „A Notion of Glue Expressiveness for Component-Based Systems“. In CONCUR 2008 - Concurrency Theory, 508–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-85361-9_39.
Der volle Inhalt der QuelleSchmidt, Heinz W., und Ralf H. Reussner. „Generating Adapters for Concurrent Component Protocol Synchronisation“. In Formal Methods for Open Object-Based Distributed Systems V, 213–29. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-0-387-35496-5_15.
Der volle Inhalt der QuelleHabte, Bedilu, und Udo F. Meißner. „Development of Component Based Integrated Software System for the Design of Building Foundations“. In Advances in Concurrent Engineering, 547–51. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003423508-73.
Der volle Inhalt der QuelleZernadji, Tarek, Raida Elmansouri und Allaoua Chaoui. „An Approach to Formal Specification of Component-Based Software“. In Handbook of Research on E-Services in the Public Sector, 34–42. IGI Global, 2011. http://dx.doi.org/10.4018/978-1-61520-789-3.ch004.
Der volle Inhalt der QuelleLu, Jing, Weiru Chen, Osei Adjei und Malcolm Keech. „Sequential Patterns Postprocessing for Structural Relation Patterns Mining“. In Business Information Systems, 787–806. IGI Global, 2010. http://dx.doi.org/10.4018/978-1-61520-969-9.ch049.
Der volle Inhalt der QuelleBarrouillet, Pierre, und Valérie Camos. „The Time-Based Resource-Sharing Model of Working Memory“. In Working Memory, 85–115. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198842286.003.0004.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Concurrent Component-Based Systems"
Lau, Kung-Kiu, und Ioannis Ntalamagkas. „Component-Based Construction of Concurrent Systems with Active Components“. In 2009 35th Euromicro Conference on Software Engineering and Advanced Applications. IEEE, 2009. http://dx.doi.org/10.1109/seaa.2009.45.
Der volle Inhalt der QuelleBajunaid, Noor, und Daniel A. Menasce. „Analytic Models of Checkpointing for Concurrent Component-Based Software Systems“. In ICPE '17: ACM/SPEC International Conference on Performance Engineering. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3030207.3030209.
Der volle Inhalt der QuelleKong, Byeong Yong, Jooseung Lee und In-Cheol Park. „A Low-Latency Multi-Touch Detector Based on Concurrent Processing of Redesigned Overlap Split and Connected Component Analysis“. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020. http://dx.doi.org/10.1109/iscas45731.2020.9180986.
Der volle Inhalt der QuelleFoong, Shaohui, Xianmin Chen und Kok-Meng Lee. „Optimized Distributed Field-Based Sensing for Control of Voice Coil Motor“. In ASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control. ASMEDC, 2011. http://dx.doi.org/10.1115/dscc2011-5999.
Der volle Inhalt der QuelleFlores, Rogelio, C. Greg Jensen und Jon Shelley. „A Web Enabled Process for Accessing Customized Parametric Designs“. In ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/detc2002/dac-34078.
Der volle Inhalt der QuelleGoodwin, Jesse, Kathryn Kelly, Melissa Foley, Christopher Saldana, Thomas Kurfess und Kyle Saleeby. „Positioning Accuracy in a Concurrent Robot-CNC Hybrid Manufacturing System“. In ASME 2024 19th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/msec2024-121212.
Der volle Inhalt der QuelleSellgren, Ulf, und Cecilia Hakelius. „A Survey of PDM Implementation Projects in Selected Swedish Industries“. In ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/eim-1132.
Der volle Inhalt der QuelleMazzara, Bill, und Issak Davidovich. „Integrating Functional and Component-Level Threat Analyses in Automotive Systems: A Holistic Approach to Risk Assessment“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2797.
Der volle Inhalt der QuelleJadaan, Osama M., Lynn M. Powers und John P. Gyekenyesi. „Creep Life Prediction of Ceramic Components Subjected to Transient Tensile and Compressive Stress States“. In ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/97-gt-319.
Der volle Inhalt der QuelleLee, David J., Soyoung S. Cha und Narayanan Ramachandran. „Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry“. In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62450.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Concurrent Component-Based Systems"
Yip, Eugene, und Gerald Lüttgen. Heterogeneous Specification of Spacecraft Software. Otto-Friedrich-Universität, 2024. http://dx.doi.org/10.20378/irb-97634.
Der volle Inhalt der Quelle