Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Concrete Testing Mathematical models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Concrete Testing Mathematical models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Concrete Testing Mathematical models"
Abdallah, Wafaa, Jacqueline Saliba, Ziubir-Mehdi Sbartaï, Marwan Sadek, Fadi Hage Chehade und S. Mohammed ElAchachi. „Reliability analysis of non-destructive testing models within a probabilistic approach“. MATEC Web of Conferences 281 (2019): 04003. http://dx.doi.org/10.1051/matecconf/201928104003.
Der volle Inhalt der QuelleGao, Feng, Gui Ling Liu und Qing Guo Huang. „Ultrasonic Non-Destruction Detecting Method for Concrete Compression Strength“. Advanced Materials Research 724-725 (August 2013): 1585–88. http://dx.doi.org/10.4028/www.scientific.net/amr.724-725.1585.
Der volle Inhalt der QuelleGao, Feng, Gui Ling Liu und Feng Xian Wang. „Concrete Compression Strength Non-Destruction Detecting with Rebounding and Ultrasonic Synthesis Method“. Applied Mechanics and Materials 357-360 (August 2013): 1488–91. http://dx.doi.org/10.4028/www.scientific.net/amm.357-360.1488.
Der volle Inhalt der QuelleSarsam, Saad I. „Modeling the Thermal Behavior of the Viscoelastic Properties of Asphalt Concrete“. Britain International of Exact Sciences (BIoEx) Journal 4, Nr. 2 (02.09.2022): 79–91. http://dx.doi.org/10.33258/bioex.v4i2.729.
Der volle Inhalt der QuelleAndjelkovic, Vladimir, Zarko Lazarevic und Velimir Nedovic. „Application of analogous models in civil engineering“. Facta universitatis - series: Architecture and Civil Engineering 9, Nr. 3 (2011): 395–405. http://dx.doi.org/10.2298/fuace1103395a.
Der volle Inhalt der QuelleZainal, S. M. Iqbal S., Farzad Hejazi, Farah N. A. Abd Aziz und Mohd Saleh Jaafar. „Constitutive Modeling of New Synthetic Hybrid Fibers Reinforced Concrete from Experimental Testing in Uniaxial Compression and Tension“. Crystals 10, Nr. 10 (01.10.2020): 885. http://dx.doi.org/10.3390/cryst10100885.
Der volle Inhalt der QuelleBouaanani, Najib, Patrick Paultre und Jean Proulx. „Dynamic response of a concrete dam impounding an ice-covered reservoir: Part I. Mathematical modelling“. Canadian Journal of Civil Engineering 31, Nr. 6 (01.12.2004): 956–64. http://dx.doi.org/10.1139/l04-075.
Der volle Inhalt der QuelleAmin, Muhammad Nasir, Kaffayatullah Khan, Fahid Aslam, Muhammad Izhar Shah, Muhammad Faisal Javed, Muhammad Ali Musarat und Kseniia Usanova. „Multigene Expression Programming Based Forecasting the Hardened Properties of Sustainable Bagasse Ash Concrete“. Materials 14, Nr. 19 (28.09.2021): 5659. http://dx.doi.org/10.3390/ma14195659.
Der volle Inhalt der QuelleSouza, L. A. F. de, und R. D. Machado. „Numerical-computational analysis of reinforced concrete structures considering the damage, fracture and failure criterion“. Revista IBRACON de Estruturas e Materiais 6, Nr. 1 (Februar 2013): 101–20. http://dx.doi.org/10.1590/s1983-41952013000100006.
Der volle Inhalt der QuelleMeruane, Viviana, Sergio J. Yanez, Leonel Quinteros und Erick I. Saavedra Flores. „Damage Detection in Steel–Concrete Composite Structures by Impact Hammer Modal Testing and Experimental Validation“. Sensors 22, Nr. 10 (20.05.2022): 3874. http://dx.doi.org/10.3390/s22103874.
Der volle Inhalt der QuelleDissertationen zum Thema "Concrete Testing Mathematical models"
Lanzas, Lourdes Eneida 1962. „A parametric study on the behavior of slender reinforced concrete frames“. Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/276945.
Der volle Inhalt der QuelleLam, Wai-yin, und 林慧賢. „Plate-reinforced composite coupling beams: experimental and numerical studies“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B37311797.
Der volle Inhalt der QuelleChan, Ka-ho Enoch, und 陳家灝. „Experimental and numerical studies of concrete beams prestressed with unbonded tendons“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40988004.
Der volle Inhalt der QuelleLokuge, W. P. (Weena Priyanganie) 1967. „Stress-strain behaviour of confined high strength concrete under monotonically increasing and cyclic loadings“. Monash University, Dept. of Civil Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/9425.
Der volle Inhalt der QuelleTasnimi, A. A. „Prediction of forces within prestressed sections : The behavior of simply supported prestressed concrete beams with boned and unbonded tendons predicted by mathematical model and investigated by testing to destruction using two point load“. Thesis, University of Bradford, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384298.
Der volle Inhalt der QuelleThölken, Denise. „Efeito da rigidez de pilar parede no comportamento sísmico de edifício de concreto armado“. Universidade Tecnológica Federal do Paraná, 2013. http://repositorio.utfpr.edu.br/jspui/handle/1/962.
Der volle Inhalt der QuelleThe aim of this work is to study the stiffness effect of wall columns on structural behavior of reinforced concrete buildings subjected to seismic action. The premises of the Brazilian standard ABNT NBR14521:2006 were considered, which presents criteria for earthquake resistant design of structures. The linear analysis employed the methods of the Brazilian standard - equivalent static load method, response spectrum analysis and time history method - were applied to buildings with two types of structural systems, namely concrete frame and dual system concrete frame and wall columns. The results were analyzed in edge frames structures in the longitudinal and transverse directions, comparing the displacement of each floor and shear, bending moment and axial forces on the bases of the columns. A comparison was made between the three methods applied and the structural systems analyzed.
Ng, Ah Book. „Physical models in fire study of concrete structures“. Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=64055.
Der volle Inhalt der QuellePessôa, José Renato de Castro. „Análise numérico-experimental de estruturas de concreto com utilização da energia de fraturamento“. Universidade do Estado do Rio de Janeiro, 2007. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=780.
Der volle Inhalt der QuelleA evolução dos concretos utilizados nas últimas décadas deu origem ao Concreto de Alto Desempenho (CAD), que tem, entre suas características, alta resistência à compressão e baixa permeabilidade. Com o desenvolvimento dos produtos químicos utilizados na construção civil, em especial os superplastificantes e superfluidificantes, a utilização desse tipo de concreto tornou-se cada vez mais freqüente pela possibilidade de se obter uma mistura suficientemente trabalhável utilizando-se fatores água/cimento menores do que 0,35. Devido à sua microestrutura mais homogênea, esse tipo de concreto apresenta um comportamento mais frágil do que os concretos convencionais, exigindo uma melhor caracterização do material. A partir do final da década de 70 começou-se a aplicar os conceitos da Mecânica da Fratura para análise do comportamento de estruturas construídas com esse tipo de concreto. Como em algumas situações a resistência nominal de peças de concreto diminui com o aumento de suas dimensões, houve a necessidade de se considerar o efeito de escala das estruturas a fim de se obter níveis de segurança mais adequados no seu dimensionamento, o que justificou a utilização da Mecânica da Fratura. Neste trabalho a energia de fraturamento foi obtida experimentalmente pelo método do trabalho de fraturamento e pelo método do efeito de escala, por meio de ensaios estáveis de flexão de três pontos em amostras de concreto de alto desempenho com entalhe. Foi também desenvolvida a simulação numérica de uma viga com entalhe, analisada pelo método dos elementos finitos e empregando-se na modelagem constitutiva os conceitos da Mecânica da Fratura aplicada ao concreto. As vigas foram moldadas e ensaiadas no Instituto Politécnico do Rio de Janeiro (IPRJ) da Universidade do Estado do Rio de Janeiro (UERJ) na cidade de Nova Friburgo. Os ensaios foram realizados com controle de deslocamento da célula de carga. Foram ensaiadas três séries de 12 vigas, com quatro dimensões diferentes, geometricamente proporcionais, e três amostras para cada dimensão, totalizando 36 vigas. As alturas utilizadas para as vigas foram 38, 76, 152 e 304 mm, e sua espessura foi mantida constante igual a 38 mm. Os corpos de prova cilíndricos, para caracterização da resistência à compressão do concreto, foram moldados no IPRJ e rompidos no laboratório de engenharia civil da UERJ, na cidade do Rio de Janeiro. Os concretos utilizados apresentaram resistência à compressão média de 70 MPa.
The evolution of the concrete mixes used during the last decades gave birth to the High Performance Concrete (HPC), which, among its main characteristics, presents high strength and low permeability. With the development of chemical products used in civil engineering constructions, mainly the superplasticizers, the use of this kind of concrete has become more and more frequent due to the possibility of obtaining a workable mixture with a water/cement ratio lower than 0.35. Due to its more homogeneous microstructure, the HPC presents a more fragile behavior than the conventional concrete, demanding a better characterization of the material. At the end of the 1970s, concepts of the Fracture Mechanics started to be used for the analysis of the structural behavior of concrete structures. As the nominal stress of the material decreases as the size of the structure increases, it became necessary to consider this size effect in the analysis in order to obtain more suitable levels of security. This fact justifies the use of the Fracture Mechanics in the structural analysis of concrete structures. In this work, the fracture energy was experimentally obtained using the work-offracture method and the size effect method by performing three-point bend tests in HPC notched beams. It was also developed a numerical simulation of the tests, performing the analysis through the Finite Element Method and applying the concepts of the Fracture Mechanics of Concrete into the constitutive model. The notched beams were molded and tested at the Polytechnic Institute of the State University of Rio de Janeiro (IPRJ/UERJ), located in the city of Nova Friburgo. The tests were controlled by the vertical displacement of the load cell. Three series of twelve beams with four geometrically similar sizes were tested. Three samples for each size were cast, making an amount of 36 beams. The beams were 38, 76, 152 and 304 millimeters high and the width was kept constant equal to 38 millimeters. To characterize the concrete compression strength, 100x200 millimeters cylinders were molded at the IPRJ and tested at the UERJ civil engineering laboratory in the city of Rio de Janeiro. The tested concretes presented a medium compressive strength of 70 MPa.
Ferdjani, Omar. „Behaviour of a one cell prestressed concrete box girder bridge : analytical study“. Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66163.
Der volle Inhalt der QuelleCHENG, YEOU-YEN. „MULTIPLE-WAVELENGTH PHASE SHIFTING INTERFEROMETRY (OPTICAL-TESTING, ASPHERIC SURFACE)“. Diss., The University of Arizona, 1985. http://hdl.handle.net/10150/187928.
Der volle Inhalt der QuelleBücher zum Thema "Concrete Testing Mathematical models"
Bažant, Z. P. Concrete at high temperatures: Material properties and mathematical models. Harlow: Longman, 1996.
Den vollen Inhalt der Quelle findenKerr, Arnold D. The assessment of concrete pavement blowups: A user manual. McLean, Va: U.S. Dept. of Transportation, Federal Highway Administration, 1993.
Den vollen Inhalt der Quelle findenTejchman, Jacek. Steel-fibrous concrete: Experiments and a numerical discrete model. Gdańsk: Wydwan. Politechniki Gdańskiej, 2000.
Den vollen Inhalt der Quelle finden(undifferentiated), Walter Kaufmann. Strength and deformations of structural concrete subjected to in-plane shear and normal forces. Basel: Birkhäuser Verlag, 1998.
Den vollen Inhalt der Quelle findenGauvreau, Paul. Ultimate limit state of concrete girders prestressed with unbonded tendons. Basel: Birkhauser Verlag, 1993.
Den vollen Inhalt der Quelle findenHalicka, Anna. Studium stanu naprężeń i odkształceń w płaszczyźnie styku i strefie przypodporowej elementów zespolonych z udziałem betonów skurczowych i ekspansywnych: A study of the stress-strain state in the interface and support zones of composite structures with shrinking and expansive concretes. Lublin: Wydawnictwo Politechniki Lubelskiej, 2007.
Den vollen Inhalt der Quelle findenStephens, Jerry E. Performance of steel pipe pile-to-concrete bent cap connections subject to seismic or high transverse loading, phase II: Final report. Helena]: Montana Dept. of Transportation, 2005.
Den vollen Inhalt der Quelle findenStephens, Jerry E. Performance of steel pipe pile-to-concrete bent cap connections subject to seismic or high transverse loading, phase II: Project summary report. Helena, Mont: Montana Dept. of Transportation, 2005.
Den vollen Inhalt der Quelle findenA concrete approach to mathematical modelling. New York: Wiley, 1995.
Den vollen Inhalt der Quelle findenA concrete approach to mathematical modelling. Redwood City, Calif: Addison-Wesley, 1989.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Concrete Testing Mathematical models"
Broy, Manfred, Wolfgang Böhm und Bernhard Rumpe. „Advanced Systems Engineering“. In Model-Based Engineering of Collaborative Embedded Systems, 353–64. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62136-0_19.
Der volle Inhalt der QuelleProdan, Emil. „Electron Dynamics: Concrete Physical Models“. In SpringerBriefs in Mathematical Physics, 11–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55023-7_2.
Der volle Inhalt der QuelleTaler, Dawid. „Mathematical Models of Heat Exchangers“. In Numerical Modelling and Experimental Testing of Heat Exchangers, 321–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91128-1_9.
Der volle Inhalt der QuelleAceto, Luca, Rocco Nicola und Alessandro Fantechi. „Testing equivalences for event structures“. In Mathematical Models for the Semantics of Parallelism, 1–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/3-540-18419-8_9.
Der volle Inhalt der QuelleWefelmeyer, Wolfgang. „Testing hypotheses on independent, not identically distributed models“. In Mathematical Statistics and Probability Theory, 267–82. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3963-9_20.
Der volle Inhalt der QuelleSannella, Donald, und Andrzej Tarlecki. „Mind the gap! Abstract versus concrete models of specifications“. In Mathematical Foundations of Computer Science 1996, 114–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61550-4_143.
Der volle Inhalt der QuelleBayarri, M. J., James O. Berger und Gauri S. Datta. „Objective Bayes testing of Poisson versus inflated Poisson models“. In Institute of Mathematical Statistics Collections, 105–21. Beachwood, Ohio, USA: Institute of Mathematical Statistics, 2008. http://dx.doi.org/10.1214/074921708000000093.
Der volle Inhalt der QuelleUrbain, Jean-Pierre. „Testing for Weak Exogeneity in Error Correction Models“. In Lecture Notes in Economics and Mathematical Systems, 83–111. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-95706-2_4.
Der volle Inhalt der QuelleBergan, Pål G., Arne Arnesen und Olav Fyrileiv. „Computational Applications of Alternative Mathematical Models for Reinforced Concrete“. In Computational Mechanics ’95, 2334–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79654-8_388.
Der volle Inhalt der QuelleBaker, Rose. „Software Reliability Growth Models for Discrete and Incomplete Testing“. In Lecture Notes in Economics and Mathematical Systems, 257–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59105-1_19.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Concrete Testing Mathematical models"
Massimo Borsa, M. „A mathematical model for predicting chloride penetration into concrete exposed to marine environment in temperate climate.“ In Third International RILEM Workshop on Testing and Modelling Chloride Ingress into Concrete. RILEM Publications SARL, 2005. http://dx.doi.org/10.1617/2912143578.011.
Der volle Inhalt der QuelleHaynes, Mark D., Chih-Hang John Wu, Matthew Arnold, Naga Narendra B. Bodapati, B. Terry Beck und Robert J. Peterman. „Bond Index Numbers of Prestressed Concrete Reinforcement Wires and Their Relationships to Transfer Lengths and Pull-Out Forces“. In 2016 Joint Rail Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/jrc2016-5787.
Der volle Inhalt der QuelleAl Nageim, Hassan. „Non Destructive Testing of Low Profile Light Weight Track System“. In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24727.
Der volle Inhalt der QuelleHaynes, Mark, Chih-Hang John Wu, B. Terry Beck, Naga Narendra B. Bodapati und Robert J. Peterman. „Prestressing Steel Reinforcement Wire Bond Index Number“. In 2013 Joint Rail Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/jrc2013-2422.
Der volle Inhalt der QuelleBajaj, Mayank, und Biswajit Bhattacharjee. „Residual service life estimation of bridges“. In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.0984.
Der volle Inhalt der QuelleYu, Hailing, und David Jeong. „Finite Element Bond Modeling for Indented Wires in Pretensioned Concrete Crossties“. In 2016 Joint Rail Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/jrc2016-5782.
Der volle Inhalt der QuelleTortoriello, Miguel A., Luis J. Lima, Ana C. Cobas und Renso A. Cichero. „Timber bodies strength of materials: Fundamental principles, test specimens proposal“. In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.1112.
Der volle Inhalt der QuelleXue, Ruo-Jun, und Ji-Lin Sun. „Modeling and Simulation of Deaerator in Nuclear Power Plant“. In 2014 22nd International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icone22-30452.
Der volle Inhalt der QuellePitts, Katie Lieg, und Timothy Shedd. „Viscosity Studies of Aqueous Solutions of Hafnium Oxide Particles and Polystyrene Nanospheres“. In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30826.
Der volle Inhalt der QuelleMenzel, Thaddäus, und Thiago de Borba. „Methodology for Automated Definition of Critical Scenarios“. In FISITA World Congress 2021. FISITA, 2021. http://dx.doi.org/10.46720/f2020-acm-073.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Concrete Testing Mathematical models"
Sparks, Paul, Jesse Sherburn, William Heard und Brett Williams. Penetration modeling of ultra‐high performance concrete using multiscale meshfree methods. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41963.
Der volle Inhalt der QuelleHlushak, Oksana M., Svetlana O. Semenyaka, Volodymyr V. Proshkin, Stanislav V. Sapozhnykov und Oksana S. Lytvyn. The usage of digital technologies in the university training of future bachelors (having been based on the data of mathematical subjects). [б. в.], Juli 2020. http://dx.doi.org/10.31812/123456789/3860.
Der volle Inhalt der QuelleWang, Yao, Mirela D. Tumbeva und Ashley P. Thrall. Evaluating Reserve Strength of Girder Bridges Due to Bridge Rail Load Shedding. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317308.
Der volle Inhalt der QuelleСоловйов, Володимир Миколайович, und D. N. Chabanenko. Financial crisis phenomena: analysis, simulation and prediction. Econophysic’s approach. Гумбольдт-Клуб Україна, November 2009. http://dx.doi.org/10.31812/0564/1138.
Der volle Inhalt der QuelleRamakrishnan, Aravind, Ashraf Alrajhi, Egemen Okte, Hasan Ozer und Imad Al-Qadi. Truck-Platooning Impacts on Flexible Pavements: Experimental and Mechanistic Approaches. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-038.
Der volle Inhalt der Quelle