Zeitschriftenartikel zum Thema „Computer software Verification“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Computer software Verification.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Computer software Verification" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Goerigk, Wolfgang. „Mechanical Software Verification“. Electronic Notes in Theoretical Computer Science 58, Nr. 2 (November 2001): 117–37. http://dx.doi.org/10.1016/s1571-0661(04)00282-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kwiatkowska, Marta. „From software verification to ‘everyware’ verification“. Computer Science - Research and Development 28, Nr. 4 (07.09.2013): 295–310. http://dx.doi.org/10.1007/s00450-013-0249-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dobrescu, Mihai, und Katerina Argyraki. „Software dataplane verification“. Communications of the ACM 58, Nr. 11 (23.10.2015): 113–21. http://dx.doi.org/10.1145/2823400.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Malkis, Alexander, und Anindya Banerjee. „Verification of software barriers“. ACM SIGPLAN Notices 47, Nr. 8 (11.09.2012): 313–14. http://dx.doi.org/10.1145/2370036.2145871.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Halpern, J. D., S. Owre, N. Proctor und W. F. Wilson. „Muse—A Computer Assisted Verification System“. IEEE Transactions on Software Engineering SE-13, Nr. 2 (Februar 1987): 151–56. http://dx.doi.org/10.1109/tse.1987.226477.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Flanagan, Cormac, und Shaz Qadeer. „Predicate abstraction for software verification“. ACM SIGPLAN Notices 37, Nr. 1 (Januar 2002): 191–202. http://dx.doi.org/10.1145/565816.503291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Greengard, Samuel. „Formal software verification measures up“. Communications of the ACM 64, Nr. 7 (Juli 2021): 13–15. http://dx.doi.org/10.1145/3464933.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Andersen, B. Scott, und George Romanski. „Verification of safety-critical software“. Communications of the ACM 54, Nr. 10 (Oktober 2011): 52–57. http://dx.doi.org/10.1145/2001269.2001286.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Andersen, B. Scott, und George Romanski. „Verification of Safety-critical Software“. Queue 9, Nr. 8 (August 2011): 50–59. http://dx.doi.org/10.1145/2016036.2024356.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Hailpern, B., und P. Santhanam. „Software debugging, testing, and verification“. IBM Systems Journal 41, Nr. 1 (2002): 4–12. http://dx.doi.org/10.1147/sj.411.0004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Wang, Shihao. „Software Simulation for Hardware/Software Co-Verification“. Journal of Computer Research and Development 42, Nr. 3 (2005): 514. http://dx.doi.org/10.1360/crad20050322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Ding, Zuohua, und Jing Liu. „An Improvement of Software Architecture Verification“. Electronic Notes in Theoretical Computer Science 243 (Juli 2009): 49–67. http://dx.doi.org/10.1016/j.entcs.2009.07.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Xu, Jian, Xinai Zhang, Yi Zhao und Bing Xu. „Verification of Air Data Computer Software using Formal Methods“. Journal of Physics: Conference Series 1827, Nr. 1 (01.03.2021): 012207. http://dx.doi.org/10.1088/1742-6596/1827/1/012207.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Krämer, Bernd, und Wolfgang Halang. „Computer-Aided Specification and Verification of Process Control Software“. IFAC Proceedings Volumes 25, Nr. 30 (Oktober 1992): 7–12. http://dx.doi.org/10.1016/s1474-6670(17)49399-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Gotlieb, Arnaud. „TCAS software verification using constraint programming“. Knowledge Engineering Review 27, Nr. 3 (26.07.2012): 343–60. http://dx.doi.org/10.1017/s0269888912000252.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
AbstractSafety-critical software must be thoroughly verified before being exploited in commercial applications. In particular, any TCAS (Traffic Alert and Collision Avoidance System) implementation must be verified against safety properties extracted from the anti-collision theory that regulates the controlled airspace. This verification step is currently realized with manual code reviews and testing. In our work, we explore the capabilities of Constraint Programming for automated software verification and testing. We built a dedicated constraint solving procedure that combines constraint propagation with Linear Programming to solve conditional disjunctive constraint systems over bounded integers extracted from computer programs and safety properties. An experience we made on verifying a publicly available TCAS component implementation against a set of safety-critical properties showed that this approach is viable and efficient.
16

Kishi, Tomoji, und Natsuko Noda. „Formal verification and software product lines“. Communications of the ACM 49, Nr. 12 (Dezember 2006): 73–77. http://dx.doi.org/10.1145/1183236.1183270.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Guo, Yinghua, Jill Slay und Jason Beckett. „Validation and verification of computer forensic software tools—Searching Function“. Digital Investigation 6 (September 2009): S12—S22. http://dx.doi.org/10.1016/j.diin.2009.06.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Benoit, Anne, Saurabh K. Raina und Yves Robert. „Efficient checkpoint/verification patterns“. International Journal of High Performance Computing Applications 31, Nr. 1 (28.07.2016): 52–65. http://dx.doi.org/10.1177/1094342015594531.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Errors have become a critical problem for high-performance computing. Checkpointing protocols are often used for error recovery after fail-stop failures. However, silent errors cannot be ignored, and their peculiarity is that such errors are identified only when the corrupted data is activated. To cope with silent errors, we need a verification mechanism to check whether the application state is correct. Checkpoints should be supplemented with verifications to detect silent errors. When a verification is successful, only the last checkpoint needs to be kept in memory because it is known to be correct. In this paper, we analytically determine the best balance of verifications and checkpoints so as to optimize platform throughput. We introduce a balanced algorithm using a pattern with p checkpoints and q verifications, which regularly interleaves both checkpoints and verifications across same-size computational chunks. We show how to compute the waste of an arbitrary pattern, and we prove that the balanced algorithm is optimal when the platform MTBF (mean time between failures) is large in front of the other parameters (checkpointing, verification and recovery costs). We conduct several simulations to show the gain achieved by this balanced algorithm for well-chosen values of p and q, compared with the base algorithm that always perform a verification just before taking a checkpoint ( p = q = 1), and we exhibit gains of up to 19%.
19

Abadi, Martín, und Bruno Blanchet. „Computer-assisted verification of a protocol for certified email“. Science of Computer Programming 58, Nr. 1-2 (Oktober 2005): 3–27. http://dx.doi.org/10.1016/j.scico.2005.02.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Khanna, S. „Logic Programming for Software Verification and Testing“. Computer Journal 34, Nr. 4 (01.04.1991): 350–57. http://dx.doi.org/10.1093/comjnl/34.4.350.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Min, Byungho, und Vijay Varadharajan. „Rethinking Software Component Security: Software Component Level Integrity and Cross Verification“. Computer Journal 59, Nr. 11 (10.08.2016): 1735–48. http://dx.doi.org/10.1093/comjnl/bxw047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Kajiwara, M., M. Itoh und H. Ichikawa. „Specification and verification technologies for communication software“. IEEE Communications Magazine 23, Nr. 8 (August 1985): 15–25. http://dx.doi.org/10.1109/mcom.1985.1092633.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Thüm, Thomas, Ina Schaefer, Sven Apel und Martin Hentschel. „Family-based deductive verification of software product lines“. ACM SIGPLAN Notices 48, Nr. 3 (10.04.2013): 11–20. http://dx.doi.org/10.1145/2480361.2371404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Ozkaya, Mert. „Formal Verification of Contractual Software Architectures using SPIN“. Malaysian Journal of Computer Science 28, Nr. 4 (01.12.2015): 318–37. http://dx.doi.org/10.22452/mjcs.vol28no4.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Calinescu, Radu, Carlo Ghezzi, Marta Kwiatkowska und Raffaela Mirandola. „Self-adaptive software needs quantitative verification at runtime“. Communications of the ACM 55, Nr. 9 (September 2012): 69–77. http://dx.doi.org/10.1145/2330667.2330686.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Sacha, Krzysztof. „Verification and implementation of software for dependable controllers“. International Journal of Critical Computer-Based Systems 1, Nr. 1/2/3 (2010): 238. http://dx.doi.org/10.1504/ijccbs.2010.031717.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Gagliardi, John. „Medical Device Software: Verification, Validation and Compliance“. Biomedical Instrumentation & Technology 45, Nr. 2 (01.03.2011): 95. http://dx.doi.org/10.2345/0899-8205-45.2.95.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Dyer, M., und A. Kouchakdjian. „Correctness verification: alternative to structural software testing“. Information and Software Technology 32, Nr. 1 (Januar 1990): 53–59. http://dx.doi.org/10.1016/0950-5849(90)90046-t.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Li, Shao Feng. „A Study on Network Protocol Validation Based on Timed Automata“. Applied Mechanics and Materials 543-547 (März 2014): 3386–90. http://dx.doi.org/10.4028/www.scientific.net/amm.543-547.3386.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
With the increasingly complex of computer software system, traditional software engineering methods for major software development will inevitably produce a lot of mistakes and catastrophic consequences for key industry users. Experiment with software engineering methods cannot guarantee the behavior at infinity reliability and security of the state space. All this requires formal analysis and verification to the complex system. In protocol verification based on automatic machines, the automaton is used to represent the behavior of the system, the time automaton is a formal method can be well applied to the network protocol verification.
30

Ivančić, Franjo, Sriram Sankaranarayanan und Chao Wang. „Foreword: Special issue on numerical software verification“. Formal Methods in System Design 35, Nr. 3 (Dezember 2009): 227–28. http://dx.doi.org/10.1007/s10703-009-0090-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Chaki, Sagar, Edmund Clarke, Joël Ouaknine, Natasha Sharygina und Nishant Sinha. „Concurrent software verification with states, events, and deadlocks“. Formal Aspects of Computing 17, Nr. 4 (21.09.2005): 461–83. http://dx.doi.org/10.1007/s00165-005-0071-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Elqortobi, Mounia, Warda El-Khouly, Amine Rahj, Jamal Bentahar und Rachida Dssouli. „Verification and testing of safety-critical airborne systems: A model-based methodology“. Computer Science and Information Systems 17, Nr. 1 (2020): 271–92. http://dx.doi.org/10.2298/csis190430040e.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In this paper, we address the issues of safety-critical software verification and testing that are key requirements for achieving DO-178C and DO- 331 regulatory compliance for airborne systems. Formal verification and testing are considered two different activities within airborne standards and they belong to two different levels in the avionics software development cycle. The objective is to integrate model-based verification and model-based testing within a single framework and to capture the benefits of their cross-fertilization. This is achieved by proposing a new methodology for the verification and testing of parallel communicating agents based on formal models. In this work, properties are extracted from requirements and formally verified at the design level, while the verified properties are propagated to the implementation level and checked via testing. The contributions of this paper are a methodology that integrates verification and testing, formal verification of some safety critical software properties, and a testing method for Modified Condition/Decision Coverage (MC/DC). The results of formal verification and testing can be used as evidence for avionics software certification.
33

He, Chaobing. „Verification of Several Important Theorems in Simple Random Sampling Using R Software“. Journal of Advance Research in Mathematics And Statistics (ISSN: 2208-2409) 8, Nr. 12 (31.12.2021): 01–07. http://dx.doi.org/10.53555/nnms.v8i12.1134.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This paper considers the verification of several important theorems in simple random sampling using R software. First several important theorems in simple random sampling are introduced systematically. Then computer program for the verification of these theorems is written using R. According to these R codes, the paper verifies these theorems. The output proves that the R codes are very practical and effective.
34

Zhang, Xingjun, Yan Yang, Endong Wang, Ilsun You und Xiaoshe Dong. „Modelling software fault management with runtime verification“. International Journal of Ad Hoc and Ubiquitous Computing 20, Nr. 1 (2015): 26. http://dx.doi.org/10.1504/ijahuc.2015.071660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Rehman, Waqas Ur, Muhammad Sohaib Ayub und Junaid Haroon Siddiqui. „Verification of MPI Java programs using software model checking“. ACM SIGPLAN Notices 51, Nr. 8 (09.11.2016): 1–2. http://dx.doi.org/10.1145/3016078.2851192.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Cao, Zongyu, Wanyou Lv, Yanhong Huang, Jianqi Shi und Qin Li. „Formal Analysis and Verification of Airborne Software Based on DO-333“. Electronics 9, Nr. 2 (14.02.2020): 327. http://dx.doi.org/10.3390/electronics9020327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
With rapid technological advances in airborne control systems, it has become imperative to ensure the reliability, robustness, and adaptability of airborne software since failure of these software could result in catastrophic loss of property and life. DO-333 is a supplement to the DO-178C standard, which is dedicated to guiding the application of formal methods in the review and analysis of airborne software development processes. However, DO-333 lacks theoretical guidance on how to choose appropriate formal methods and tools to achieve verification objectives at each stage of the verification process, thereby limiting their practical application. This paper is intended to illustrate the formal methods and tools available in the verification process to lay down a general guide for the formal development and verification of airborne software. We utilized the Air Data Computer (ADC) software as the research object and applied different formal methods to verify software lifecycle artifacts. This example explains how to apply formal methods in practical applications and proves the effectiveness of formal methods in the verification of airborne software.
37

Murrill, Branson W. „Integrating Software Analysis, Testing, and Verification into the Undergraduate Computer Science Curriculum“. Computer Science Education 8, Nr. 2 (August 1998): 85–99. http://dx.doi.org/10.1076/csed.8.2.85.3819.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Staskauskas, M. G. „An experience in the formal verification of industrial software“. Communications of the ACM 39, Nr. 12es (Dezember 1996): 256. http://dx.doi.org/10.1145/272682.272719.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Hinsen, Konrad. „Verifiability in computer-aided research: the role of digital scientific notations at the human-computer interface“. PeerJ Computer Science 4 (23.07.2018): e158. http://dx.doi.org/10.7717/peerj-cs.158.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Most of today’s scientific research relies on computers and software for processing scientific information. Examples of such computer-aided research are the analysis of experimental data or the simulation of phenomena based on theoretical models. With the rapid increase of computational power, scientific software has integrated more and more complex scientific knowledge in a black-box fashion. As a consequence, its users do not know, and do not even have a chance of finding out, which assumptions and approximations their computations are based on. This black-box nature of scientific software has made the verification of much computer-aided research close to impossible. The present work starts with an analysis of this situation from the point of view of human-computer interaction in scientific research. It identifies the key role of digital scientific notations at the human-computer interface, reviews the most popular ones in use today, and describes a proof-of-concept implementation of Leibniz, a language designed as a verifiable digital scientific notation for models formulated as mathematical equations.
40

Curzon, Paul, Rimvydas Rukšėnas und Ann Blandford. „An approach to formal verification of human–computer interaction“. Formal Aspects of Computing 19, Nr. 4 (02.06.2007): 513–50. http://dx.doi.org/10.1007/s00165-007-0035-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Parizek, P., und F. Plasil. „Assume-guarantee verification of software components in SOFA 2 framework“. IET Software 4, Nr. 3 (2010): 210. http://dx.doi.org/10.1049/iet-sen.2009.0016.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Zhang, Min, Kazuhiro Ogata und Kokichi Futatsugi. „Formalization and Verification of Behavioral Correctness of Dynamic Software Updates“. Electronic Notes in Theoretical Computer Science 294 (März 2013): 12–23. http://dx.doi.org/10.1016/j.entcs.2013.02.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Ferreira, Nelson Guimarães, und Paulo Sérgio Muniz Silva. „Automatic Verification of Safety Rules for a Subway Control Software“. Electronic Notes in Theoretical Computer Science 130 (Mai 2005): 323–43. http://dx.doi.org/10.1016/j.entcs.2005.03.017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Feinerer, Ingo, und Gernot Salzer. „A comparison of tools for teaching formal software verification“. Formal Aspects of Computing 21, Nr. 3 (11.06.2008): 293–301. http://dx.doi.org/10.1007/s00165-008-0084-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Chaki, Sagar, Edmund Clarke, Natasha Sharygina und Nishant Sinha. „Verification of evolving software via component substitutability analysis“. Formal Methods in System Design 32, Nr. 3 (02.05.2008): 235–66. http://dx.doi.org/10.1007/s10703-008-0053-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Ray, Arnab, Raoul Jetley, Paul L. Jones und Yi Zhang. „Model-Based Engineering for Medical-Device Software“. Biomedical Instrumentation & Technology 44, Nr. 6 (01.11.2010): 507–18. http://dx.doi.org/10.2345/0899-8205-44.6.507.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract This paper demonstrates the benefits of adopting model-based design techniques for engineering medical device software. By using a patient-controlled analgesic (PCA) infusion pump as a candidate medical device, the authors show how using models to capture design information allows for i) fast and efficient construction of executable device prototypes ii) creation of a standard, reusable baseline software architecture for a particular device family, iii) formal verification of the design against safety requirements, and iv) creation of a safety framework that reduces verification costs for future versions of the device software.1
47

Ochsenschläger, P., J. Repp, R. Rieke und U. Nitsche. „The SH-Verification Tool -- Abstraction-Based Verification of Co-operating Systems“. Formal Aspects of Computing 10, Nr. 4 (27.04.1998): 381–404. http://dx.doi.org/10.1007/s001650050023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Muñoz-Quijada, Maria, Luis Sanz und Hipolito Guzman-Miranda. „SW-VHDL Co-Verification Environment Using Open Source Tools“. Electronics 9, Nr. 12 (10.12.2020): 2104. http://dx.doi.org/10.3390/electronics9122104.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The verification of complex digital designs often involves the use of expensive simulators. The present paper proposes an approach to verify a specific family of complex hardware/software systems, whose hardware part, running on an FPGA, communicates with a software counterpart executed on an external processor, such as a user/operator software running on an external PC. The hardware is described in VHDL and the software may be described in any computer language that can be interpreted or compiled into a (Linux) executable file. The presented approach uses open source tools, avoiding expensive license costs and usage restrictions.
49

Satin, Lukáš, und Jozef Bílik. „Verification CAE System for Plastic Injection“. Applied Mechanics and Materials 834 (April 2016): 79–83. http://dx.doi.org/10.4028/www.scientific.net/amm.834.79.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This article is focused on the field of computer simulation and it is subsequent verification in practice. The work highlights the injection process, the simulation software that is specialized in injection molding and the technology process of injection itself. The major subject of the thesis is the use of the computer aided injection molding technology by using the CAE systems. The experimental part of the thesis deals with the production of the 3D model specific plastic parts in two modifications, injection molding simulation in the system Moldex3D and digitization of moldings on the optical 3D scanner. In the thesis we also provide measuring realization on digitized models and comparison of the parts size with the computer model. In conclusion we summarize the results achieved from the comparison. The thesis is carried out in cooperation with the Simulpast s.r.o.
50

Revesz, Peter Z., und Robert J. Woodward. „Estimating the maximum rise in temperature according to climate models using abstract interpretation“. Acta Universitatis Sapientiae, Informatica 11, Nr. 1 (01.08.2019): 5–23. http://dx.doi.org/10.2478/ausi-2019-0001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Current climate models are complex computer programs that are typically iterated time-step by time-step to predict the next set of values of the climate-related variables. Since these iterative methods are necessarily computed only for a fixed number of iterations, they are unable to answer the natural question whether there is a limit to the rise of global temperature. In order to answer that question we propose to combine climate models with software verification techniques that can find invariant conditions for the set of program variables. In particular, we apply the constraint database approach to software verification to find that the rise in global temperature is bounded according to the common Java Climate Model that implements the Wigley/Raper Upwelling-Diffusion Energy Balance Model climate model.

Zur Bibliographie