Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Computer software Verification“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Computer software Verification" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Computer software Verification"
Goerigk, Wolfgang. „Mechanical Software Verification“. Electronic Notes in Theoretical Computer Science 58, Nr. 2 (November 2001): 117–37. http://dx.doi.org/10.1016/s1571-0661(04)00282-8.
Der volle Inhalt der QuelleKwiatkowska, Marta. „From software verification to ‘everyware’ verification“. Computer Science - Research and Development 28, Nr. 4 (07.09.2013): 295–310. http://dx.doi.org/10.1007/s00450-013-0249-1.
Der volle Inhalt der QuelleDobrescu, Mihai, und Katerina Argyraki. „Software dataplane verification“. Communications of the ACM 58, Nr. 11 (23.10.2015): 113–21. http://dx.doi.org/10.1145/2823400.
Der volle Inhalt der QuelleMalkis, Alexander, und Anindya Banerjee. „Verification of software barriers“. ACM SIGPLAN Notices 47, Nr. 8 (11.09.2012): 313–14. http://dx.doi.org/10.1145/2370036.2145871.
Der volle Inhalt der QuelleHalpern, J. D., S. Owre, N. Proctor und W. F. Wilson. „Muse—A Computer Assisted Verification System“. IEEE Transactions on Software Engineering SE-13, Nr. 2 (Februar 1987): 151–56. http://dx.doi.org/10.1109/tse.1987.226477.
Der volle Inhalt der QuelleFlanagan, Cormac, und Shaz Qadeer. „Predicate abstraction for software verification“. ACM SIGPLAN Notices 37, Nr. 1 (Januar 2002): 191–202. http://dx.doi.org/10.1145/565816.503291.
Der volle Inhalt der QuelleGreengard, Samuel. „Formal software verification measures up“. Communications of the ACM 64, Nr. 7 (Juli 2021): 13–15. http://dx.doi.org/10.1145/3464933.
Der volle Inhalt der QuelleAndersen, B. Scott, und George Romanski. „Verification of safety-critical software“. Communications of the ACM 54, Nr. 10 (Oktober 2011): 52–57. http://dx.doi.org/10.1145/2001269.2001286.
Der volle Inhalt der QuelleAndersen, B. Scott, und George Romanski. „Verification of Safety-critical Software“. Queue 9, Nr. 8 (August 2011): 50–59. http://dx.doi.org/10.1145/2016036.2024356.
Der volle Inhalt der QuelleHailpern, B., und P. Santhanam. „Software debugging, testing, and verification“. IBM Systems Journal 41, Nr. 1 (2002): 4–12. http://dx.doi.org/10.1147/sj.411.0004.
Der volle Inhalt der QuelleDissertationen zum Thema "Computer software Verification"
Dimovski, Aleksandar. „Compositional software verification based on game semantics“. Thesis, University of Warwick, 2007. http://wrap.warwick.ac.uk/2398/.
Der volle Inhalt der QuelleAddy, Edward A. „Verification and validation in software product line engineering“. Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=1068.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains vi, 75 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 35-39).
Wahab, Matthew. „Object code verification“. Thesis, University of Warwick, 1998. http://wrap.warwick.ac.uk/61068/.
Der volle Inhalt der QuelleSwart, Riaan. „A language to support verification of embedded software“. Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/49823.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Embedded computer systems form part of larger systems such as aircraft or chemical processing facilities. Although testing and debugging of such systems are difficult, reliability is often essential. Development of embedded software can be simplified by an environment that limits opportunities for making errors and provides facilities for detection of errors. We implemented a language and compiler that can serve as basis for such an experimental environment. Both are designed to make verification of implementations feasible. Correctness and safety were given highest priority, but without sacrificing efficiency wherever possible. The language is concurrent and includes measures for protecting the address spaces of concurrently running processes. This eliminates the need for expensive run-time memory protection and will benefit resource-strapped embedded systems. The target hardware is assumed to provide no special support for concurrency. The language is designed to be small, simple and intuitive, and to promote compile-time detection of errors. Facilities for abstraction, such as modules and abstract data types support implementation and testing of bigger systems. We have opted for model checking as verification technique, so our implementation language is similar in design to a modelling language for a widely used model checker. Because of this, the implementation code can be used as input for a model checker. However, since the compiler can still contain errors, there might be discrepancies between the implementation code written in our language and the executable code produced by the compiler. Therefore we are attempting to make verification of executable code feasible. To achieve this, our compiler generates code in a special format, comprising a transition system of uninterruptible actions. The actions limit the scheduling points present in processes and reduce the different interleavings of process code possible in a concurrent system. Requirements that conventional hardware places on this form of code are discussed, as well as how the format influences efficiency and responsiveness.
AFRIKAANSE OPSOMMING: Ingebedde rekenaarstelsels maak deel uit van groter stelsels soos vliegtuie of chemiese prosesseerfasiliteite. Hoewel toetsing en ontfouting van sulke stelsels moeilik is, is betroubaarheid dikwels onontbeerlik. Ontwikkeling van ingebedde sagteware kan makliker gemaak word met 'n ontwikkelingsomgewing wat geleenthede vir foutmaak beperk en fasiliteite vir foutbespeuring verskaf. Ons het 'n programmeertaal en vertaler geïmplementeer wat as basis kan dien vir so 'n eksperimentele omgewing. Beide is ontwerp om verifikasie van implementasies haalbaar te maak. Korrektheid en veiligheid het die hoogste prioriteit geniet, maar sonder om effektiwiteit prys te gee, waar moontlik. Die taal is gelyklopend en bevat maatreëls om die adresruimtes van gelyklopende prosesse te beskerm. Dit maak duur looptyd-geheuebeskerming onnodig, tot voordeel van ingebedde stelsels met 'n tekort aan hulpbronne. Daar word aangeneem dat die teikenhardeware geen spesiale ondersteuning vir gelyklopendheid bevat nie. Die programmeertaal is ontwerp om klein, eenvoudig en intuïtief te wees, en om vertaaltyd-opsporing van foute te bevorder. Fasiliteite vir abstraksie, byvoorbeeld modules en abstrakte datatipes, ondersteun implementering en toetsing van groter stelsels. Ons het modeltoetsing as verifikasietegniek gekies, dus is die ontwerp van ons programmeertaal soortgelyk aan dié van 'n modelleertaal vir 'n modeltoetser wat algemeen gebruik word. As gevolg hiervan kan die implementasiekode as toevoer vir 'n modeltoetser gebruik word. Omdat die vertaler egter steeds foute kan bevat, mag daar teenstrydighede bestaan tussen die implementasie geskryf in ons implementasietaal, en die uitvoerbare masjienkode wat deur die vertaler gelewer word. Daarom poog ons om verifikasie van die uitvoerbare masjienkode haalbaar te maak. Om hierdie doelwit te bereik, is ons vertaler ontwerp om 'n spesiale formaat masjienkode te genereer bestaande uit 'n oorgangstelsel wat ononderbreekbare (atomiese) aksies bevat. Die aksies beperk die skeduleerpunte in prosesse en verminder sodoende die aantal interpaginasies van proseskode wat moontlik is in 'n gelyklopende stelsel. Die vereistes wat konvensionele hardeware aan dié spesifieke formaat kode stel, word bespreek, asook hoe die formaat effektiwiteit en reageerbaarheid van die stelsel beïnvloed.
Wang, Xuan. „Verification of Digital Controller Verifications“. BYU ScholarsArchive, 2005. https://scholarsarchive.byu.edu/etd/681.
Der volle Inhalt der QuelleTagore, Aditi. „Techniques to Improve Automated Software Verification“. The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397661277.
Der volle Inhalt der QuelleKirschenbaum, Jason P. „Investigations in Automating Software Verification“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306862918.
Der volle Inhalt der QuelleHughes, Roger Brett. „Automated interactive software verification and synthesis“. Thesis, Brunel University, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306741.
Der volle Inhalt der QuelleJackson, David Mark. „Logical verification of reactive software systems“. Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305989.
Der volle Inhalt der QuelleIbrahim, Alaa E. „Scenario-based verification and validation of dynamic UML specifications“. Morgantown, W. Va. : [West Virginia University Libraries], 2001. http://etd.wvu.edu/templates/showETD.cfm?recnum=1799.
Der volle Inhalt der QuelleTitle from document title page. Document formatted into pages; contains x, 143 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 96-99).
Bücher zum Thema "Computer software Verification"
1943-, Kurshan R. P., Hrsg. Computer-aided verification. Boston: Kluwer Academic Publishers, 1992.
Den vollen Inhalt der Quelle findenM, Shagnea Anita, Hayhurst Kelly J und Langley Research Center, Hrsg. Software Verification Plan for GCS. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1990.
Den vollen Inhalt der Quelle findenApt, Krzysztof R. Verification of sequential and concurrent programs. New York: Springer-Verlag, 1991.
Den vollen Inhalt der Quelle findenBergé, Jean-Michel. Hardware/Software Co-Design and Co-Verification. Boston, MA: Springer US, 1997.
Den vollen Inhalt der Quelle findenHoare, C. A. R., M. Broy und Christian Leuxner. Software and systems safety: Specification and verification. Amsterdam: IOS Press, 2011.
Den vollen Inhalt der Quelle findenHelgeson, John W. The software audit guide. Milwaukee, Wis: ASQ Quality Press, 2009.
Den vollen Inhalt der Quelle findenManna, Zohar. Temporal verification of reactive systems: Safety. New York: Springer, 1995.
Den vollen Inhalt der Quelle findenApt, Krzysztof R. Verification of sequential and concurrent programs. 3. Aufl. Dordrecht: Springer, 2009.
Den vollen Inhalt der Quelle findenQuirk, William J. Verification and Validation of Real-Time Software. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985.
Den vollen Inhalt der Quelle findenE, Ammann Paul, Ding, Wei, 1967 Sept. 14- und National Institute of Standards and Technology (U.S.), Hrsg. Model checkers in software testing. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2002.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Computer software Verification"
Revesz, Peter. „Software Verification“. In Texts in Computer Science, 685–99. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84996-095-3_26.
Der volle Inhalt der QuelleWeik, Martin H. „software verification“. In Computer Science and Communications Dictionary, 1611. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_17667.
Der volle Inhalt der QuellePeled, Doron A. „Deductive Software Verification“. In Texts in Computer Science, 179–213. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3540-6_7.
Der volle Inhalt der QuelleWeik, Martin H. „automated software verification“. In Computer Science and Communications Dictionary, 81. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_1068.
Der volle Inhalt der QuelleCimatti, Alessandro, und Alberto Griggio. „Software Model Checking via IC3“. In Computer Aided Verification, 277–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31424-7_23.
Der volle Inhalt der QuelleHoare, Tony. „The Ideal of Verified Software“. In Computer Aided Verification, 5–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11817963_4.
Der volle Inhalt der QuelleHolzmann, Gerard_J. „Software Analysis and Model Checking“. In Computer Aided Verification, 1–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45657-0_1.
Der volle Inhalt der QuelleCousot, Patrick, und Radhia Cousot. „On Abstraction in Software Verification“. In Computer Aided Verification, 37–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45657-0_3.
Der volle Inhalt der QuelleIvančić, F., Z. Yang, M. K. Ganai, A. Gupta, I. Shlyakhter und P. Ashar. „F-Soft: Software Verification Platform“. In Computer Aided Verification, 301–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11513988_31.
Der volle Inhalt der Quellevan der Berg, Freark I. „LLMC: Verifying High-Performance Software“. In Computer Aided Verification, 690–703. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81688-9_32.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Computer software Verification"
Usener, Claus A., Susanne Gruttmann, Tim A. Majchrzak und Herbert Kuchen. „Computer-Supported Assessment of Software Verification Proofs“. In 2010 International Conference on Educational and Information Technology (ICEIT). IEEE, 2010. http://dx.doi.org/10.1109/iceit.2010.5607766.
Der volle Inhalt der QuelleMukherjee, Rajdeep, Daniel Kroening und Tom Melham. „Hardware Verification Using Software Analyzers“. In 2015 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2015. http://dx.doi.org/10.1109/isvlsi.2015.107.
Der volle Inhalt der QuelleAsadollahi, Somayeh, Vahid Rafe und Reza Rafeh. „Towards Automated Software Verification and Validation“. In 2009 International Conference on Computer Technology and Development. IEEE, 2009. http://dx.doi.org/10.1109/icctd.2009.164.
Der volle Inhalt der QuelleGrimm, Tomas, Djones Lettnin und Michael Hubner. „Semiformal Verification of Software-Controlled Connections“. In 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2017. http://dx.doi.org/10.1109/isvlsi.2017.103.
Der volle Inhalt der QuelleBiswas, M. A. Rafe, Samuel Garcia, Matthew Prado, Sadad Hossain, Matthew Souris und Lee Morin. „Software verification of Orion cockpit displays“. In 2017 12th International Conference on Computer Science and Education (ICCSE). IEEE, 2017. http://dx.doi.org/10.1109/iccse.2017.8085474.
Der volle Inhalt der QuelleCruz, Daniela da, Pedro Rangel Henriques und Jorge Sousa Pinto. „Interactive Verification of Safety-Critical Software“. In 2013 IEEE 37th Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2013. http://dx.doi.org/10.1109/compsac.2013.86.
Der volle Inhalt der QuelleChao Wang, Malay Ganai, Shuvendu Lahiri und Daniel Kroening. „Embedded software verification: Challenges and solutions“. In 2008 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). IEEE, 2008. http://dx.doi.org/10.1109/iccad.2008.4681536.
Der volle Inhalt der QuelleDing Zheng, Yichen Wang und Zou Xueyi. „The methods of FPGA software verification“. In 2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE). IEEE, 2011. http://dx.doi.org/10.1109/csae.2011.5952639.
Der volle Inhalt der QuelleCraig, D. C., und W. M. Zuberek. „Compatibility of Software Components - Modeling and Verification“. In 2006 International Conference on Dependability of Computer Systems. IEEE, 2006. http://dx.doi.org/10.1109/depcos-relcomex.2006.13.
Der volle Inhalt der QuelleLettnin, Djones, Markus Winterholer, Axel Braun, Joachim Gerlach, Jurgen Ruf, Thomas Kropf und Wolfgang Rosenstiel. „Coverage Driven Verification applied to Embedded Software“. In IEEE Computer Society Annual Symposium on VLSI (ISVLSI '07). IEEE, 2007. http://dx.doi.org/10.1109/isvlsi.2007.33.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Computer software Verification"
Pinchuk, O. P., und A. A. Prokopenko. Model of a computer-orient-ed methodological system for the development of digital competence of officers of the military administration of the Armed Forces of Ukraine in the system of qualification improvement. Національна академія Державної прикордонної служби України імені Б. Хмельницького, 2023. http://dx.doi.org/10.33407/lib.naes.736836.
Der volle Inhalt der Quelle