Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Computer interfaces“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Computer interfaces" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Computer interfaces"
Pepperberg, Irene M. „Animal-computer interfaces“. Interaction Studies 24, Nr. 2 (03.11.2023): 193–200. http://dx.doi.org/10.1075/is.23018.pep.
Der volle Inhalt der QuelleAllan, K. „Inspiring interfaces [computer game interfaces]“. Engineering & Technology 2, Nr. 5 (01.05.2007): 34–36. http://dx.doi.org/10.1049/et:20070503.
Der volle Inhalt der QuelleBartz, Christina. „Der Computer in der Küche“. Zeitschrift für Medien- und Kulturforschung 9, Nr. 2 (2018): 13–26. http://dx.doi.org/10.28937/1000108172.
Der volle Inhalt der QuelleBogdanova, Nellija. „PRINCIPLES OF USER-CENTERED DESIGN“. Environment. Technology. Resources. Proceedings of the International Scientific and Practical Conference 1 (20.06.2001): 245. http://dx.doi.org/10.17770/etr2001vol1.1921.
Der volle Inhalt der QuelleLi, Jiayi. „Brain-computer interface for the treatment of mental illness“. Theoretical and Natural Science 16, Nr. 1 (04.12.2023): 93–96. http://dx.doi.org/10.54254/2753-8818/16/20240539.
Der volle Inhalt der QuellePeters, Gabriele. „Criteria for the Creation of Aesthetic Images for Human-Computer Interfaces A Survey for Computer Scientists“. International Journal of Creative Interfaces and Computer Graphics 2, Nr. 1 (Januar 2011): 68–98. http://dx.doi.org/10.4018/jcicg.2011010105.
Der volle Inhalt der QuelleWilliams, Evelyn, und Evelyn Hewlett-Packard. „Panel on Visual Interface Design“. Proceedings of the Human Factors Society Annual Meeting 33, Nr. 5 (Oktober 1989): 323–24. http://dx.doi.org/10.1177/154193128903300519.
Der volle Inhalt der QuelleYoung, Michael J., David J. Lin und Leigh R. Hochberg. „Brain–Computer Interfaces in Neurorecovery and Neurorehabilitation“. Seminars in Neurology 41, Nr. 02 (19.03.2021): 206–16. http://dx.doi.org/10.1055/s-0041-1725137.
Der volle Inhalt der QuelleGao, Xiaorong, Yijun Wang, Xiaogang Chen und Shangkai Gao. „Interface, interaction, and intelligence in generalized brain–computer interfaces“. Trends in Cognitive Sciences 25, Nr. 8 (August 2021): 671–84. http://dx.doi.org/10.1016/j.tics.2021.04.003.
Der volle Inhalt der QuelleChao, Dennis L. „Computer games as interfaces“. Interactions 11, Nr. 5 (September 2004): 71–72. http://dx.doi.org/10.1145/1015530.1015567.
Der volle Inhalt der QuelleDissertationen zum Thema "Computer interfaces"
Ward, David James. „Adaptive computer interfaces“. Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620273.
Der volle Inhalt der QuelleRihan, Jonathan. „Computer vision based interfaces for computer games“. Thesis, Oxford Brookes University, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.579554.
Der volle Inhalt der QuelleHawthorn, Dan. „Designing Effective Interfaces for Older Users“. The University of Waikato, 2006. http://hdl.handle.net/10289/2538.
Der volle Inhalt der QuelleHalder, Sebastian [Verfasser]. „Prediction of Brain-Computer Interface Performance: For P300 and Motor Imagery Brain-Computer Interfaces / Sebastian Halder“. München : Verlag Dr. Hut, 2011. http://d-nb.info/1015607330/34.
Der volle Inhalt der QuelleHobro, Mark, und Marcus Heine. „Natural Language Interfaces in Computer Games“. Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-166592.
Der volle Inhalt der QuelleZajicek, Mary Pamela. „The usability of alternative computer interfaces“. Thesis, Oxford Brookes University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251356.
Der volle Inhalt der QuelleWong, Shu-Fai. „Motion recognition for human-computer interfaces“. Thesis, University of Cambridge, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613368.
Der volle Inhalt der QuelleYeung, C. „Spectroscopic analysis of nanodielectric interfaces“. Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/358897/.
Der volle Inhalt der QuelleMynatt, Elizabeth D. „Transforming graphical interfaces into auditory interfaces“. Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/9209.
Der volle Inhalt der QuelleSebastián, Romagosa Marc. „Brain computer interfaces for brain acquired damage“. Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670835.
Der volle Inhalt der QuelleEl término Interfaz Cerebro-Computadora (ICC) surgió en los años 70 por el Dr. Jacques J. Vidal, que mediante el uso de la electroencefalografía (EEG) trató de dar una salida alternativa a las señales del cerebro para controlar un dispositivo externo. El objetivo principal de esta hazaña era ayudar a los pacientes con problemas de movimiento o comunicación a relacionarse con el entorno. Desde entonces, muchos neurocientíficos han utilizado esta idea y han tratado de ponerla en práctica utilizando diferentes métodos de adquisición y procesamiento de señales, nuevos dispositivos de interacción y nuevas metas y objetivos. Todo ello ha facilitado la aplicación de esta tecnología en muchas áreas y actualmente las ICC se utilizan para jugar a videojuegos, mover sillas de ruedas, facilitar la escritura en personas sin movilidad, establecer criterios y preferencias de compra en el mundo del comercio y el consumo, o incluso pueden servir como detector de mentiras. Sin embargo, el sector que presenta un mayor avance y desarrollo de las ICC es el sector biomédico. A grandes rasgos podemos utilizar las ICC con dos finalidades distintas dentro de la neurorehabilitación; sustituir una función perdida o inducir cambios en la plasticidad neuronal con el objetivo de restaurar o compensar dicha función perdida. Hay diferentes principios para el registro de las señales del cerebro; de forma invasiva, colocando los electrodos de registro dentro de la cavidad craneal, o no invasiva, colocando los electrodos de registro fuera de la cavidad craneal. El método más conocido y difundido es la EEG. Su uso es adecuado para entornos clínicos, tiene una resolución temporal muy precisa y su retroalimentación en tiempo real puede inducir la plasticidad cortical y el restablecimiento de la función motora normal. En esta tesis presentamos tres objetivos diferentes: (1) evaluar los efectos clínicos de la rehabilitación mediante las ICC en pacientes con ictus, ya sea realizando un meta-análisis de los estudios publicados o evaluando los cambios funcionales en los pacientes con ictus después de la terapia de ICC; (2) explorar parámetros alternativos para cuantificar los efectos de las ICC en pacientes con ictus, evaluando diferentes biomarcadores de electroencefalografía en pacientes con esta patología y correlacionando los posibles cambios en estos parámetros con los resultados en las escalas funcionales; (3) optimizar el sistema ICC utilizando mediante la gamificación de un avatar.
The term Brain Computer Interface (BCI) emerged in the 70's by Dr. Jacques J Vidal, who by using electroencephalography (EEG) tried to give an alternative output to the brain signals in order to control an external device. The main objective of this feat was to help patients with impaired movement or communication to relate themselves to the environment. Since then many neuroscientists have used this idea and have tried to implement it using different methods of signal acquisition and processing, new interaction devices, new goals and objectives. All this has facilitated the implementation of this technology in many areas and currently BCI is used to play video games, move wheelchairs, facilitate writing in people without mobility, establish criteria and purchase preferences in the world of marketing and consumption, or even serve as a lie detector. However, the sector that presents the most marked progress and development of BCI is the biomedical sector. In rough outlines we can use BCI with two different purposes within the neurorehabilitation; to substitute a lost function or to induce neural plasticity changes with the aim to restore or compensate the lost function. To restore a lost function by inducing neuroplastic changes in the brain is undoubtedly a challenging strategy but a feasible goal through BCI technology. This type of intervention requires that the patient invests time and effort in a therapy based on the practice of motor image and feedback mechanisms in real time. There are different principles to record the brain signals; invasively, placing the recording electrodes inside the cranial cavity, or non-invasive, placing the recording electrodes outside of the cranial cavity. The best known and most widespread one is EEG, since they are suitable for clinical environments, have a highly accurate temporal resolution and their real-time feedback can induce cortical plasticity and the restoration of normal motor function. On this thesis we present three different objectives: (1) to evaluate the clinical effects of rehabilitation based on BCI system in stroke patients, either by performing a meta-analysis of published studies or by evaluating functional changes in stroke patients after BCI training; (2) to explore alternative parameters to quantify effects of BCI in stroke patients, by evaluating different electroencephalography biomarkers in stroke patients and correlating potential changes in these parameters with functional scales; (3) to optimize the BCI system by using a new gamified avatar.
Bücher zum Thema "Computer interfaces"
Marquez-Chin, Cesar, Naaz Kapadia-Desai und Sukhvinder Kalsi-Ryan. Brain–Computer Interfaces. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01608-0.
Der volle Inhalt der QuelleHassanien, Aboul Ella, und Ahmad Taher Azar, Hrsg. Brain-Computer Interfaces. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10978-7.
Der volle Inhalt der QuelleGraimann, Bernhard, Gert Pfurtscheller und Brendan Allison, Hrsg. Brain-Computer Interfaces. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-02091-9.
Der volle Inhalt der QuelleTan, Desney S., und Anton Nijholt, Hrsg. Brain-Computer Interfaces. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-272-8.
Der volle Inhalt der QuelleBerger, Theodore W., John K. Chapin, Greg A. Gerhardt, Dennis J. McFarland, José C. Principe, Walid V. Soussou, Dawn M. Taylor und Patrick A. Tresco. Brain-Computer Interfaces. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8705-9.
Der volle Inhalt der QuelleHordeski, Michael F. Personal computer interfaces. Maidenhead: McGraw-Hill, 1995.
Den vollen Inhalt der Quelle findenI, Vlaeminke, Hrsg. Man-computer interfaces. Oxford: Blackwell Scientific, 1987.
Den vollen Inhalt der Quelle findenNam, Chang S., Anton Nijholt und Fabien Lotte, Hrsg. Brain–Computer Interfaces Handbook. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781351231954.
Der volle Inhalt der QuelleClerc, Maureen, Laurent Bougrain und Fabien Lotte, Hrsg. Brain-Computer Interfaces 1. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119144977.
Der volle Inhalt der QuelleClerc, Maureen, Laurent Bougrain und Fabien Lotte, Hrsg. Brain-Computer Interfaces 2. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119332428.
Der volle Inhalt der QuelleBuchteile zum Thema "Computer interfaces"
Tan, Desney, und Anton Nijholt. „Brain-Computer Interfaces and Human-Computer Interaction“. In Brain-Computer Interfaces, 3–19. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-272-8_1.
Der volle Inhalt der QuelleMarquez-Chin, Cesar, Naaz Kapadia-Desai und Sukhvinder Kalsi-Ryan. „Brain–Computer Interfaces“. In Brain–Computer Interfaces, 51–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-031-01608-0_4.
Der volle Inhalt der QuelleBrandman, David M., und Leigh R. Hochberg. „Brain Computer Interfaces“. In Neurobionics: The Biomedical Engineering of Neural Prostheses, 231–63. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118816028.ch9.
Der volle Inhalt der QuelleSchalk, Gerwin, und Jürgen Mellinger. „Brain–Computer Interfaces“. In A Practical Guide to Brain–Computer Interfacing with BCI2000, 3–8. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-092-2_1.
Der volle Inhalt der QuelleSutcliffe, Alistair. „Computer Control Interfaces“. In Human-Computer Interface Design, 156–80. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4899-6749-7_9.
Der volle Inhalt der QuelleHolmes, Nate. „Camera Computer Interfaces“. In Handbook of Machine and Computer Vision, 431–503. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527413409.ch8.
Der volle Inhalt der QuelleCurio, Gabriel. „Brain-Computer Interfaces“. In Bildverarbeitung für die Medizin 2012, 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28502-8_2.
Der volle Inhalt der QuelleMillán, José del R. „Brain-Computer Interfaces“. In Introduction to Neural Engineering for Motor Rehabilitation, 237–52. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118628522.ch12.
Der volle Inhalt der QuelleSibilano, Elena, Vladimiro Suglia, Antonio Brunetti, Domenico Buongiorno, Nicholas Caporusso, Christoph Guger und Vitoantonio Bevilacqua. „Brain–Computer Interfaces“. In Neuromethods, 203–40. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3545-2_10.
Der volle Inhalt der QuelleHe, Bin, Han Yuan, Jianjun Meng und Shangkai Gao. „Brain–Computer Interfaces“. In Neural Engineering, 131–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43395-6_4.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Computer interfaces"
Wolpaw, Jonathan R. „Brain-computer interfaces“. In the 2nd ACM SIGHIT symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2110363.2110366.
Der volle Inhalt der QuelleJantz, Jay, Adam Molnar und Ramses Alcaide. „A brain-computer interface for extended reality interfaces“. In SIGGRAPH '17: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3089269.3089290.
Der volle Inhalt der QuelleRekimoto, Jun. „Multiple-computer user interfaces“. In CHI '00 extended abstracts. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/633292.633297.
Der volle Inhalt der QuelleMolina, Gary Garcia, Tsvetomira Tsoneva und Anton Nijholt. „Emotional brain-computer interfaces“. In 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops (ACII 2009). IEEE, 2009. http://dx.doi.org/10.1109/acii.2009.5349478.
Der volle Inhalt der QuelleHincks, Samuel, Sarah Bratt, Sujit Poudel, Vir V. Phoha, Robert J. K. Jacob, Daniel C. Dennett und Leanne Hirshfield. „Entropic Brain-computer Interfaces“. In 4th International Conference on Physiological Computing Systems. SCITEPRESS - Science and Technology Publications, 2017. http://dx.doi.org/10.5220/0006383300230034.
Der volle Inhalt der QuelleBeckhaus, Steffi, und Ernst Kruijff. „Unconventional human computer interfaces“. In the conference. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1103900.1103918.
Der volle Inhalt der QuelleIgarashi, Takeo. „Sketching interfaces for computer graphics“. In ACM SIGGRAPH ASIA 2009 Courses. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1665817.1665833.
Der volle Inhalt der QuelleLotte, Fabien, Junya Fujisawa, Hideaki Touyama, Rika Ito, Michitaka Hirose und Anatole Lécuyer. „Towards ambulatory brain-computer interfaces“. In the International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1690388.1690452.
Der volle Inhalt der QuelleMcCullagh, P. J., M. P. Ware und G. Lightbody. „Brain Computer Interfaces for inclusion“. In AH '10: 2010 Augmented Human International Conference. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/1785455.1785461.
Der volle Inhalt der QuelleGrynszpan, Ouriel, Jean-Claude Martin und Jacqueline Nadel. „Human computer interfaces for autism“. In CHI '05 extended abstracts. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1056808.1056931.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Computer interfaces"
Norcio, A. F., und J. Stanley. Adaptive Human-Computer Interfaces. Fort Belvoir, VA: Defense Technical Information Center, September 1988. http://dx.doi.org/10.21236/ada200930.
Der volle Inhalt der QuelleTolmie, D. E., W. St. John und D. H. DuBois. Super-speed computer interfaces and networks. Office of Scientific and Technical Information (OSTI), Oktober 1997. http://dx.doi.org/10.2172/534509.
Der volle Inhalt der QuelleTerranova, M. Team-computer interfaces in complex task environments. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6427485.
Der volle Inhalt der QuelleKirchstetter, Thomas. Brain-computer interfaces enabled by novel magnetometers. Office of Scientific and Technical Information (OSTI), Dezember 2020. http://dx.doi.org/10.2172/1755426.
Der volle Inhalt der QuelleSchmidt, Nick. Control of Physical Objects Utilizing Brain Computer Interfaces. Ames (Iowa): Iowa State University, Januar 2020. http://dx.doi.org/10.31274/cc-20240624-423.
Der volle Inhalt der QuelleMyers, Brad A. Why are Human-Computer Interfaces Difficult to Design and Implement. Fort Belvoir, VA: Defense Technical Information Center, Juli 1993. http://dx.doi.org/10.21236/ada268843.
Der volle Inhalt der QuelleEnright, Doug, und Ron Fedkiw. Robust Treatment of Interfaces for Fluid Flows and Computer Graphics. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada479018.
Der volle Inhalt der QuelleJyothi, Yadav. Neural implants: A meta analysis on the efficacy and the possibilities of brain-computer interfaces. Ames (Iowa): Iowa State University, Mai 2022. http://dx.doi.org/10.31274/cc-20240624-1048.
Der volle Inhalt der QuelleFranza, Bernard R. Combining Broadband Connectivity and Immersive Human-to-Computer Interfaces to Improve Medical Simulation Training and Patient Care. Fort Belvoir, VA: Defense Technical Information Center, November 2010. http://dx.doi.org/10.21236/ada543828.
Der volle Inhalt der QuelleHannas, William, Huey-Meei Chang, Daniel Chou und Brian Fleeger. China's Advanced AI Research: Monitoring China's Paths to "General" Artificial Intelligence. Center for Security and Emerging Technology, Juli 2022. http://dx.doi.org/10.51593/20210064.
Der volle Inhalt der Quelle