Dissertationen zum Thema „Computational inference method“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-26 Dissertationen für die Forschung zum Thema "Computational inference method" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Bergmair, Richard. „Monte Carlo semantics : robust inference and logical pattern processing with natural language text“. Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609713.
Der volle Inhalt der QuelleGuo, Wenbin. „Computational analysis and method development for high throughput transcriptomics and transcriptional regulatory inference in plants“. Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/3f14dd8e-0c6c-4b46-adb0-bbb10b0cbe19.
Der volle Inhalt der QuelleStrid, Ingvar. „Computational methods for Bayesian inference in macroeconomic models“. Doctoral thesis, Handelshögskolan i Stockholm, Ekonomisk Statistik (ES), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hhs:diva-1118.
Der volle Inhalt der QuelleWarne, David James. „Computational inference in mathematical biology: Methodological developments and applications“. Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/202835/1/David_Warne_Thesis.pdf.
Der volle Inhalt der QuelleDahlin, Johan. „Accelerating Monte Carlo methods for Bayesian inference in dynamical models“. Doctoral thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125992.
Der volle Inhalt der QuelleBorde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Lienart, Thibaut. „Inference on Markov random fields : methods and applications“. Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:3095b14c-98fb-4bda-affc-a1fa1708f628.
Der volle Inhalt der QuelleWang, Tengyao. „Spectral methods and computational trade-offs in high-dimensional statistical inference“. Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/260825.
Der volle Inhalt der QuellePardo, Jérémie. „Méthodes d'inférence de cibles thérapeutiques et de séquences de traitement“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG011.
Der volle Inhalt der QuelleNetwork controllability is a major challenge in network medicine. It consists in finding a way to rewire molecular networks to reprogram the cell fate. The reprogramming action is typically represented as the action of a control. In this thesis, we extended the single control action method by investigating the sequential control of Boolean networks. We present a theoretical framework for the formal study of control sequences.We consider freeze controls, under which the variables can only be frozen to 0, 1 or unfrozen. We define a model of controlled dynamics where the modification of the control only occurs at a stable state in the synchronous update mode. We refer to the inference problem of finding a control sequence modifying the dynamics to evolve towards a desired state or property as CoFaSe. Under this problem, a set of variables are uncontrollable. We prove that this problem is PSPACE-hard. We know from the complexity of CoFaSe that finding a minimal sequence of control by exhaustively exploring all possible control sequences is not practically tractable. By studying the dynamical properties of the CoFaSe problem, we found that the dynamical properties that imply the necessity of a sequence of control emerge from the update functions of uncontrollable variables. We found that the length of a minimal control sequence cannot be larger than twice the number of profiles of uncontrollable variables. From this result, we built two algorithms inferring minimal control sequences under synchronous dynamics. Finally, the study of the interdependencies between sequential control and the topology of the interaction graph of the Boolean network allowed us to investigate the causal relationships that exist between structure and control. Furthermore, accounting for the topological properties of the network gives additional tools for tightening the upper bounds on sequence length. This work sheds light on the key importance of non-negative cycles in the interaction graph for the emergence of minimal sequences of control of size greater than or equal to two
Angulo, Rafael Villa. „Computational methods for haplotype inference with application to haplotype block characterization in cattle“. Fairfax, VA : George Mason University, 2009. http://hdl.handle.net/1920/4558.
Der volle Inhalt der QuelleVita: p. 123. Thesis director: John J. Grefenstette. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Bioinformatics and Computational Biology. Title from PDF t.p. (viewed Sept. 8, 2009). Includes bibliographical references (p. 114-122). Also issued in print.
Ruli, Erlis. „Recent Advances in Approximate Bayesian Computation Methods“. Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423529.
Der volle Inhalt der QuelleL'approccio bayesiano all'inferenza statistica è fondamentalmente probabilistico. Attraverso il calcolo delle probabilità, la distribuzione a posteriori estrae l'informazione rilevante offerta dai dati e produce una descrizione completa e coerente dell'incertezza condizionatamente ai dati osservati. Tuttavia, la descrizione della distribuzione a posteriori spesso richiede il computo di integrali multivariati e complicati. Un'ulteriore difficoltà dell'approccio bayesiano è legata alla funzione di verosimiglianza e nasce quando quest'ultima è matematicamento o computazionalmente intrattabile. In questa direzione, notevoli sviluppi sono stati compiuti dalla cosiddetta teaoria di Approximate Bayesian Computations (ABC). Questa tesi si focalizza su metodi computazionali per l'approssimazione della distribuzione a posteriori e propone sei contributi originali. Il primo contributo concerne l'approssimazione della distributione a posteriori marginale per un parametro scalare. Combinando l'approssimazione di ordine superiore per tail-area con il metodo della simulazione per inversione, si ottiene l'algorimo denominato HOTA, il quale può essere usato per simulare in modo indipendente da un'approssimazione della distribuzione a posteriori. Il secondo contributo si propone di estendere l'uso dell'algoritmo HOTA in contesti di distributioni pseudo-posterior, ovvero una distribuzione a posteriori ottenuta attraverso la combinazione di una pseudo-verosimiglianza con una prior, tramite il teorema di Bayes. Il terzo contributo estende l'uso dell'approssimazione di tail-area in contesti con parametri multidimensionali e propone un metodo per calcolare delle regioni di credibilità le quali presentano buone proprietà di copertura frequentista. Il quarto contributo presenta un'approssimazione di Laplace di terzo ordine per il calcolo della verosimiglianza marginale. Il quinto contributo si focalizza sulla scelta delle statistiche descrittive per ABC e propone un metodo parametrico, basato sulla funzione di score composita, per la scelta di tali statistiche. Infine, l'ultimo contributo si focalizza sulla scelta di una distribuzione di proposta da defalut per algoritmi ABC, dove la procedura di derivazione di tale distributzione è basata sulla nozione della quasi-verosimiglianza.
Raynal, Louis. „Bayesian statistical inference for intractable likelihood models“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS035/document.
Der volle Inhalt der QuelleIn a statistical inferential process, when the calculation of the likelihood function is not possible, approximations need to be used. This is a fairly common case in some application fields, especially for population genetics models. Toward this issue, we are interested in approximate Bayesian computation (ABC) methods. These are solely based on simulated data, which are then summarised and compared to the observed ones. The comparisons are performed depending on a distance, a similarity threshold and a set of low dimensional summary statistics, which must be carefully chosen.In a parameter inference framework, we propose an approach combining ABC simulations and the random forest machine learning algorithm. We use different strategies depending on the parameter posterior quantity we would like to approximate. Our proposal avoids the usual ABC difficulties in terms of tuning, while providing good results and interpretation tools for practitioners. In addition, we introduce posterior measures of error (i.e., conditionally on the observed data of interest) computed by means of forests. In a model choice setting, we present a strategy based on groups of models to determine, in population genetics, which events of an evolutionary scenario are more or less well identified. All these approaches are implemented in the R package abcrf. In addition, we investigate how to build local random forests, taking into account the observation to predict during their learning phase to improve the prediction accuracy. Finally, using our previous developments, we present two case studies dealing with the reconstruction of the evolutionary history of Pygmy populations, as well as of two subspecies of the desert locust Schistocerca gregaria
Groves, Adrian R. „Bayesian learning methods for modelling functional MRI“. Thesis, University of Oxford, 2009. http://ora.ox.ac.uk/objects/uuid:fe46e696-a1a6-4a9d-9dfe-861b05b1ed33.
Der volle Inhalt der QuelleBon, Joshua J. „Advances in sequential Monte Carlo methods“. Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235897/1/Joshua%2BBon%2BThesis%284%29.pdf.
Der volle Inhalt der QuelleWallman, Kaj Mikael Joakim. „Computational methods for the estimation of cardiac electrophysiological conduction parameters in a patient specific setting“. Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:2d5573b9-5115-4434-b9c8-60f8d0531f86.
Der volle Inhalt der QuelleParat, Florence [Verfasser], Aurélien [Akademischer Betreuer] Tellier, Chris-Carolin [Gutachter] Schön und Aurélien [Gutachter] Tellier. „Inference of the Demographic History of Domesticated Species Using Approximate Bayesian Computation and Likelihood-based Methods / Florence Parat ; Gutachter: Chris-Carolin Schön, Aurélien Tellier ; Betreuer: Aurélien Tellier“. München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1213026083/34.
Der volle Inhalt der QuelleHigson, Edward John. „Bayesian methods and machine learning in astrophysics“. Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/289728.
Der volle Inhalt der QuelleSimpson, Edwin Daniel. „Combined decision making with multiple agents“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f5c9770b-a1c9-4872-b0dc-1bfa28c11a7f.
Der volle Inhalt der QuelleOSAKI, Miho, Takeshi FURUHASHI, Tomohiro YOSHIKAWA, Yoshinobu WATANABE, 美穂 大崎, 武. 古橋, 大弘 吉川 und 芳信 渡辺. „対話型進化計算における実評価数可変型評価値推論法の適用“. 日本知能情報ファジィ学会, 2008. http://hdl.handle.net/2237/20681.
Der volle Inhalt der QuelleCatanach, Thomas Anthony. „Computational Methods for Bayesian Inference in Complex Systems“. Thesis, 2017. https://thesis.library.caltech.edu/10263/1/catanach_thesis_deposit.pdf.
Der volle Inhalt der QuelleBayesian methods are critical for the complete understanding of complex systems. In this approach, we capture all of our uncertainty about a system’s properties using a probability distribution and update this understanding as new information becomes available. By taking the Bayesian perspective, we are able to effectively incorporate our prior knowledge about a model and to rigorously assess the plausibility of candidate models based upon observed data from the system. We can then make probabilistic predictions that incorporate uncertainties, which allows for better decision making and design. However, while these Bayesian methods are critical, they are often computationally intensive, thus necessitating the development of new approaches and algorithms.
In this work, we discuss two approaches to Markov Chain Monte Carlo (MCMC). For many statistical inference and system identification problems, the development of MCMC made the Bayesian approach possible. However, as the size and complexity of inference problems has dramatically increased, improved MCMC methods are required. First, we present Second-Order Langevin MCMC (SOL-MC), a stochastic dynamical system-based MCMC algorithm that uses the damped second-order Langevin stochastic differential equation (SDE) to sample a desired posterior distribution. Since this method is based on an underlying dynamical system, we can utilize existing work in the theory for dynamical systems to develop, implement, and optimize the sampler's performance. Second, we present advances and theoretical results for Sequential Tempered MCMC (ST-MCMC) algorithms. Sequential Tempered MCMC is a family of parallelizable algorithms, based upon Transitional MCMC and Sequential Monte Carlo, that gradually transform a population of samples from the prior to the posterior through a series of intermediate distributions. Since the method is population-based, it can easily be parallelized. In this work, we derive theoretical results to help tune parameters within the algorithm. We also introduce a new sampling algorithm for ST-MCMC called the Rank-One Modified Metropolis Algorithm (ROMMA). This algorithm improves sampling efficiency for inference problems where the prior distribution constrains the posterior. In particular, this is shown to be relevant for problems in geophysics.
We also discuss the application of Bayesian methods to state estimation, disturbance detection, and system identification problems in complex systems. We introduce a Bayesian perspective on learning models and properties of physical systems based upon a layered architecture that can learn quickly and flexibly. We then apply this architecture to detecting and characterizing changes in physical systems with applications to power systems and biology. In power systems, we develop a new formulation of the Extended Kalman Filter for estimating dynamic states described by differential algebraic equations. This filter is then used as the basis for sub-second fault detection and classification. In synthetic biology, we use a Bayesian approach to detect and identify unknown chemical inputs in a biosensor system implemented in a cell population. This approach uses the tools of Bayesian model selection.
(9805406), Md Rahat Hossain. „A novel hybrid method for solar power prediction“. Thesis, 2013. https://figshare.com/articles/thesis/A_novel_hybrid_method_for_solar_power_prediction/13432601.
Der volle Inhalt der QuelleHuang, Chengbang. „Multiscale computational methods for morphogenesis and algorithms for protein-protein interaction inference“. 2005. http://etd.nd.edu/ETD-db/theses/available/etd-07212005-085435/.
Der volle Inhalt der QuelleThesis directed by Jesús A. Izaguirre for the Department of Computer Science and Engineering. "November 2005." Includes bibliographical references (leaves 133-139).
Lunagomez, Simon. „A Geometric Approach for Inference on Graphical Models“. Diss., 2009. http://hdl.handle.net/10161/1354.
Der volle Inhalt der QuelleDissertation
Hong, Eun-Jong, und Tomás Lozano-Pérez. „Protein side-chain placement: probabilistic inference and integer programming methods“. 2003. http://hdl.handle.net/1721.1/3869.
Der volle Inhalt der QuelleSingapore-MIT Alliance (SMA)
Viscardi, Cecilia. „Approximate Bayesian Computation and Statistical Applications to Anonymized Data: an Information Theoretic Perspective“. Doctoral thesis, 2021. http://hdl.handle.net/2158/1236316.
Der volle Inhalt der QuelleMudgal, Richa. „Inferences on Structure and Function of Proteins from Sequence Data : Development of Methods and Applications“. Thesis, 2015. http://etd.iisc.ac.in/handle/2005/3877.
Der volle Inhalt der QuelleMudgal, Richa. „Inferences on Structure and Function of Proteins from Sequence Data : Development of Methods and Applications“. Thesis, 2015. http://etd.iisc.ernet.in/2005/3877.
Der volle Inhalt der Quelle