Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Computational inference method“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Computational inference method" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Computational inference method"
Jha, Kunal, Tuan Anh Le, Chuanyang Jin, Yen-Ling Kuo, Joshua B. Tenenbaum und Tianmin Shu. „Neural Amortized Inference for Nested Multi-Agent Reasoning“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 1 (24.03.2024): 530–37. http://dx.doi.org/10.1609/aaai.v38i1.27808.
Der volle Inhalt der QuelleMartina Perez, Simon, Heba Sailem und Ruth E. Baker. „Efficient Bayesian inference for mechanistic modelling with high-throughput data“. PLOS Computational Biology 18, Nr. 6 (21.06.2022): e1010191. http://dx.doi.org/10.1371/journal.pcbi.1010191.
Der volle Inhalt der QuelleZhang, Chendong, und Ting Chen. „Bayesian slip inversion with automatic differentiation variational inference“. Geophysical Journal International 229, Nr. 1 (29.10.2021): 546–65. http://dx.doi.org/10.1093/gji/ggab438.
Der volle Inhalt der QuelleKoblents, Eugenia, Inés P. Mariño und Joaquín Míguez. „Bayesian Computation Methods for Inference in Stochastic Kinetic Models“. Complexity 2019 (20.01.2019): 1–15. http://dx.doi.org/10.1155/2019/7160934.
Der volle Inhalt der QuelleBeaumont, Mark A., Wenyang Zhang und David J. Balding. „Approximate Bayesian Computation in Population Genetics“. Genetics 162, Nr. 4 (01.12.2002): 2025–35. http://dx.doi.org/10.1093/genetics/162.4.2025.
Der volle Inhalt der QuelleLi, Ziyue, Kan Ren, Yifan Yang, Xinyang Jiang, Yuqing Yang und Dongsheng Li. „Towards Inference Efficient Deep Ensemble Learning“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 7 (26.06.2023): 8711–19. http://dx.doi.org/10.1609/aaai.v37i7.26048.
Der volle Inhalt der QuelleLi, Benchong, Shoufeng Cai und Jianhua Guo. „A computational algebraic-geometry method for conditional-independence inference“. Frontiers of Mathematics in China 8, Nr. 3 (25.03.2013): 567–82. http://dx.doi.org/10.1007/s11464-013-0295-9.
Der volle Inhalt der QuelleSpringer, Sebastian, Heikki Haario, Jouni Susiluoto, Aleksandr Bibov, Andrew Davis und Youssef Marzouk. „Efficient Bayesian inference for large chaotic dynamical systems“. Geoscientific Model Development 14, Nr. 7 (09.07.2021): 4319–33. http://dx.doi.org/10.5194/gmd-14-4319-2021.
Der volle Inhalt der QuelleZhang, Xinfang, Miao Li, Bomin Wang und Zexian Li. „A Parameter Correction method of CFD based on the Approximate Bayesian Computation technique“. Journal of Physics: Conference Series 2569, Nr. 1 (01.08.2023): 012076. http://dx.doi.org/10.1088/1742-6596/2569/1/012076.
Der volle Inhalt der QuelleZhang, Chi, Yilun Wang, Lili Zhang und Huicheng Zhou. „A fuzzy inference method based on association rule analysis with application to river flood forecasting“. Water Science and Technology 66, Nr. 10 (01.11.2012): 2090–98. http://dx.doi.org/10.2166/wst.2012.420.
Der volle Inhalt der QuelleDissertationen zum Thema "Computational inference method"
Bergmair, Richard. „Monte Carlo semantics : robust inference and logical pattern processing with natural language text“. Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609713.
Der volle Inhalt der QuelleGuo, Wenbin. „Computational analysis and method development for high throughput transcriptomics and transcriptional regulatory inference in plants“. Thesis, University of Dundee, 2018. https://discovery.dundee.ac.uk/en/studentTheses/3f14dd8e-0c6c-4b46-adb0-bbb10b0cbe19.
Der volle Inhalt der QuelleStrid, Ingvar. „Computational methods for Bayesian inference in macroeconomic models“. Doctoral thesis, Handelshögskolan i Stockholm, Ekonomisk Statistik (ES), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hhs:diva-1118.
Der volle Inhalt der QuelleWarne, David James. „Computational inference in mathematical biology: Methodological developments and applications“. Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/202835/1/David_Warne_Thesis.pdf.
Der volle Inhalt der QuelleDahlin, Johan. „Accelerating Monte Carlo methods for Bayesian inference in dynamical models“. Doctoral thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125992.
Der volle Inhalt der QuelleBorde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Lienart, Thibaut. „Inference on Markov random fields : methods and applications“. Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:3095b14c-98fb-4bda-affc-a1fa1708f628.
Der volle Inhalt der QuelleWang, Tengyao. „Spectral methods and computational trade-offs in high-dimensional statistical inference“. Thesis, University of Cambridge, 2016. https://www.repository.cam.ac.uk/handle/1810/260825.
Der volle Inhalt der QuellePardo, Jérémie. „Méthodes d'inférence de cibles thérapeutiques et de séquences de traitement“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG011.
Der volle Inhalt der QuelleNetwork controllability is a major challenge in network medicine. It consists in finding a way to rewire molecular networks to reprogram the cell fate. The reprogramming action is typically represented as the action of a control. In this thesis, we extended the single control action method by investigating the sequential control of Boolean networks. We present a theoretical framework for the formal study of control sequences.We consider freeze controls, under which the variables can only be frozen to 0, 1 or unfrozen. We define a model of controlled dynamics where the modification of the control only occurs at a stable state in the synchronous update mode. We refer to the inference problem of finding a control sequence modifying the dynamics to evolve towards a desired state or property as CoFaSe. Under this problem, a set of variables are uncontrollable. We prove that this problem is PSPACE-hard. We know from the complexity of CoFaSe that finding a minimal sequence of control by exhaustively exploring all possible control sequences is not practically tractable. By studying the dynamical properties of the CoFaSe problem, we found that the dynamical properties that imply the necessity of a sequence of control emerge from the update functions of uncontrollable variables. We found that the length of a minimal control sequence cannot be larger than twice the number of profiles of uncontrollable variables. From this result, we built two algorithms inferring minimal control sequences under synchronous dynamics. Finally, the study of the interdependencies between sequential control and the topology of the interaction graph of the Boolean network allowed us to investigate the causal relationships that exist between structure and control. Furthermore, accounting for the topological properties of the network gives additional tools for tightening the upper bounds on sequence length. This work sheds light on the key importance of non-negative cycles in the interaction graph for the emergence of minimal sequences of control of size greater than or equal to two
Angulo, Rafael Villa. „Computational methods for haplotype inference with application to haplotype block characterization in cattle“. Fairfax, VA : George Mason University, 2009. http://hdl.handle.net/1920/4558.
Der volle Inhalt der QuelleVita: p. 123. Thesis director: John J. Grefenstette. Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Bioinformatics and Computational Biology. Title from PDF t.p. (viewed Sept. 8, 2009). Includes bibliographical references (p. 114-122). Also issued in print.
Ruli, Erlis. „Recent Advances in Approximate Bayesian Computation Methods“. Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423529.
Der volle Inhalt der QuelleL'approccio bayesiano all'inferenza statistica è fondamentalmente probabilistico. Attraverso il calcolo delle probabilità, la distribuzione a posteriori estrae l'informazione rilevante offerta dai dati e produce una descrizione completa e coerente dell'incertezza condizionatamente ai dati osservati. Tuttavia, la descrizione della distribuzione a posteriori spesso richiede il computo di integrali multivariati e complicati. Un'ulteriore difficoltà dell'approccio bayesiano è legata alla funzione di verosimiglianza e nasce quando quest'ultima è matematicamento o computazionalmente intrattabile. In questa direzione, notevoli sviluppi sono stati compiuti dalla cosiddetta teaoria di Approximate Bayesian Computations (ABC). Questa tesi si focalizza su metodi computazionali per l'approssimazione della distribuzione a posteriori e propone sei contributi originali. Il primo contributo concerne l'approssimazione della distributione a posteriori marginale per un parametro scalare. Combinando l'approssimazione di ordine superiore per tail-area con il metodo della simulazione per inversione, si ottiene l'algorimo denominato HOTA, il quale può essere usato per simulare in modo indipendente da un'approssimazione della distribuzione a posteriori. Il secondo contributo si propone di estendere l'uso dell'algoritmo HOTA in contesti di distributioni pseudo-posterior, ovvero una distribuzione a posteriori ottenuta attraverso la combinazione di una pseudo-verosimiglianza con una prior, tramite il teorema di Bayes. Il terzo contributo estende l'uso dell'approssimazione di tail-area in contesti con parametri multidimensionali e propone un metodo per calcolare delle regioni di credibilità le quali presentano buone proprietà di copertura frequentista. Il quarto contributo presenta un'approssimazione di Laplace di terzo ordine per il calcolo della verosimiglianza marginale. Il quinto contributo si focalizza sulla scelta delle statistiche descrittive per ABC e propone un metodo parametrico, basato sulla funzione di score composita, per la scelta di tali statistiche. Infine, l'ultimo contributo si focalizza sulla scelta di una distribuzione di proposta da defalut per algoritmi ABC, dove la procedura di derivazione di tale distributzione è basata sulla nozione della quasi-verosimiglianza.
Bücher zum Thema "Computational inference method"
Istrail, Sorin, Michael Waterman und Andrew Clark, Hrsg. Computational Methods for SNPs and Haplotype Inference. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b96286.
Der volle Inhalt der QuelleLearning and inference in computational systems biology. Cambridge, Mass: MIT Press, 2010.
Den vollen Inhalt der Quelle findenNeil, Lawrence, Hrsg. Learning and inference in computational systems biology. Cambridge, MA: MIT Press, 2010.
Den vollen Inhalt der Quelle findenHeard, Nick. An Introduction to Bayesian Inference, Methods and Computation. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82808-0.
Der volle Inhalt der QuelleLo, Andrew W. Foundations of technical analysis: Computational algorithms, statistical inference, and empirical implementation. Cambridge, MA: National Bureau of Economic Research, 2000.
Den vollen Inhalt der Quelle findenWorkshop for Dialogue on Reverse Engineering Assessment and Methods (2006 New York, N.Y.). Reverse engineering biological networks: Opportunities and challenges in computational methods for pathway inference. Boston, Mass: Published by Blackwell Publishing on behalf of the New York Academy of Sciences, 2007.
Den vollen Inhalt der Quelle findenSorin, Istrail, Waterman Michael S und Clark Andrew G. 1954-, Hrsg. Computational methods for SNPs and Haplotype inference: DIMACS/RECOMB satellite workshop, Piscataway, NJ, USA, November 21-22, 2002 : revised papers. Berlin: Springer-Verlag, 2004.
Den vollen Inhalt der Quelle findenDiagrams 2010 (2010 Portland, Or.). Diagrammatic representation and inference: 6th international conference, Diagrams 2010, Portland, OR, USA, August 9-11, 2010 : proceedings. Berlin: Springer, 2010.
Den vollen Inhalt der Quelle findenVarlamov, Oleg. Mivar databases and rules. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1508665.
Der volle Inhalt der QuelleDesmarais, Bruce A., und Skyler J. Cranmer. Statistical Inference in Political Networks Research. Herausgegeben von Jennifer Nicoll Victor, Alexander H. Montgomery und Mark Lubell. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780190228217.013.8.
Der volle Inhalt der QuelleBuchteile zum Thema "Computational inference method"
Revell, Jeremy, und Paolo Zuliani. „Stochastic Rate Parameter Inference Using the Cross-Entropy Method“. In Computational Methods in Systems Biology, 146–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99429-1_9.
Der volle Inhalt der QuelleLilik, Ferenc, und László T. Kóczy. „The Determination of the Bitrate on Twisted Pairs by Mamdani Inference Method“. In Studies in Computational Intelligence, 59–74. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03206-1_5.
Der volle Inhalt der QuelleIzumi, Satoru, Yusuke Kobayashi, Hideyuki Takahashi, Takuo Suganuma, Tetsuo Kinoshita und Norio Shiratori. „An Effective Inference Method Using Sensor Data for Symbiotic Healthcare Support System“. In Computational Science and Its Applications – ICCSA 2010, 152–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12189-0_14.
Der volle Inhalt der QuelleBumee, Somkid, Chalothorn Liamwirat, Treenut Saithong und Asawin Meechai. „Extended Constraint-Based Boolean Analysis: A Computational Method in Genetic Network Inference“. In Communications in Computer and Information Science, 71–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16750-8_7.
Der volle Inhalt der QuelleZolkepli, Maslina Binti, und Teh Noranis Binti Mohd Aris. „Cross Domain Recommendations Based on the Application of Fuzzy AHP and Fuzzy Inference Method in Establishing Transdisciplinary Collaborations“. In Computational and Experimental Simulations in Engineering, 397–412. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27053-7_36.
Der volle Inhalt der QuelleHeard, Nick. „Computational Inference“. In An Introduction to Bayesian Inference, Methods and Computation, 39–60. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82808-0_5.
Der volle Inhalt der QuelleAlvo, Mayer. „Bayesian Computation Methods“. In Statistical Inference and Machine Learning for Big Data, 385–410. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06784-6_13.
Der volle Inhalt der QuelleLong, Quan. „Computational Haplotype Inference from Pooled Samples“. In Methods in Molecular Biology, 309–19. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6750-6_15.
Der volle Inhalt der QuelleKlingner, Marvin, und Tim Fingscheidt. „Improved DNN Robustness by Multi-task Training with an Auxiliary Self-Supervised Task“. In Deep Neural Networks and Data for Automated Driving, 149–70. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-01233-4_5.
Der volle Inhalt der QuelleClark, Andrew G., Emmanouil T. Dermitzakis und Stylianos E. Antonarakis. „Trisomic Phase Inference“. In Computational Methods for SNPs and Haplotype Inference, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24719-7_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Computational inference method"
Kimura, Shuhei, Masato Tokuhisa und Mariko Okada-Hatakeyama. „Simultaneous execution method of gene clustering and network inference“. In 2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2016. http://dx.doi.org/10.1109/cibcb.2016.7758123.
Der volle Inhalt der QuelleVu, Luong H., Benjamin N. Passow, Daniel Paluszczyszyn, Lipika Deka und Eric Goodyer. „Neighbouring link travel time inference method using artificial neural network“. In 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017. http://dx.doi.org/10.1109/ssci.2017.8285221.
Der volle Inhalt der QuelleZhou, Lina, Yin Qing, Liehui Jiang, Wenjian Yin und Tieming Liu. „A Method of Type Inference Based on Dataflow Analysis for Decompilation“. In 2009 International Conference on Computational Intelligence and Software Engineering. IEEE, 2009. http://dx.doi.org/10.1109/cise.2009.5362985.
Der volle Inhalt der QuelleKoul, Nimrita. „Method for Feature Selection Based on Inference of Gene Regulatory Networks“. In 2023 2nd International Conference on Computational Systems and Communication (ICCSC). IEEE, 2023. http://dx.doi.org/10.1109/iccsc56913.2023.10143012.
Der volle Inhalt der QuelleKimura, Shuhei, Kazuki Sota und Masato Tokuhisa. „Inference of Genetic Networks using Random Forests: A Quantitative Weighting Method for Gene Expression Data“. In 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2022. http://dx.doi.org/10.1109/cibcb55180.2022.9863035.
Der volle Inhalt der QuelleLiu, Xiaohong, Xianyi Zeng, Yang Xu und Ludovic Koehl. „A method of experiment design based on IOWA operator inference in sensory evaluation“. In Multiconference on "Computational Engineering in Systems Applications. IEEE, 2006. http://dx.doi.org/10.1109/cesa.2006.4281644.
Der volle Inhalt der QuelleXianzhi, Tang, und Wang Qingnian. „Driving Intention Intelligent Identification Method for Hybrid Vehicles Based on Fuzzy Logic Inference“. In 2010 3rd International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2010. http://dx.doi.org/10.1109/iscid.2010.11.
Der volle Inhalt der QuelleGuan, Yu. „Regularization Method for Rule Reduction in Belief Rule-based SystemRegularization Method for Rule Reduction in Belief Rule-based System“. In 8th International Conference on Computational Science and Engineering (CSE 2020). AIRCC Publishing Corporation, 2020. http://dx.doi.org/10.5121/csit.2020.101705.
Der volle Inhalt der QuelleWright, Stephen, Avinash Ravikumar, Laura Redmond, Benjamin Lawler, Matthew Castanier, Eric Gingrich und Michael Tess. „Data Reduction Methods to Improve Computation Time for Calibration of Piston Thermal Models“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-0112.
Der volle Inhalt der QuelleGuan, Jiaqi, Yang Liu, Qiang Liu und Jian Peng. „Energy-efficient Amortized Inference with Cascaded Deep Classifiers“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/302.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Computational inference method"
Giacomini, Raffaella, Toru Kitagawa und Matthew Read. Identification and Inference under Narrative Restrictions. Reserve Bank of Australia, Oktober 2023. http://dx.doi.org/10.47688/rdp2023-07.
Der volle Inhalt der QuelleArthur, Jennifer Ann. Subcritical Neutron Multiplication Inference Benchmarks for Nuclear Data and Computational Methods Validation. Office of Scientific and Technical Information (OSTI), Dezember 2018. http://dx.doi.org/10.2172/1485365.
Der volle Inhalt der QuelleKoop, Gary, Jamie Cross und Aubrey Poon. Introduction to Bayesian Econometrics in MATLAB. Instats Inc., 2022. http://dx.doi.org/10.61700/t3wrch7yujr7a469.
Der volle Inhalt der QuelleKoop, Gary, Jamie Cross und Aubrey Poon. Introduction to Bayesian Econometrics in MATLAB. Instats Inc., 2023. http://dx.doi.org/10.61700/aebi3thp50fr3469.
Der volle Inhalt der Quellede Kemp, E. A., H. A. J. Russell, B. Brodaric, D. B. Snyder, M. J. Hillier, M. St-Onge, C. Harrison et al. Initiating transformative geoscience practice at the Geological Survey of Canada: Canada in 3D. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/331097.
Der volle Inhalt der Quellede Kemp, E. A., H. A. J. Russell, B. Brodaric, D. B. Snyder, M. J. Hillier, M. St-Onge, C. Harrison et al. Initiating transformative geoscience practice at the Geological Survey of Canada: Canada in 3D. Natural Resources Canada/CMSS/Information Management, 2023. http://dx.doi.org/10.4095/331871.
Der volle Inhalt der Quelle