Auswahl der wissenschaftlichen Literatur zum Thema „Computational analysis“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Computational analysis" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Computational analysis"

1

Liu, G. R. „Computational methods for certified solutions, adaptive analysis, real-time computation, and inverse analysis of mechanics problem“. Proceedings of The Computational Mechanics Conference 2011.24 (2011): _—1_—_—5_. http://dx.doi.org/10.1299/jsmecmd.2011.24._-1_.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

ILIE, Marcel, Augustin Semenescu, Gabriela Liliana STROE und Sorin BERBENTE. „NUMERICAL COMPUTATIONS OF THE CAVITY FLOWS USING THE POTENTIAL FLOW THEORY“. ANNALS OF THE ACADEMY OF ROMANIAN SCIENTISTS Series on ENGINEERING SCIENCES 13, Nr. 2 (2021): 78–86. http://dx.doi.org/10.56082/annalsarscieng.2021.2.78.

Der volle Inhalt der Quelle
Annotation:
Computational fluid dynamics of turbulent flows requires large computational resources or are not suitable for the computations of transient flows. Therefore methods such as Reynolds-averaged Navier-Stokes equations are not suitable for the computation of transient flows. The direct numerical simulation provides the most accurate solution, but it is not suitable for high-Reynolds number flows. Large-eddy simulation (LES) approach is computationally less demanding than the DNS but still computationally expensive. Therefore, alternative computational methods must be sought. This research concerns the modelling of inviscid incompressible cavity flow using the potential flow. The numerical methods employed the finite differences approach. The time and space discretization is achieved using second-order schemes. The studies reveal that the finite differences approach is a computationally efficient approach and large computations can be performed on a single computer. The analysis of the flow physics reveals the presence of the recirculation region inside the cavity as well at the corners of the cavity
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Juneja, Shall, Deepayan Mukherjee und Sachi Garg. „Computational Analysis of RNA Nucleotide Sequences“. International Journal of Trend in Scientific Research and Development Volume-3, Issue-2 (28.02.2019): 369–72. http://dx.doi.org/10.31142/ijtsrd21342.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fajdiga, Gorazd. „Computational fatigue analysis of contacting mechanical elements“. Tehnicki vjesnik - Technical Gazette 22, Nr. 1 (2015): 169–75. http://dx.doi.org/10.17559/tv-20140429122305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bhardwaj, Shalini, und Yashwant Buke. „Computational Fluid Dynamics Analysis of A Turbocharger System“. International Journal of Scientific Research 3, Nr. 5 (01.06.2012): 161–64. http://dx.doi.org/10.15373/22778179/may2014/49.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gao, Feng, Gang Li, Rui Hu und Hiroshi Okada. „Computational Fluid Dynamic Analysis of Coronary Artery Stenting“. International Journal of Bioscience, Biochemistry and Bioinformatics 4, Nr. 3 (2014): 155–59. http://dx.doi.org/10.7763/ijbbb.2014.v4.330.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

LESSNER, Daniel. „ANALYSIS OF TERM MEANING "COMPUTATIONAL THINKING"“. Journal of Technology and Information 6, Nr. 1 (01.04.2014): 71–88. http://dx.doi.org/10.5507/jtie.2014.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Takizawa, Kenji, Yuri Bazilevs, Tayfun E. Tezduyar, Ming-Chen Hsu und Takuya Terahara. „Computational Cardiovascular Medicine With Isogeometric Analysis“. Journal of Advanced Engineering and Computation 6, Nr. 3 (30.09.2022): 167. http://dx.doi.org/10.55579/jaec.202263.381.

Der volle Inhalt der Quelle
Annotation:
Isogeometric analysis (IGA) brought superior accuracy to computations in both fluid and solid mechanics. The increased accuracy has been in representing both the problem geometry and the variables computed. Beyond using IGA basis functions in space, with IGA basis functions in time in a space–time (ST) context, we can have increased accuracy also in representing the motion of solid surfaces. Around the core methods such as the residual-based variational multiscale (VMS), ST-VMS and arbitrary Lagrangian–Eulerian VMS methods, with complex-geometry IGA mesh generation methods and immersogeometric analysis, and with special methods targeting specific classes of computations, the IGA has been very effective in computational cardiovascular medicine. We provide an overview of these IGA-based computational cardiovascular-medicine methods and present examples of the computations performed.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Planitz, Max, und R. E. Moore. „Computational Functional Analysis“. Mathematical Gazette 70, Nr. 451 (März 1986): 69. http://dx.doi.org/10.2307/3615858.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Fink, James P., und R. E. Moore. „Computational Functional Analysis.“ Mathematics of Computation 47, Nr. 175 (Juli 1986): 372. http://dx.doi.org/10.2307/2008105.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Computational analysis"

1

Pocock, Matthew Richard. „Computational analysis of genomes“. Thesis, University of Cambridge, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.615724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cattinelli, I. „INVESTIGATIONS ON COGNITIVE COMPUTATION AND COMPUTATIONAL COGNITION“. Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/155482.

Der volle Inhalt der Quelle
Annotation:
This Thesis describes our work at the boundary between Computer Science and Cognitive (Neuro)Science. In particular, (1) we have worked on methodological improvements to clustering-based meta-analysis of neuroimaging data, which is a technique that allows to collectively assess, in a quantitative way, activation peaks from several functional imaging studies, in order to extract the most robust results in the cognitive domain of interest. Hierarchical clustering is often used in this context, yet it is prone to the problem of non-uniqueness of the solution: a different permutation of the same input data might result in a different clustering result. In this Thesis, we propose a new version of hierarchical clustering that solves this problem. We also show the results of a meta-analysis, carried out using this algorithm, aimed at identifying specific cerebral circuits involved in single word reading. Moreover, (2) we describe preliminary work on a new connectionist model of single word reading, named the two-component model because it postulates a cascaded information flow from a more cognitive component that computes a distributed internal representation for the input word, to an articulatory component that translates this code into the corresponding sequence of phonemes. Output production is started when the internal code, which evolves in time, reaches a sufficient degree of clarity; this mechanism has been advanced as a possible explanation for behavioral effects consistently reported in the literature on reading, with a specific focus on the so called serial effects. This model is here discussed in its strength and weaknesses. Finally, (3) we have turned to consider how features that are typical of human cognition can inform the design of improved artificial agents; here, we have focused on modelling concepts inspired by emotion theory. A model of emotional interaction between artificial agents, based on probabilistic finite state automata, is presented: in this model, agents have personalities and attitudes that can change through the course of interaction (e.g. by reinforcement learning) to achieve autonomous adaptation to the interaction partner. Markov chain properties are then applied to derive reliable predictions of the outcome of an interaction. Taken together, these works show how the interplay between Cognitive Science and Computer Science can be fruitful, both for advancing our knowledge of the human brain and for designing more and more intelligent artificial systems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Shenoy, A. „Computational analysis of facial expressions“. Thesis, University of Hertfordshire, 2010. http://hdl.handle.net/2299/4359.

Der volle Inhalt der Quelle
Annotation:
This PhD work constitutes a series of inter-disciplinary studies that use biologically plausible computational techniques and experiments with human subjects in analyzing facial expressions. The performance of the computational models and human subjects in terms of accuracy and response time are analyzed. The computational models process images in three stages. This includes: Preprocessing, dimensionality reduction and Classification. The pre-processing of face expression images includes feature extraction and dimensionality reduction. Gabor filters are used for feature extraction as they are closest biologically plausible computational method. Various dimensionality reduction methods: Principal Component Analysis (PCA), Curvilinear Component Analysis (CCA) and Fisher Linear Discriminant (FLD) are used followed by the classification by Support Vector Machines (SVM) and Linear Discriminant Analysis (LDA). Six basic prototypical facial expressions that are universally accepted are used for the analysis. They are: angry, happy, fear, sad, surprise and disgust. The performance of the computational models in classifying each expression category is compared with that of the human subjects. The Effect size and Encoding face enable the discrimination of the areas of the face specific for a particular expression. The Effect size in particular emphasizes the areas of the face that are involved during the production of an expression. This concept of using Effect size on faces has not been reported previously in the literature and has shown very interesting results. The detailed PCA analysis showed the significant PCA components specific for each of the six basic prototypical expressions. An important observation from this analysis was that with Gabor filtering followed by non linear CCA for dimensionality reduction, the dataset vector size may be reduced to a very small number, in most cases it was just 5 components. The hypothesis that the average response time (RT) for the human subjects in classifying the different expressions is analogous to the distance measure of the data points from the classification hyper-plane was verified. This means the harder a facial expression is to classify by human subjects, the closer to the classifying hyper-plane of the classifier it is. A bi-variate correlation analysis of the distance measure and the average RT suggested a significant anti-correlation. The signal detection theory (SDT) or the d-prime determined how well the model or the human subjects were in making the classification of an expressive face from a neutral one. On comparison, human subjects are better in classifying surprise, disgust, fear, and sad expressions. The RAW computational model is better able to distinguish angry and happy expressions. To summarize, there seems to some similarities between the computational models and human subjects in the classification process.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Etherington, Graham John. „Computational analysis of foodborne viruses“. Thesis, University of East Anglia, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.423473.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wen, Wen. „Computational texture analysis and segmentation“. Thesis, University of Strathclyde, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358812.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Buchala, Samarasena. „Computational analysis of face images“. Thesis, University of Hertfordshire, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431938.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hussain, R. „Computational geometry using fourier analysis“. Thesis, De Montfort University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391483.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ikoma, Hayato. „Computational microscopy for sample analysis“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91427.

Der volle Inhalt der Quelle
Annotation:
Thesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2014.
46
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 41-44).
Computational microscopy is an emerging technology which extends the capabilities of optical microscopy with the help of computation. One of the notable example is super resolution fluorescence microscopy which achieves sub-wavelength resolution. This thesis explores the novel application of computational imaging methods to fluorescence microscopy and oblique illumination microscopy. In fluorescence spectroscopy, we have developed a novel nonlinear matrix unmixing algorithm to separate fluorescence spectra distorted by absorption effect. By extending the method to tensor form, we have also demonstrated the performance of a nonlinear fluorescence tensor unmixing algorithm on spectral fluorescence imaging. In the future, this algorithm may be applied to fluorescence unmixing in deep tissue imaging. The performance of the two algorithms were examined on simulation and experiments. In another project, we applied switchable multiple oblique illuminations to reflected-light microscopy. While the proposed system is easily implemented compared to existing methods, we demonstrate that the microscope detects the direction of surface roughness whose height is as small as illumination wavelength.
by Hayato Ikoma.
S.M.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Xu, Yangjian. „Computational analysis of fretting fatigue“. Düsseldorf VDI-Verl, 2009. http://d-nb.info/996624554/04.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Li, Xiang. „Computational analysis of ultraviolet reactors /“. Online version of thesis, 2009. http://hdl.handle.net/1850/11175.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Computational analysis"

1

Anastassiou, George A., und Oktay Duman, Hrsg. Computational Analysis. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28443-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Laub, Alan J. Computational matrix analysis. Philadelphia: Society for Industrial and Applied Mathematics, 2012.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Neuman, Yair. Computational Personality Analysis. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42460-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Im, Chang-Hwan, Hrsg. Computational EEG Analysis. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0908-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Meredith, David, Hrsg. Computational Music Analysis. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25931-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Laube, Patrick. Computational Movement Analysis. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10268-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Computational functional analysis. Chichester [Eng.]: E. Horwood, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Abraham, Ajith, Aboul-Ella Hassanien und Vaclav Sná¿el, Hrsg. Computational Social Network Analysis. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-229-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Anastassiou, George A. Intelligent Mathematics: Computational Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-17098-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhang, David, Wangmeng Zuo und Peng Wang. Computational Pulse Signal Analysis. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-4044-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Computational analysis"

1

Betounes, David. „Computational Analysis“. In Partial Differential Equations for Computational Science, 87–108. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2198-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Weihrauch, Klaus. „7. Computational Complexity“. In Computable Analysis, 195–235. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56999-9_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hart, George W. „Multidimensional Computational Methods“. In Multidimensional Analysis, 171–208. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4208-6_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dascalu, Mihai. „Computational Discourse Analysis“. In Analyzing Discourse and Text Complexity for Learning and Collaborating, 53–77. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03419-5_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, DeLiang. „Computational Scene Analysis“. In Challenges for Computational Intelligence, 163–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71984-7_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hausser, Roland. „Computational language analysis“. In Foundations of Computational Linguistics, 13–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04337-0_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gudmundsson, Joachim, Patrick Laube und Thomas Wolle. „Computational Movement Analysis“. In Springer Handbook of Geographic Information, 423–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-72680-7_22.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hausser, Roland. „Computational language analysis“. In Foundations of Computational Linguistics, 13–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03920-5_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Elwert, Frederik. „Computational Text Analysis“. In The Routledge Handbook of Research Methods in the Study of Religion, 164–79. 2. Aufl. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003222491-12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Erciyes, K. „Genome Analysis“. In Computational Biology, 183–210. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24966-7_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Computational analysis"

1

Nayar, Shree. „Advances in Computational Imaging“. In Adaptive Optics: Analysis, Methods & Systems. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/aoms.2015.jt1a.2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Majak, Jüri, und M. Di Sciuva. „Preface: Computational Mechanics“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026521.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Bechhoefer, Eric. „Low Computational, Nonlinear Component Trend Analysis“. In Vertical Flight Society 75th Annual Forum & Technology Display. The Vertical Flight Society, 2019. http://dx.doi.org/10.4050/f-0075-2019-14606.

Der volle Inhalt der Quelle
Annotation:
This paper is concerned with a nonlinear, computationally efficient method for trending component health. While conceptually simple, the goal of component trending is to reduce spurious noise in the measured component health and to estimate the remaining useful life (RUL). The need for lower computational effort allows this to be done on an embedded system. This would be important for display on a cockpit multi-function display. Additionally, we describe a new method for state smoothing. This is a forward-backward technique with no computational overhead associated with updating the plant noise (associated with a Kalman Smoother), significantly reducing the number of operations needed. Finally, a comparison is made between the precision of the nonlinear state estimation vs. a linear state estimation in the computation of the RUL. The precision was quantified using mean relative of the prognostic.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chamis, C. C., und R. H. Johns. „Computational Engine Structural Analysis“. In ASME 1986 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1986. http://dx.doi.org/10.1115/86-gt-70.

Der volle Inhalt der Quelle
Annotation:
A significant research activity at the NASA Lewis Research Center is the computational simulation of complex multidisciplinary engine structural problems. This simulation is performed using computational engine structural analysis (CESA) which consists of integrated multidisciplinary computer codes in conjunction with computer post-processing for “problem-specific” application. A variety of the computational simulations of specific cases are described in some detail in this paper. These case studies include (1) aeroelastic behavior of bladed rotors, (2) high velocity impact of fan blades, (3) blade-loss transient response, (4) rotor/stator/squeeze-film/bearing interaction, (5) blade-fragment/rotor-burst containment, and (6) structural behavior of advanced swept turboprops. These representative case studies were selected to demonstrate the breadth of the problems analyzed and the role of the computer including post-processing and graphical display of voluminous output data.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gupta, M. Satyanarayana, Nirmith Kumar Mishra, Mosin, Aishwarya Jaiswal und Ankadala Jyoshnavi. „Computational analysis over wings“. In PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0113273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Degtyarev, Alexander, Vasily Khramushin und Julia Shichkina. „Tensor methodology and computational geometry in direct computational experiments in fluid mechanics“. In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992291.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Venkatesh, Suresh, Naren Viswanathan und David Schurig. „W-Band Sparse Synthetic Aperture for Computational Imaging“. In Adaptive Optics: Analysis, Methods & Systems. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/aoms.2015.jt5a.17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hundur, Yakup. „Preface of the "Symposium on computational nanomaterials"“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756530.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Anandan, Princia, Florinda Schembri und Maide Bucolo. „Computational modeling of droplet based logic circuits“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Eoyang, Glenda H. „Human systems dynamics: Toward a computational model“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756214.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Computational analysis"

1

George, D. L. Computational techniques in gamma-ray skyshine analysis. Office of Scientific and Technical Information (OSTI), Dezember 1988. http://dx.doi.org/10.2172/6077591.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gentile, Ann C., Youssef M. Marzouk, James M. Brandt und Philippe Pierre Pebay. Meaningful statistical analysis of large computational clusters. Office of Scientific and Technical Information (OSTI), Juli 2005. http://dx.doi.org/10.2172/958384.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lax, P., und M. Berger. Applied analysis/computational mathematics. Final report 1993. Office of Scientific and Technical Information (OSTI), Dezember 1993. http://dx.doi.org/10.2172/10113926.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Babuska, Ivo, Y. Li und K. L. Jerina. Reliability of Computational Analysis of Plasticity Problems. Fort Belvoir, VA: Defense Technical Information Center, März 1991. http://dx.doi.org/10.21236/ada239646.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Davis, George B., und Kathleen M. Carley. Computational Analysis of Merchant Marine GPS Data. Fort Belvoir, VA: Defense Technical Information Center, November 2006. http://dx.doi.org/10.21236/ada471469.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Barhen, J., C. W. Glover und V. A. Protopopescu. Advanced computational tools for 3-D seismic analysis. Office of Scientific and Technical Information (OSTI), Juni 1996. http://dx.doi.org/10.2172/450786.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Grandhi, Ramana V. Computational Mechanics Approach for Multidisciplinary Nonlinear Sensitivity Analysis. Fort Belvoir, VA: Defense Technical Information Center, Juni 2003. http://dx.doi.org/10.21236/ada416568.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rzhetsky, Andrey, und Dimitris Anastassiou. COMPUTATIONAL ANALYSIS AND SIMULATION OF BACTERIAL MOLECULAR NETWORKS. Office of Scientific and Technical Information (OSTI), Dezember 2009. http://dx.doi.org/10.2172/968434.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Konstantin Mischaikow, Michael Schatz, William Kalies und Thomas Wanner. Multiscale analysis of nonlinear systems using computational homology. Office of Scientific and Technical Information (OSTI), Mai 2010. http://dx.doi.org/10.2172/979569.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Grandhi, Ramana V. Computational Mechanics Approach for Multidisciplinary Nonlinear Sensitivity Analysis. Fort Belvoir, VA: Defense Technical Information Center, Januar 2000. http://dx.doi.org/10.21236/ada388853.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie