Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Compression flows“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Compression flows" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Compression flows"
Ananin, S. I. „Structure of hydrogen compression plasma flows in a magnetoplasma compressor“. Journal of Applied Mechanics and Technical Physics 32, Nr. 4 (1992): 465–71. http://dx.doi.org/10.1007/bf00851542.
Der volle Inhalt der QuelleChen, Hao, Hui-Jun Tan, Qi-Fan Zhang und Yue Zhang. „Buzz Flows in an External-Compression Inlet with Partially Isentropic Compression“. AIAA Journal 55, Nr. 12 (Dezember 2017): 4286–95. http://dx.doi.org/10.2514/1.j056066.
Der volle Inhalt der QuelleHo, Yung-Han, Chih-Chun Chan, Wen-Hsiao Peng, Hsueh-Ming Hang und Marek Domanski. „ANFIC: Image Compression Using Augmented Normalizing Flows“. IEEE Open Journal of Circuits and Systems 2 (2021): 613–26. http://dx.doi.org/10.1109/ojcas.2021.3123201.
Der volle Inhalt der QuelleRudy, David H., James L. Thomas, Ajay Kumar, Peter A. Gnoffo und Sukumar R. Chakravarthy. „Computation of laminar hypersonic compression-corner flows“. AIAA Journal 29, Nr. 7 (Juli 1991): 1108–13. http://dx.doi.org/10.2514/3.10710.
Der volle Inhalt der QuelleAstashynski, V. M., E. A. Kostyukevich, A. M. Kuzmitski, A. A. Mishchuk und P. N. Shoronov. „Interaction between oppositely directed compression plasma flows“. Journal of Applied Spectroscopy 79, Nr. 4 (September 2012): 610–15. http://dx.doi.org/10.1007/s10812-012-9647-6.
Der volle Inhalt der QuelleTang, Chuanbo, Xihua Sheng, Zhuoyuan Li, Haotian Zhang, Li Li und Dong Liu. „Offline and Online Optical Flow Enhancement for Deep Video Compression“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 6 (24.03.2024): 5118–26. http://dx.doi.org/10.1609/aaai.v38i6.28317.
Der volle Inhalt der QuelleKang, Hyun-Su, Sung-Yeon Kim und Youn-Jea Kim. „Wet Compression Study for an Aero-Thermodynamic Performance Analysis of a Centrifugal Compressor at Design and Off-Design Points“. Processes 10, Nr. 5 (09.05.2022): 936. http://dx.doi.org/10.3390/pr10050936.
Der volle Inhalt der QuelleNeuschwander, T. B., B. R. Macias, A. R. Hargens und Q. Zhang. „Mild External Compression of the Leg Increases Skin and Muscle Microvascular Blood Flow and Muscle Oxygenation during Simulated Venous Hypertension“. ISRN Vascular Medicine 2012 (10.12.2012): 1–6. http://dx.doi.org/10.5402/2012/930913.
Der volle Inhalt der QuelleLea, C. J., und A. P. Watkins. „Differential stress modelling of turbulent flows in model reciprocating engines“. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 211, Nr. 1 (01.01.1997): 59–77. http://dx.doi.org/10.1243/0954407971526227.
Der volle Inhalt der QuelleGenbach, A. A., und D. Y. Bondartsev. „An Analysis of Heat Exchange Crisis in the Capillary Porous System for Cooling Parts of Heat and Power Units“. Proceedings of Higher Educational Institutions. Маchine Building, Nr. 12 (717) (Dezember 2019): 21–35. http://dx.doi.org/10.18698/0536-1044-2019-12-21-35.
Der volle Inhalt der QuelleDissertationen zum Thema "Compression flows"
Petukhou, Yu A., V. V. Uglov, N. T. Kvasov, A. V. Punko, I. L. Doroshevich, V. M. Astashynski und A. M. Kuzmitski. „Formation of silicon-based nanostructures by compression plasma flows“. Thesis, Видавництво СумДУ, 2011. http://essuir.sumdu.edu.ua/handle/123456789/20860.
Der volle Inhalt der QuelleSöder, Martin. „Numerical Investigation of Internal Combustion Engine Related Flows“. Licentiate thesis, KTH, Strömningsfysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-124237.
Der volle Inhalt der QuelleQC 20130704
Aziz, Saduman. „Perfect Gas Navier-stokes Solutions Of Hypersonic Boundary Layer And Compression Corner Flows“. Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12606661/index.pdf.
Der volle Inhalt der Quelle, 10°
, 14°
, 15°
, 16°
, 18°
and 24°
) with eight different free-stream and wall conditions are presented and discussed. During the analysis, air viscosity is calculated from the Sutherland formula up to 1000°
K, for the temperature range between 1000 º
K and 5000 º
K a curve fit to the estimations of Svehla is applied. The effects of Tw/T0 on heat transfer rates, surface pressure distributions and boundary layer characteristics are studied. The effects of corner angle (&
#952
w) on strong shock wave/boundary layer interactions with extended separated regions are investigated. The obtained results are compared with the available experimental data, computational results, and theory.
Zidi, Koceila. „Écoulement d'une suspension de particules en compression“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST197.
Der volle Inhalt der QuelleThe study of particle suspensions is crucial due to their omnipresence in various industrial and natural domains. Understanding their behavior enables us to improve processes such as the manufacture of composite materials, water treatment and the study of sediments and soils. Over the past two decades, the rheology of particle suspensions has been extensively studied in simple shear flows. Experiments have shown that the effective viscosity of an isodense, non-Brownian suspension increases with the particle volume fraction. The question posed in my thesis is whether rheological laws can be used to describe the behavior of particle suspensions in more complex configurations such as compression flows. We have experimentally investigated the behavior of suspensions in two compression flow configurations. In the first configuration, the suspension is compressed between a moving disk approaching a vertical wall at an imposed velocity. Local pressure measurements were carried out, varying the volume fraction of the suspension and the compression velocity. A theoretical framework was established, enabling the radial pressure difference in the compression flow to be related to the effective viscosity of the suspension, and thus measured indirectly. We have shown that the effective viscosity deduced by this approach in compression flow is identical to that measured in a conventional simple shear configuration. In the second configuration, the suspension is compressed between a sphere sedimenting under its own weight towards a horizontal wall. Sedimentation velocity measurements of the sphere were carried out. The influence of suspension parameters, such as particle diameter and concentration, as well as geometric parameters, such as sphere radius and reservoir width, was investigated. In the region far from the wall, the fundamental principle of dynamics enabled us to predict the sedimentation velocity of the sphere and deduce the effective viscosity of the suspension, which corresponds to that of simple shear. We have shown that the suspension behaves like an effective Newtonian fluid. The approach dynamics of the sphere in the suspension deviate from those it would have in a Newtonian fluid. Close to the wall, lubrication theory is applied. This theory predicts that the sedimentation velocity of the sphere evolves linearly with distance from the horizontal wall, with zero velocity at contact with the wall. In the case of suspension, the sedimentation velocity of the sphere evolves non-linearly with distance from the wall. We also measured a non-zero impact velocity of the sphere with the wall. We have proposed an empirical relationship for the approach velocity that allows all the experimental data to be grouped on a single curve across the entire range of parameters studied
Stapleton, Brian J. „An investigation of in-cylinder flows in a direct injection compression ignition engine using particle image velocimetry“. Thesis, Loughborough University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.529505.
Der volle Inhalt der QuelleSöder, Martin. „Creation and destruction of in-cylinder flows : Large eddy simulations of the intake and the compression strokes“. Doctoral thesis, KTH, Strömningsfysik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-164889.
Der volle Inhalt der QuelleQC 20150420
Legrand, Nicolas. „Numerical and modeling methods for multi-level large eddy simulations of turbulent flows in complex geometries“. Thesis, Normandie, 2017. http://www.theses.fr/2017NORMIR16/document.
Der volle Inhalt der QuelleLarge-Eddy Simulation (LES) has become a major tool for the analysis of highly turbulent flows in complex geometries. However, due to the steadily increase of computational resources, the amount of data generated by well-resolved numerical simulations is such that it has become very challenging to manage them with traditional data processing tools. In Computational Fluid Dynamics (CFD), this emerging problematic leads to the same "Big Data" challenges as in the computer science field. Some techniques have already been developed such as data partitioning and ordering or parallel processing but still remain insufficient for modern numerical simulations. Hence, the objective of this work is to propose new processing formalisms to circumvent the data volume issue for the future 2020 exa-scale computing objectives. To this aim, a massively parallel co-processing method, suited for complex geometries, was developed in order to extract large-scale features in turbulent flows. The principle of the method is to introduce a series of coarser nested grids to reduce the amount of data while keeping the large scales of interest. Data is transferred from one grid level to another using high-order filters and accurate interpolation techniques. This method enabled to apply modal decomposition techniques to a billion-cell LES of a 3D turbulent turbine blade, thus demonstrating its effectiveness. The capability of performing calculations on several embedded grid levels was then used to devise the multi-resolution LES (MR-LES). The aim of the method is to evaluate the modeling and numerical errors during an LES by conducting the same simulation on two different mesh resolutions, simultaneously. This error estimation is highly valuable as it allows to generate optimal grids through the building of an objective grid quality measure. MR-LES intents to limit the computational cost of the simulation while minimizing the sub-grid scale modeling errors. This novel framework was applied successfully to the simulation of a turbulent flow around a 3D cylinder
Beevers, A. „Transition Modelling for Axial Compressor Flows“. Thesis, Cranfield University, 2008. http://hdl.handle.net/1826/3479.
Der volle Inhalt der QuelleSouth, Andrew Hartmut. „Low-flow compressor performance“. Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627299.
Der volle Inhalt der QuelleGabrielsson, Gustav. „Tissue Compression Flossing - A systematic review“. Thesis, Linnéuniversitetet, Institutionen för idrottsvetenskap (ID), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-104249.
Der volle Inhalt der QuelleBücher zum Thema "Compression flows"
H, Anderson Bernhard, Shaw Robert J. 1946- und United States. National Aeronautics and Space Administration., Hrsg. Numerical simulation of supersonic compression corners and hypersonic inlet flows using the RPLUS2D code. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenCenter, Ames Research, Hrsg. Steady secondary flows generated by periodic compression and expansion of an ideal gas in a pulse tube. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1999.
Den vollen Inhalt der Quelle findenB, Roebuck, und National Physical Laboratory (Great Britain), Hrsg. Measuring flow stress in hot axisymmetric compression tests. Teddington: NPL, 1997.
Den vollen Inhalt der Quelle findenNeuhoff, F. Modifications to the inlet flow field of a transonic compressor rotor. Monterey, Calif: Naval Postgraduate School, 1985.
Den vollen Inhalt der Quelle findenStalker, R. J. Thermodynamics and wave processes in high Mach number propulsive ducts. Washington: AIAA, 1989.
Den vollen Inhalt der Quelle finden1936-, Kawamura Takaichi, Bencze Daniel P und Ames Research Center, Hrsg. Calculation of external-internal flow fields for mixed-compression inlets. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1987.
Den vollen Inhalt der Quelle finden1936-, Kawamura Takaichi, Bencze Daniel P und Ames Research Center, Hrsg. Calculation of external-internal flow fields for mixed-compression inlets. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1987.
Den vollen Inhalt der Quelle findenCenter, Ames Research, Hrsg. Computations of unsteady multistage compressor flows in a workstation environment. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1992.
Den vollen Inhalt der Quelle findenS, Prahst P., und United States. National Aeronautics and Space Administration., Hrsg. Inlet flow test calibration for a small axial compressor facility. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Blockage development in a transonic, axial compressor rotor. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Compression flows"
Zeman, O., und G. N. Coleman. „Compressible Turbulence Subjected to Shear and Rapid Compression“. In Turbulent Shear Flows 8, 283–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77674-8_20.
Der volle Inhalt der QuelleLeyland, P. „2D Hypersonic Viscous Flow over Compression Ramps“. In Hypersonic Flows for Reentry Problems, 407–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77922-0_39.
Der volle Inhalt der QuelleHaase, Werner. „Computational Results for Flows Over Compression Ramps“. In Hypersonic Flows for Reentry Problems, 268–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76527-8_23.
Der volle Inhalt der QuelleLeyland, Pénélope, Roland Richter und Tristan Neve. „High Speed Flows Over Compression Ramps“. In Proceedings of the Ninth GAMM-Conference on Numerical Methods in Fluid Mechanics, 223–36. Wiesbaden: Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-663-13974-4_22.
Der volle Inhalt der QuelleHaase, Werner. „Viscous, Hypersonic Flows Over Compression Ramps“. In Proceedings of the Eighth GAMM-Conference on Numerical Methods in Fluid Mechanics, 189–200. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-663-13975-1_20.
Der volle Inhalt der QuelleCaughan, Frances Mc. „Dynamic Modelling of Axial Flow Compression Systems“. In Instabilities and Turbulence in Engineering Flows, 151–71. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1743-2_8.
Der volle Inhalt der QuelleAlsalihi, Zuheyr, und Herman Deconinck. „Viscous, 2-D, Laminar Hypersonic Flows Over Compression Ramps“. In Hypersonic Flows for Reentry Problems, 152–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76527-8_15.
Der volle Inhalt der QuelleColeman, G. N., und N. N. Mansour. „Simulation and Modeling of Homogeneous Compressible Turbulence Under Isotropic Mean Compression“. In Turbulent Shear Flows 8, 269–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77674-8_19.
Der volle Inhalt der QuelleSrinivas, K. „Computation of Hypersonic Flow Past a Compression Corner by a Spatial Marching Scheme“. In Hypersonic Flows for Reentry Problems, 338–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77922-0_34.
Der volle Inhalt der QuelleHo, Yung-Han, Chih-Peng Chang, Peng-Yu Chen, Alessandro Gnutti und Wen-Hsiao Peng. „CANF-VC: Conditional Augmented Normalizing Flows for Video Compression“. In Lecture Notes in Computer Science, 207–23. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-19787-1_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Compression flows"
Ravindran, S. S. „Artificial Compression POD Reduced Order Model for Control of MHD Flows“. In 2024 American Control Conference (ACC), 3302–7. IEEE, 2024. http://dx.doi.org/10.23919/acc60939.2024.10644402.
Der volle Inhalt der QuelleWang, Jia, und Xiaolin Wu. „Information Flows in Video Coding“. In 2010 Data Compression Conference. IEEE, 2010. http://dx.doi.org/10.1109/dcc.2010.21.
Der volle Inhalt der QuelleZheng, Qun, Yan Shao und Yinyong Zhang. „Numerical Simulation of Aerodynamic Performances of Wet Compression Compressor Cascade“. In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-91125.
Der volle Inhalt der QuelleCHAMPNEY, J. „Modeling of turbulence for compression corner flows and internal flows“. In 25th Joint Propulsion Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1989. http://dx.doi.org/10.2514/6.1989-2344.
Der volle Inhalt der QuelleDogrusoz, Saduman, Mehmet Kavsaoglu und Unver Kaynak. „Numerical solution of hypersonic compression corner flows“. In 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001. http://dx.doi.org/10.2514/6.2001-1750.
Der volle Inhalt der QuelleSardari, Mohsen, Ahmad Beirami und Faramarz Fekri. „Memory-assisted universal compression of network flows“. In IEEE INFOCOM 2012 - IEEE Conference on Computer Communications. IEEE, 2012. http://dx.doi.org/10.1109/infcom.2012.6195842.
Der volle Inhalt der QuelleGerin-Roze, J., Mark Elert, Michael D. Furnish, Ricky Chau, Neil Holmes und Jeffrey Nguyen. „SELF-SIMILAR COMPRESSION FLOWS IN SPHERICAL GEOMETRY“. In SHOCK COMPRESSION OF CONDENSED MATTER - 2007: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2008. http://dx.doi.org/10.1063/1.2832992.
Der volle Inhalt der QuelleWindsheimer, Marc, Fabian Brand und André Kaup. „Multiscale Augmented Normalizing Flows for Image Compression“. In ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2024. http://dx.doi.org/10.1109/icassp48485.2024.10446147.
Der volle Inhalt der QuelleHeuzé, Olivier, Mark Elert, Michael D. Furnish, William W. Anderson, William G. Proud und William T. Butler. „ANALYTICAL SOLUTION FOR ISENTROPIC FLOWS IN SOLIDS“. In SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. AIP, 2009. http://dx.doi.org/10.1063/1.3295139.
Der volle Inhalt der QuelleSun, Lanxin, Yijin Li, Qun Zheng und Rakesh Bhargava. „The Effects of Wet Compression on the Separated Flow in a Compressor Stage“. In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50920.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Compression flows"
Hawley und Thorson. PR-015-13606-R01 Ultrasonic Meter Performance in Liquid Transients. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Juni 2014. http://dx.doi.org/10.55274/r0010846.
Der volle Inhalt der QuelleGeorge und Hawley. PR-015-12600-R01 Ability of Ultrasonic Meters to Measure Accurately in Compressor-Induced Pulsating Flows. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 2013. http://dx.doi.org/10.55274/r0010808.
Der volle Inhalt der QuelleCar, David, und Steven L. Puterbaugh. Fluid Mechanics of Compression System Flow Control. Fort Belvoir, VA: Defense Technical Information Center, Juli 2005. http://dx.doi.org/10.21236/ada444617.
Der volle Inhalt der QuelleLagus, P. L., und B. S. Flanagan. PR-197-723-R01 Compressor Flow Measurements. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 1988. http://dx.doi.org/10.55274/r0011964.
Der volle Inhalt der QuelleGeorge. PR-015-13603-R01 Meter Station Design Procedures to Minimize Pipe Flow-Induced Pulsation Error. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 2013. http://dx.doi.org/10.55274/r0010099.
Der volle Inhalt der QuelleAlexeenko, A. A., S. F. Gimelshein, E. P. Muntz und Andrew Ketsdever. Modeling of Thermal Transpiration Flows for Knudsen Compressor Optimization. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada433782.
Der volle Inhalt der QuelleLagus, P. L., und R. A. Grot. PR-221-9215-R01 Manufacture Pre-Production Gas Flow Measurement System. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Dezember 1995. http://dx.doi.org/10.55274/r0011966.
Der volle Inhalt der QuelleShiva, B. G. GMC-93-T03 Regenerative Heat Transfer in Reciprocating Compressors. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), November 1993. http://dx.doi.org/10.55274/r0011944.
Der volle Inhalt der QuelleLi, Baisong, und Bo Xu. PR-469-19604-Z01 Auto Diagnostic Method Development for Ultrasonic Flow Meter. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Februar 2022. http://dx.doi.org/10.55274/r0012204.
Der volle Inhalt der QuelleLagus, P. L., B. S. Flanagan und C. F. Gilbert. PR-197-911-R01 Development of Compressor Performance and Efficiency Evaluation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Oktober 1990. http://dx.doi.org/10.55274/r0012073.
Der volle Inhalt der Quelle