Auswahl der wissenschaftlichen Literatur zum Thema „Composites avec le graphite“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Composites avec le graphite" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Composites avec le graphite"

1

Kourtides, D. A. „Bismaleimide-Vinylpolystyrylpyridine Graphite Composites“. Journal of Thermoplastic Composite Materials 1, Nr. 1 (Januar 1988): 12–38. http://dx.doi.org/10.1177/089270578800100103.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

KOVALYSHYN, Yaroslav, Ivanna TERENYAK und Orest PEREVIZNYK. „CAPACITIVE PROPERTIES OF MODIFIED AND NON MODIFIED THERMALLY EXPANDED GRAPHITE COMPOSITES WITH POLYANILINE“. Proceedings of the Shevchenko Scientific Society. Series Сhemical Sciences 2020, Nr. 60 (25.02.2020): 75–84. http://dx.doi.org/10.37827/ntsh.chem.2020.60.075.

Der volle Inhalt der Quelle
Annotation:
Modified thermally exfoliated graphite with p-nitrophenyldiazonium tetrafluoroborate, followed by reduction of nitrophenyl groups to aminophenyl ones. Composites PAN - graphite, PAN - modified graphite at a constant value of potential 1 V were synthesized by electrochemical method. Their conditional density and electrical conductivity were determined. The electrochemical behavior in 1 M HCl solution was investigated and the capacity of synthesized composites was calculated. The conditional density of PAN composites with modified and non modified graphite increases sharply with increasing graphite content from 0 to 5%. At graphite contents higher than 5%, the density of composites varies very slightly. In the range of graphite contents 0% - 20%, the density is the highest for composites with a graphite content of 5% - 10%. In the case of modified graphite, the density of composites is higher than that of composites with non modified graphite. Analysis of the dependence of the specific conductivity on the content of modified graphite indicates that the conductivity of PAN - graphite composites increases the most with increasing graphite content from 1 to 10%. In this interval, the conductivity increases linearly. This indicates the absence of specific interactions between the components in the synthesized composites, as well as the fact that the nature of the distribution of these components does not change with changes in the graphite content. For a composite with modified graphite, there are two maximum capacities of composites with a graphite content of 2 and 10%. For a composite with non modified graphite on the obtained curves there is a maximum capacity of composites with a graphite content of 2%. Modification of the graphite surface leads to increased interaction between the components of the compo¬site, which resulted in the compaction of its structure. As a result, the capacitive characteristics of modified graphite composites, as well as CVA currents and electrical conductivity, were lower compared to composites with non modified graphite.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lambert, M. A., und L. S. Fletcher. „Thermal Conductivity of Graphite/Aluminum and Graphite/Copper Composites“. Journal of Heat Transfer 118, Nr. 2 (01.05.1996): 478–80. http://dx.doi.org/10.1115/1.2825869.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kumar, R., und T. S. Sudarshan. „Self-Lubricating Composites: Graphite-Copper“. Materials Technology 11, Nr. 5 (Januar 1996): 191–94. http://dx.doi.org/10.1080/10667857.1996.11752698.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Estrada-Moreno, I. A., C. Leyva-Porras, M. E. Mendoza-Duarte, S. G. Flores Gallardo und J. L. Rivera-Armenta. „Graphite Nanoplatelets in Elastomer Composites“. Microscopy and Microanalysis 25, S2 (August 2019): 1782–83. http://dx.doi.org/10.1017/s1431927619009644.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Siegrist, Marco E., und Jörg F. Löffler. „Bulk metallic glass–graphite composites“. Scripta Materialia 56, Nr. 12 (Juni 2007): 1079–82. http://dx.doi.org/10.1016/j.scriptamat.2007.02.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Muratov, K. R., und E. A. Gashev. „Finishing of graphite-based composites“. Russian Engineering Research 35, Nr. 8 (August 2015): 628–30. http://dx.doi.org/10.3103/s1068798x15080110.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tu, Haoming, und Lin Ye. „Thermal conductive PS/graphite composites“. Polymers for Advanced Technologies 20, Nr. 1 (Januar 2009): 21–27. http://dx.doi.org/10.1002/pat.1236.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Jiang, Tao. „Investigation of Microstructural Features and Mechanical Characteristics of the Pressureless Sintered B4C/C(Graphite) Composites and the B4C-SiC-Si Composites Fabricated by the Silicon Infiltration Process“. Materials 15, Nr. 14 (12.07.2022): 4853. http://dx.doi.org/10.3390/ma15144853.

Der volle Inhalt der Quelle
Annotation:
The B4C/C(graphite) composites were fabricated by employing a pressureless sintering process. The pressureless sintered B4C/C(graphite) composites exhibited extremely low mechanical characteristics. The liquid silicon infiltration technique was employed for enhancing the mechanical property of B4C/C(graphite) composites. Since the porosity of the B4C/C(graphite) composites was about 25–38%, the liquid silicon was able to infiltrate into the interior composites, thereby reacting with B4C and graphite to generate silicon carbide. Thus, boron carbide, silicon carbide, and residual silicon were sintered together forming B4C-SiC-Si composites. The pressureless sintered B4C/C(graphite) composites were transformed into the B4C-SiC-Si composites following the silicon infiltration process. This work comprises an investigation of the microstructure, phase composition, and mechanical characteristics of the pressureless sintered B4C/C(graphite) composites and B4C-SiC-Si composites. The XRD data demonstrated that the pressureless sintered bulks were composed of the B4C phase and graphite phase. The pressureless sintered B4C/C(graphite) composites exhibited a porous microstructure, an extremely low mechanical property, and low wear resistance. The XRD data of the B4C-SiC-Si specimens showed that silicon infiltrated specimens comprised a B4C phase, SiC phase, and residual Si. The B4C-SiC-Si composites manifested a compact and homogenous microstructure. The mechanical property of the B4C-SiC-Si composites was substantially enhanced in comparison to the pressureless sintered B4C/C(graphite) composites. The density, relative density, fracture strength, fracture toughness, elastic modulus, and Vickers hardness of the B4C-SiC-Si composites were notably enhanced as compared to the pressureless sintered B4C/C(graphite) composites. The B4C-SiC-Si composites also manifested outstanding resistance to wear as a consequence of silicon infiltration. The B4C-SiC-Si composites demonstrated excellent wear resistance and superior mechanical characteristics.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Shang, Yingshuang, Yunping Zhao, Yifan Liu, Ye Zhu, Zhenhua Jiang und Haibo Zhang. „The effect of micron-graphite particle size on the mechanical and tribological properties of PEEK Composites“. High Performance Polymers 30, Nr. 2 (05.01.2017): 153–60. http://dx.doi.org/10.1177/0954008316685410.

Der volle Inhalt der Quelle
Annotation:
The poly (ether ether ketone) (PEEK)/graphite composites with good tribological performance were studied. When compared with pure PEEK, the PEEK/graphite composites exhibited a lower frictional coefficient, which was attributed to the layer structure of graphite, which can be easily separated or slide past each other. Considerations were given to both the coefficient of friction and wear rate, and the PEEK/graphite composites showed the optimal tribological behavior when the graphite content was at 25 wt%. This proportion was chosen to investigate the effect of micron-graphite particle size on mechanical and tribological properties of the PEEK/graphite composites. The wear rate of the PEEK composites significantly decreased when the particle size of micron-graphite decreased. Moreover, the results showed that the wear rate had a strong dependence on the mechanical properties of the PEEK composites at the same graphite content level.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Composites avec le graphite"

1

Cai, Yihui. „Mechanosynthesis of 3D, 2D and quasi-2D hybrid perovskites and MAPbI3@graphite composites : mechanisms and potential applications“. Electronic Thesis or Diss., Strasbourg, 2024. https://publication-theses.unistra.fr/public/theses_doctorat/2024/Cai_Yihui_2024_ED222.pdf.

Der volle Inhalt der Quelle
Annotation:
Les pérovskites hybrides (PH) sont prometteuses pour des applications optoélectroniques au-delà de la photovoltaïque, avec d'autres applications explorées ici. Un défi majeur est d'obtenir une synthèse reproductible, pure et évolutive. La mécanosynthèse (MS), une méthode verte sans solvant, a permis de synthétiser des composites 3D PH MAPbI3 et graphite en 30 minutes, avec des propriétés similaires à celles des MAPbI3 à base de solvant. Le broyage prolongé a introduit des défauts, améliorant l'absorption des ondes électromagnétiques. Des PHs 2D purs n=1 et leurs composites ont été synthétisés avec succès avec trois ammoniums différents. Les PHs de faible dimension (n>2) ont montré une plus grande hétérogénéité de composition. La compaction des poudres de PHs 3D, 2D et quasi 2D a induit une préservation de la taille des grains, l’apparition d’une orientation préférentielle et une diminution de la réabsorption améliorant ainsi leur photoluminescence. Au niveau photodétection, le graphite a amélioré leur performance et les PHs (n>2) à la base phényléthylammonium ont montré des performances très prometteuses
Hybrid perovskites (HPs) are promising for optoelectronic applications beyond photovoltaics, with other application explored here. A main challenge is achieving reproducible, pure, and scalable synthesis. Mechanosynthesis (MS), a green and solvent-free method, was used to synthesize 3D HP MAPbI3 and graphite composites in 30 minutes, yielding properties similar to solvent-based MAPbI3. Extended grinding introduced defects, enhancing electromagnetic wave absorption. MS was also applied to low-dimensional HPs (n=1–3) with different ammoniums. Pure n=1 2D HPs and composites were synthesized successfully, while n>2 showed compositional heterogeneity. The compaction of 3D, 2D and quasi-2D PHs powders resulted in the preservation of grain size, the appearance of a preferential orientation and a reduction in reabsorption, thereby improving their photoluminescence. Graphite improved photodetection performance and phenylethylammonium-based PHs (n>2) showed very promising results
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rogier, Clémence. „Vers le développement d’un pseudocondensateur asymétrique avec des électrodes composites à base d’oxydes métalliques (MnO2, MoO3) et de carbones nanostructurés“. Thesis, CY Cergy Paris Université, 2020. http://www.theses.fr/2020CYUN1098.

Der volle Inhalt der Quelle
Annotation:
Les supercondensateurs sont des systèmes de stockage de l’énergie destinés à des applications de nécessitant de fortes densité de puissance. Leur densité d’énergie peut être augmentée en développant de nouveaux matériaux d’électrode à forte capacitance. Dans cet objectif ces travaux décrivent le développement de matériaux composites à base de carbones nanostructurés (architectures avec des nanotubes de carbones et/ou de graphène oxydé réduit) et d’oxydes métalliques pseudocapacitifs (MnO2 et MoO3 pour les électrodes positive et négative respectivement). Les oxydes métalliques permettent de générer de fortes capacitances grâce à des réactions redox réversibles sur une large gamme de potentiels. La matrice carbonée nanostructurée induit une porosité et une conductivité des électrodes optimisées et assure le transport des ions et des électrons au sein des matériaux.L’électrode positive MnO2-rGO-CNTs est développée par pulvérisation des nanomatériaux carbonés directement sur le collecteur de courant avec un spray dynamique robotisé puis par croissance électrochimique de l’oxyde. Sa capacitance maximale est de 265 F/g. Dans une approche similaire, l’électrode négative MoO3-CNTs est développée, avec une capacitance maximale de 274 F/g. Les matériaux d’électrodes sont caractérisés par différentes techniques physicochimiques (microscopies, analyses de porosité, DRX, spectroscopies).Ces électrodes sont ensuite associées au sein d’un pseudocondensateur hybride asymétrique utilisant un électrolyte organique (LiTFSI/GBL) avec une tension de fonctionnement de 2V. Les performances de ce système en termes de densités d’énergie et de puissance ainsi que de stabilité électrochimique sont étudiées sur plusieurs milliers de cycles. La densité d’énergie maximale est calculée à 25 Wh/kg pour une densité de puissance de 0,1 kW/kg
Supercapacitors are energy storage devices for applications requiring high power densities. By developing new electrode materials with high capacitance energy densities can be enhanced. In that regard this work presents the development of composites materials associating nanostructured carbons (architectures with carbon nanotubes and/or reduced graphene oxide) and pseudocapacitive metal oxides (MnO2 and MoO3 for positive and negative electrodes respectively). Metal oxides generate high capacitances thanks to reversible redox reactions in a wide range of potentials. The nanostructured carbon matrix optimizes porosity and conductivity of the electrodes to ensure good ionic and electronic transport within the materials.First MnO2-rGO-CNTs is developed as a positive electrode using spray gun deposition of carbon nanomaterials before electrochemical growth of the oxide. The interest of these elaboration techniques lies in their easy large-scale implementation. Its maximum capacitance is measured at 265 F/g. In a similar approach MoO3-CNTs is developed as a negative electrode with a maximum capacitance of 274 F/g. The materials are characterized using different physicochemical methods (microscopy, spectroscopy, porosity analysis, XRD).These electrodes are then combined in an asymmetric hybrid pseudocapacitor in an organic electrolyte (LiTFSI/GBL) with an operating voltage window of 2V. The performances of this system in terms of energy and power densities as well as electrochemical stability were studied over several thousand cycles. The maximum energy density was found to be of 25 Wh/kg for a power density of 0.1 kW/kg
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Repasi, Ivett. „Expanded graphite filled polymer composites“. Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.557649.

Der volle Inhalt der Quelle
Annotation:
The aim of this project was to produce expanded graphite (EO) and modified EO-filled electrically conductive polymer composites and to investigate the effects of different additive modifications and preparation conditions on the microstructure and electrical properties of these composites. Modifications included the use of dry blending and ultrasound to reduce their size, use of various suspension media and surfactants to stabilize particle suspensions. To compare the effectiveness of different filler modification processes on electrical conductivity, unmodified and treated EO were incorporated into polypropylene (PP) by melt mixing and EO based dispersions were used to make polyvinyl alcohol (PV A) composites by solution casting. The PP composites were made using various processing methods and conditions at filler concentrations up to 12 wt%, while the polyvinyl alcohol samples contained graphite concentrations up to 8 wt%. To analyse the crystalline morphology of sample and the dispersion of the filler in the composites samples were analysed by light and electron microscopy, DSC and X-ray diffraction. TOA was also used to investigate the thermal stability of the composites. It was found that the presence of graphite, significantly changed the crystal morphology of PP. Solution mixed PVA samples showed improved dispersion and the particle size was effectively reduced.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Savage, Gary. „Mechanical properties of carbon/graphite composites“. Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Leesirisan, Siriwan. „Polyethersulphone/graphite conductive composites for coatings“. Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/13597.

Der volle Inhalt der Quelle
Annotation:
In this research, the electrical conductivity and thermal properties of polyethersulphone (PES) insulating polymer were improved, at its optimum micromechanical properties, by filling with electrically and thermally conductive graphite, for use in coatings for electrostatic dissipation applications. The graphite employed was a micro-/nano-graphite with aspect ratios in the range 100-600. Two types of the graphite, untreated and treated, were used for PES composites and LiCI-doped PES composite fabrication via a solution method. The treated graphite was surface functionalised by concentrated nitric acid treatment. FT-IR indicated the effectiveness of concentrated nitric acid treatment in introducing additional -COOH groups on the surfaces of the graphite. XRD, SEM and TEM revealed the dispersion of the graphite throughout the PES matrix in both an immiscIble and disordered manner, and the existence of aggregates of graphite. Nanoindentation testing showed insignificant decreases in the nanohardness and elastic modulus of the PES/treated graphite composites when the treated graphite content was not more than 5 wt%; whereas, increasing the content of the treated graphite increased the nanoscratch resistance of the composites. Due to the high aspect ratio of the graphite, the electrical conductivities of the PES/untreated and PES/treated graphite composites were enhanced at low loadings. An initial conducting pathway was formed at lower than 3 wt% of the filler. The enhancement by 2 orders of magnitude of the electrical conductivity of a PES/treated graphite composite could be accomplished by doping with 0.06 wt% of LiC!. MDSC showed improvements in the thermal conductivity of the PES matrix by 165 and 91% with the addition of 5 wt% of the untreated and treated graphite, respectively. DSC curves illustrated higher glass transition temperatures of the PES/graphite composites and doped PES/graphite composites, compared to the pure PES. Decreases in relaxation enthalpy WIth time, due to physical ageing of PES, were smaller when the PES was filled with the graphite or LiCI-doped graphite. The decrease in relaxation enthalpy of the materials was accompanied by increases in glass transition temperature and characteristIc length. Physical ageing also led to a decrease in the electrical conductivities of the PES/graphite composites and doped PES/graphite composites.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chen, Rong-Sheng. „Hygrothermal response of graphite/epoxy composites /“. The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487326511715323.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Crews, Lauren K. (Lauren Kucner) 1971. „High temperature degradation of graphite/epoxy composites“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/42815.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1998.
Includes bibliographical references (p. 266-270).
The problem of determining the response of a laminated composite plate exposed to a high temperature environment while mechanically loaded is approached by identifying the underlying mechanisms and addressing them separately. The approach is general, but the work focuses on the response of AS4/3501-6 graphite/epoxy composites. The mechanisms studied and modeled in this work are thermal response, degradation chemistry, and changes in mechanical material properties. The thermal response of an orthotropic plate exposed to convective heating is modeled using generalized heat transfer theory. The key parameters identified as controlling the thermal response include well-known parameters from heat transfer literature and a new parameter called the geometry-orthotropy parameter. From these parameters, the accuracy with which a multi-dimensional temperature distribution may be approximated using a onedimensional thermal model is quantified. The degradation chemistry of 3501-6 epoxy is studied through thermogravimetric analysis (TGA) experiments conducted in an inert atmosphere. A model of degradation based on a single Arrhenius rate equation is developed. Reaction constants for the degradation model are determined empirically and the validity of the model is verified through separate TGA experiments. A novel method for assessing the degradation state of a sample with an unknown thermal history is proposed. Analyses employing the method achieve estimates of the degradation state within 0.3 to 28% of the actual values. Changes in mechanical material properties are quantified by measuring the modulus and tensile strength of unidirectional [0]4 and [90]12 coupons exposed to temperatures as high as 400°C in a furnace. Some coupons are loaded to failure while exposed to the test temperature, others are first cooled to room temperature, allowing at-temperature and residual properties to be directly compared. Transverse properties are very sensitive to temperature around the glass transition temperature, but may recover when the coupon cools. Transverse properties are also very sensitive to small values (-0.03) of degradation state. Longitudinal properties are less sensitive to these variables. Temperature and degradation state are identified as appropriate metrics for quantifying changes in material properties. Models of the measured properties as functions of these variables are developed. A methodology for integrating models of the various mechanisms underlying structural response is presented. The thermal response model, degradation chemistry model, and material property models developed in this work are integrated with a thermomechanical response model based on classical laminated plate theory and implemented in a one-dimensional predictive code. This work establishes a foundation upon which a complete mechanism-based integrated model of the response of mechanically-loaded composites exposed to high temperatures may be developed. Specific recommendations for further work are provided.
by Lauren K. Crews.
Ph.D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lubaba, Nicholas C. H. „Microstructure and strength of magnesia-graphite refractory composites“. Thesis, University of Sheffield, 1986. http://etheses.whiterose.ac.uk/10254/.

Der volle Inhalt der Quelle
Annotation:
The relationships between fabrication variables, microstructure and selected properties of carbon bonded magnesia-graphite refractory composite materials have been investigated. A novel optical microscope method of characterizing the morphology of flake graphites was developed and used to determine distributions of length and thickness and average aspect ratios for the four graphite samples used in the study. The compaction behaviour of magnesia alone and in combination with the flake graphites has been studied in some detail and the microstructures of the products elucidated. It is shown that the amount of magnesia of small particle size plays a significant role in determining the graphite-graphite contact area in the structure. An irreversible volume expansion is observed on firing composites, the magnitude of which can be related to the microstructure and the graphite content. A phenolic resin binder restricts this expansion. It is shown that the carbon binder does not bond to the graphite phase and only weakly, if at all, to the magnesia. Consequently the strengths and moduli are low and show only a small variation with graphite type. The effect of adding graphite to carbon-bonded magnesia is to lower the strength slightly, but increasing the graphite content from 20-30% causes a small increase in strength. Increasing the amount of carbon bond from pitch has little effect on strength at levels of 5-15% whereas over the range 5-13% the resin binder has a more pronounced effect. The most significant factor affecting the strength and modulus of fired composites is the amount of silicon or aluminium, added as oxidation inhibitors, which react to form carbide and nitride phases. Finally, a brief study of slag penetration shows that this can be reduced by decreasing the amount of oxide fines in the composite because of the changes in microstructure that, result.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Engelbert, Carl Robert. „Statistical characterization of graphite fiber for prediction of composite structure reliability“. Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA238020.

Der volle Inhalt der Quelle
Annotation:
Thesis (M.S. in Aeronautical Engineering)--Naval Postgraduate School, June 1990.
Thesis Advisor(s): Wu, Edward M. "June 1990." Description based on signature page as viewed on October 21, 2009. DTIC Identifier(s): Graphite fiber strength testing, graphite fiber statistical evaluation. Author(s) subject terms: Graphite fiber strength testing, graphite fiber statistical evaluation, composite reliability predictions. Includes bibliographical references (p. 78-79). Also available in print.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Elmore, Jennifer Susan. „Dynamic mechanical analysis of graphite/epoxy composites with varied interphases“. Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-10312009-020414/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Composites avec le graphite"

1

1964-, Chan H. E., Hrsg. Graphene and graphite materials. Hauppauge. NY: Nova Science Publishers, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Graves, Michael J. Initiation and extent of impact damage in graphite/epoxy and graphite/PEEK composites. New York: AIAA, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

L, Smith Donald. Properties of three graphite/toughened resin composites. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Vannucci, Raymond D. Graphite/PMR polyimide composites with improved toughness. [Washington, DC]: National Aeronautics and Space Administration, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Delmonte, John. Technology of carbon and graphite fiber composites. Malabar, Fla: R.E. Krieger Pub. Co., 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Gaier, James R. EMI shields made from intercalated graphite composites. [Washington, DC]: National Aeronautics and Space Administration, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Abel, Phillip B. Ohmic heating of composite candidate graphite-fiber/coating combinations. Cleveland, Ohio: Lewis Research Center, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Le, Jia-Liang. Graphene nanoplatelet (GNP) reinforced asphalt mixtures: A novel multifunctional pavement material. Washington, DC: IDEA Programs, Transportation Research Board of the National Academies, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

United States. National Aeronautics and Space Administration., Hrsg. 371 C mechanical properties of graphite/polyimide composites. [Washington, D.C.]: National Aeronautics and Space Administration, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

1928-, Sun C. T., und United States. National Aeronautics and Space Administration., Hrsg. Dynamic delamination crack propagation in a graphite/epoxy laminate. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Composites avec le graphite"

1

Hahn, H. T., und O. Choi. „Graphite Nanoplatelet Composites and Their Applications“. In Composite Materials, 169–86. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-166-0_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Margetan, F. J., B. P. Newberry, T. A. Gray und R. B. Thompson. „Modeling Ultrasonic Beam Propagation in Graphite Composites“. In Review of Progress in Quantitative Nondestructive Evaluation, 157–64. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0817-1_20.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Colorado, H. A., A. Wong und J. M. Yang. „Compressive Strength of Epoxy- Graphite Nanoplatelets Composites“. In Supplemental Proceedings, 297–306. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118356074.ch39.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Menezes, Pradeep L., Carlton J. Reeves, Pradeep K. Rohatgi und Michael R. Lovell. „Self-Lubricating Behavior of Graphite-Reinforced Composites“. In Tribology for Scientists and Engineers, 341–89. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1945-7_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Huang, Nan, Zhaofeng Zhai, Yuning Guo, Qingquan Tian und Xin Jiang. „Diamond/Graphite Nanostructured Film: Synthesis, Properties, and Applications“. In Novel Carbon Materials and Composites, 205–22. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119313649.ch7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Oliva González, Cesar Máximo, Oxana V. Kharissova, Cynthia Estephanya Ibarra Torres, Boris I. Kharisov und Lucy T. Gonzalez. „Chapter 1. Hybrids of Graphite, Graphene and Graphene Oxide“. In All-carbon Composites and Hybrids, 1–30. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162718-00001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ye, Yifei, Xu Ran, Bozhe Dong und Yanyi Yang. „Effect of Graphite Content on the Tribological Properties of Cu–Graphite–SiO2 Composites“. In High Performance Structural Materials, 899–909. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0104-9_94.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kriz, R. D. „Monitoring Elastic Stiffness Degradation in Graphite/Epoxy Composites“. In Solid mechanics research for quantitative non-destructive evaluation, 389–95. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3523-5_24.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Liu, Minshan, Qiwu Dong, Xin Gu und Aifang Sun. „Heat Conduction Properties of PTFE/Graphite-Based Composites“. In Particle and Continuum Aspects of Mesomechanics, 769–76. London, UK: ISTE, 2010. http://dx.doi.org/10.1002/9780470610794.ch79.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wu, Meng-Chou, und William H. Prosser. „Harmonic Generation Measurements in Unidirectional Graphite/Epoxy Composites“. In Review of Progress in Quantitative Nondestructive Evaluation, 1477–82. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3742-7_44.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Composites avec le graphite"

1

Gates, Thomas, und L. Brinson. „Acceleration of aging in graphite/bismaleimide and graphite/thermoplastic composites“. In 35th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1582.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Becker, Wayne. „Aytoclawe Tooling for Thermoplastic/Graphite Composites“. In General Aviation Aircraft Meeting and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/891043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kim, Hahnsang, O. Choi und H. Hahn. „Graphite Fiber Composites Reinforced With Nanopaticles“. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th
. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1853.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ricciardi, M. R., A. Martone, F. Cristiano, F. Bertocchi und M. Giordano. „Nacre-like composites made by graphite nanoplatelets“. In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045934.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Mokhtari, Mozaffar, Sean Duffy, Edward Archer, Eileen Harkin-Jones, Noel Bloomfield, Alberto Lario Cabello und Alistair McIlhagger. „Easy processing antistatic PEEK/expanded graphite composites“. In INTERNATIONAL CONFERENCE ON HUMANS AND TECHNOLOGY: A HOLISTIC AND SYMBIOTIC APPROACH TO SUSTAINABLE DEVELOPMENT: ICHT 2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0135864.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bisal, K. B., und Kamal K. Kar. „Exfoliated Graphite reinforced Acrylonitrile butadiene styrene Composites“. In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-95.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

GRAVES, MICHAEL, und JAN KOONTZ. „Initiation and extent of impact damage in graphite/epoxy and graphite/PEEK composites“. In 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2327.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Brar, N. S., H. Simha und A. Pratap. „High-strain-rate characterization of TPOs and graphite/epoxy and graphite/peek composites“. In Second International Conference on Experimental Mechanics, herausgegeben von Fook S. Chau und Chenggen Quan. SPIE, 2001. http://dx.doi.org/10.1117/12.429554.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Raza, M. A., A. V. K. Westwood und C. Stirling. „Graphite nanoplatelet/silicone composites for thermal interface applications“. In 2010 International Symposium on Advanced Packaging Materials: Microtech (APM). IEEE, 2010. http://dx.doi.org/10.1109/isapm.2010.5441382.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Karavaev, Dmitrii. „MECHANICAL PROPERTIES OF EXPANDED GRAPHITE / SILICONE RESIN COMPOSITES“. In 14th SGEM GeoConference on NANO, BIO AND GREEN � TECHNOLOGIES FOR A SUSTAINABLE FUTURE. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b61/s24.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Composites avec le graphite"

1

Gupta, Vijay. Mechanism Based Failure Laws for Graphite/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, Juli 1998. http://dx.doi.org/10.21236/ada397678.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jenkins, G. M., und L. R. Holland. Hot forging of graphite-carbide composites. Final report. Office of Scientific and Technical Information (OSTI), Juli 1998. http://dx.doi.org/10.2172/638242.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kumosa, M. S., K. Searles, G. Odegard, V. Thirumalai und J. McCarthy. Biaxial Failure Analysis of Graphite Reinforced Polymide Composites. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada368821.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kumosa, Maciej S., Kevin H. Searles, Greg Odegard und V. Thirumalai. Biaxial Failure Analysis of Graphite Reinforced Polyimide Composites. Fort Belvoir, VA: Defense Technical Information Center, November 1996. http://dx.doi.org/10.21236/ada329883.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sun, C. T., und K. J. Yoon. Mechanical Properties of Graphite/Epoxy Composites at Various Temperatures. Fort Belvoir, VA: Defense Technical Information Center, Januar 1988. http://dx.doi.org/10.21236/ada199311.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Eng, Anthony T. Analysis of the NAVAIRDEVCEN Self-Priming Topcoat on Graphite/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada205961.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kumosa, M. S. Fundamental Issues Regarding the High Temperature Failure Properties of Graphite/Polyimide Fabric Composites. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2004. http://dx.doi.org/10.21236/ada430088.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Pellerin, Roy F. In-Plane Stress Waves for NDE (Nondestructive Evaluation) of Graphite Fiber/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada197718.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Searles, K., J. McCarthy und M. Kumosa. An Image Analysis Technique for Evaluating Internal Damage in Graphite/Polyimide Fabric Composites. Fort Belvoir, VA: Defense Technical Information Center, März 1997. http://dx.doi.org/10.21236/ada329913.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Menchhofer, Paul A. INVESTIGATION OF TITANIUM BONDED GRAPHITE FOAM COMPOSITES FOR MICRO ELECTRONIC MECHANICAL SYSTEMS (MEMS) APPLICATIONS. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1246779.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie