Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Composites avec le graphite“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Composites avec le graphite" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Composites avec le graphite"
Kourtides, D. A. „Bismaleimide-Vinylpolystyrylpyridine Graphite Composites“. Journal of Thermoplastic Composite Materials 1, Nr. 1 (Januar 1988): 12–38. http://dx.doi.org/10.1177/089270578800100103.
Der volle Inhalt der QuelleKOVALYSHYN, Yaroslav, Ivanna TERENYAK und Orest PEREVIZNYK. „CAPACITIVE PROPERTIES OF MODIFIED AND NON MODIFIED THERMALLY EXPANDED GRAPHITE COMPOSITES WITH POLYANILINE“. Proceedings of the Shevchenko Scientific Society. Series Сhemical Sciences 2020, Nr. 60 (25.02.2020): 75–84. http://dx.doi.org/10.37827/ntsh.chem.2020.60.075.
Der volle Inhalt der QuelleLambert, M. A., und L. S. Fletcher. „Thermal Conductivity of Graphite/Aluminum and Graphite/Copper Composites“. Journal of Heat Transfer 118, Nr. 2 (01.05.1996): 478–80. http://dx.doi.org/10.1115/1.2825869.
Der volle Inhalt der QuelleKumar, R., und T. S. Sudarshan. „Self-Lubricating Composites: Graphite-Copper“. Materials Technology 11, Nr. 5 (Januar 1996): 191–94. http://dx.doi.org/10.1080/10667857.1996.11752698.
Der volle Inhalt der QuelleEstrada-Moreno, I. A., C. Leyva-Porras, M. E. Mendoza-Duarte, S. G. Flores Gallardo und J. L. Rivera-Armenta. „Graphite Nanoplatelets in Elastomer Composites“. Microscopy and Microanalysis 25, S2 (August 2019): 1782–83. http://dx.doi.org/10.1017/s1431927619009644.
Der volle Inhalt der QuelleSiegrist, Marco E., und Jörg F. Löffler. „Bulk metallic glass–graphite composites“. Scripta Materialia 56, Nr. 12 (Juni 2007): 1079–82. http://dx.doi.org/10.1016/j.scriptamat.2007.02.022.
Der volle Inhalt der QuelleMuratov, K. R., und E. A. Gashev. „Finishing of graphite-based composites“. Russian Engineering Research 35, Nr. 8 (August 2015): 628–30. http://dx.doi.org/10.3103/s1068798x15080110.
Der volle Inhalt der QuelleTu, Haoming, und Lin Ye. „Thermal conductive PS/graphite composites“. Polymers for Advanced Technologies 20, Nr. 1 (Januar 2009): 21–27. http://dx.doi.org/10.1002/pat.1236.
Der volle Inhalt der QuelleJiang, Tao. „Investigation of Microstructural Features and Mechanical Characteristics of the Pressureless Sintered B4C/C(Graphite) Composites and the B4C-SiC-Si Composites Fabricated by the Silicon Infiltration Process“. Materials 15, Nr. 14 (12.07.2022): 4853. http://dx.doi.org/10.3390/ma15144853.
Der volle Inhalt der QuelleShang, Yingshuang, Yunping Zhao, Yifan Liu, Ye Zhu, Zhenhua Jiang und Haibo Zhang. „The effect of micron-graphite particle size on the mechanical and tribological properties of PEEK Composites“. High Performance Polymers 30, Nr. 2 (05.01.2017): 153–60. http://dx.doi.org/10.1177/0954008316685410.
Der volle Inhalt der QuelleDissertationen zum Thema "Composites avec le graphite"
Cai, Yihui. „Mechanosynthesis of 3D, 2D and quasi-2D hybrid perovskites and MAPbI3@graphite composites : mechanisms and potential applications“. Electronic Thesis or Diss., Strasbourg, 2024. https://publication-theses.unistra.fr/public/theses_doctorat/2024/Cai_Yihui_2024_ED222.pdf.
Der volle Inhalt der QuelleHybrid perovskites (HPs) are promising for optoelectronic applications beyond photovoltaics, with other application explored here. A main challenge is achieving reproducible, pure, and scalable synthesis. Mechanosynthesis (MS), a green and solvent-free method, was used to synthesize 3D HP MAPbI3 and graphite composites in 30 minutes, yielding properties similar to solvent-based MAPbI3. Extended grinding introduced defects, enhancing electromagnetic wave absorption. MS was also applied to low-dimensional HPs (n=1–3) with different ammoniums. Pure n=1 2D HPs and composites were synthesized successfully, while n>2 showed compositional heterogeneity. The compaction of 3D, 2D and quasi-2D PHs powders resulted in the preservation of grain size, the appearance of a preferential orientation and a reduction in reabsorption, thereby improving their photoluminescence. Graphite improved photodetection performance and phenylethylammonium-based PHs (n>2) showed very promising results
Rogier, Clémence. „Vers le développement d’un pseudocondensateur asymétrique avec des électrodes composites à base d’oxydes métalliques (MnO2, MoO3) et de carbones nanostructurés“. Thesis, CY Cergy Paris Université, 2020. http://www.theses.fr/2020CYUN1098.
Der volle Inhalt der QuelleSupercapacitors are energy storage devices for applications requiring high power densities. By developing new electrode materials with high capacitance energy densities can be enhanced. In that regard this work presents the development of composites materials associating nanostructured carbons (architectures with carbon nanotubes and/or reduced graphene oxide) and pseudocapacitive metal oxides (MnO2 and MoO3 for positive and negative electrodes respectively). Metal oxides generate high capacitances thanks to reversible redox reactions in a wide range of potentials. The nanostructured carbon matrix optimizes porosity and conductivity of the electrodes to ensure good ionic and electronic transport within the materials.First MnO2-rGO-CNTs is developed as a positive electrode using spray gun deposition of carbon nanomaterials before electrochemical growth of the oxide. The interest of these elaboration techniques lies in their easy large-scale implementation. Its maximum capacitance is measured at 265 F/g. In a similar approach MoO3-CNTs is developed as a negative electrode with a maximum capacitance of 274 F/g. The materials are characterized using different physicochemical methods (microscopy, spectroscopy, porosity analysis, XRD).These electrodes are then combined in an asymmetric hybrid pseudocapacitor in an organic electrolyte (LiTFSI/GBL) with an operating voltage window of 2V. The performances of this system in terms of energy and power densities as well as electrochemical stability were studied over several thousand cycles. The maximum energy density was found to be of 25 Wh/kg for a power density of 0.1 kW/kg
Repasi, Ivett. „Expanded graphite filled polymer composites“. Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.557649.
Der volle Inhalt der QuelleSavage, Gary. „Mechanical properties of carbon/graphite composites“. Thesis, Imperial College London, 1986. http://hdl.handle.net/10044/1/38153.
Der volle Inhalt der QuelleLeesirisan, Siriwan. „Polyethersulphone/graphite conductive composites for coatings“. Thesis, Loughborough University, 2007. https://dspace.lboro.ac.uk/2134/13597.
Der volle Inhalt der QuelleChen, Rong-Sheng. „Hygrothermal response of graphite/epoxy composites /“. The Ohio State University, 1987. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487326511715323.
Der volle Inhalt der QuelleCrews, Lauren K. (Lauren Kucner) 1971. „High temperature degradation of graphite/epoxy composites“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/42815.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 266-270).
The problem of determining the response of a laminated composite plate exposed to a high temperature environment while mechanically loaded is approached by identifying the underlying mechanisms and addressing them separately. The approach is general, but the work focuses on the response of AS4/3501-6 graphite/epoxy composites. The mechanisms studied and modeled in this work are thermal response, degradation chemistry, and changes in mechanical material properties. The thermal response of an orthotropic plate exposed to convective heating is modeled using generalized heat transfer theory. The key parameters identified as controlling the thermal response include well-known parameters from heat transfer literature and a new parameter called the geometry-orthotropy parameter. From these parameters, the accuracy with which a multi-dimensional temperature distribution may be approximated using a onedimensional thermal model is quantified. The degradation chemistry of 3501-6 epoxy is studied through thermogravimetric analysis (TGA) experiments conducted in an inert atmosphere. A model of degradation based on a single Arrhenius rate equation is developed. Reaction constants for the degradation model are determined empirically and the validity of the model is verified through separate TGA experiments. A novel method for assessing the degradation state of a sample with an unknown thermal history is proposed. Analyses employing the method achieve estimates of the degradation state within 0.3 to 28% of the actual values. Changes in mechanical material properties are quantified by measuring the modulus and tensile strength of unidirectional [0]4 and [90]12 coupons exposed to temperatures as high as 400°C in a furnace. Some coupons are loaded to failure while exposed to the test temperature, others are first cooled to room temperature, allowing at-temperature and residual properties to be directly compared. Transverse properties are very sensitive to temperature around the glass transition temperature, but may recover when the coupon cools. Transverse properties are also very sensitive to small values (-0.03) of degradation state. Longitudinal properties are less sensitive to these variables. Temperature and degradation state are identified as appropriate metrics for quantifying changes in material properties. Models of the measured properties as functions of these variables are developed. A methodology for integrating models of the various mechanisms underlying structural response is presented. The thermal response model, degradation chemistry model, and material property models developed in this work are integrated with a thermomechanical response model based on classical laminated plate theory and implemented in a one-dimensional predictive code. This work establishes a foundation upon which a complete mechanism-based integrated model of the response of mechanically-loaded composites exposed to high temperatures may be developed. Specific recommendations for further work are provided.
by Lauren K. Crews.
Ph.D.
Lubaba, Nicholas C. H. „Microstructure and strength of magnesia-graphite refractory composites“. Thesis, University of Sheffield, 1986. http://etheses.whiterose.ac.uk/10254/.
Der volle Inhalt der QuelleEngelbert, Carl Robert. „Statistical characterization of graphite fiber for prediction of composite structure reliability“. Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA238020.
Der volle Inhalt der QuelleThesis Advisor(s): Wu, Edward M. "June 1990." Description based on signature page as viewed on October 21, 2009. DTIC Identifier(s): Graphite fiber strength testing, graphite fiber statistical evaluation. Author(s) subject terms: Graphite fiber strength testing, graphite fiber statistical evaluation, composite reliability predictions. Includes bibliographical references (p. 78-79). Also available in print.
Elmore, Jennifer Susan. „Dynamic mechanical analysis of graphite/epoxy composites with varied interphases“. Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-10312009-020414/.
Der volle Inhalt der QuelleBücher zum Thema "Composites avec le graphite"
1964-, Chan H. E., Hrsg. Graphene and graphite materials. Hauppauge. NY: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenGraves, Michael J. Initiation and extent of impact damage in graphite/epoxy and graphite/PEEK composites. New York: AIAA, 1988.
Den vollen Inhalt der Quelle findenL, Smith Donald. Properties of three graphite/toughened resin composites. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1991.
Den vollen Inhalt der Quelle findenVannucci, Raymond D. Graphite/PMR polyimide composites with improved toughness. [Washington, DC]: National Aeronautics and Space Administration, 1985.
Den vollen Inhalt der Quelle findenDelmonte, John. Technology of carbon and graphite fiber composites. Malabar, Fla: R.E. Krieger Pub. Co., 1987.
Den vollen Inhalt der Quelle findenGaier, James R. EMI shields made from intercalated graphite composites. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenAbel, Phillip B. Ohmic heating of composite candidate graphite-fiber/coating combinations. Cleveland, Ohio: Lewis Research Center, 1993.
Den vollen Inhalt der Quelle findenLe, Jia-Liang. Graphene nanoplatelet (GNP) reinforced asphalt mixtures: A novel multifunctional pavement material. Washington, DC: IDEA Programs, Transportation Research Board of the National Academies, 2015.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. 371 C mechanical properties of graphite/polyimide composites. [Washington, D.C.]: National Aeronautics and Space Administration, 1985.
Den vollen Inhalt der Quelle finden1928-, Sun C. T., und United States. National Aeronautics and Space Administration., Hrsg. Dynamic delamination crack propagation in a graphite/epoxy laminate. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Composites avec le graphite"
Hahn, H. T., und O. Choi. „Graphite Nanoplatelet Composites and Their Applications“. In Composite Materials, 169–86. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-166-0_7.
Der volle Inhalt der QuelleMargetan, F. J., B. P. Newberry, T. A. Gray und R. B. Thompson. „Modeling Ultrasonic Beam Propagation in Graphite Composites“. In Review of Progress in Quantitative Nondestructive Evaluation, 157–64. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0817-1_20.
Der volle Inhalt der QuelleColorado, H. A., A. Wong und J. M. Yang. „Compressive Strength of Epoxy- Graphite Nanoplatelets Composites“. In Supplemental Proceedings, 297–306. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118356074.ch39.
Der volle Inhalt der QuelleMenezes, Pradeep L., Carlton J. Reeves, Pradeep K. Rohatgi und Michael R. Lovell. „Self-Lubricating Behavior of Graphite-Reinforced Composites“. In Tribology for Scientists and Engineers, 341–89. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-1945-7_11.
Der volle Inhalt der QuelleHuang, Nan, Zhaofeng Zhai, Yuning Guo, Qingquan Tian und Xin Jiang. „Diamond/Graphite Nanostructured Film: Synthesis, Properties, and Applications“. In Novel Carbon Materials and Composites, 205–22. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119313649.ch7.
Der volle Inhalt der QuelleOliva González, Cesar Máximo, Oxana V. Kharissova, Cynthia Estephanya Ibarra Torres, Boris I. Kharisov und Lucy T. Gonzalez. „Chapter 1. Hybrids of Graphite, Graphene and Graphene Oxide“. In All-carbon Composites and Hybrids, 1–30. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839162718-00001.
Der volle Inhalt der QuelleYe, Yifei, Xu Ran, Bozhe Dong und Yanyi Yang. „Effect of Graphite Content on the Tribological Properties of Cu–Graphite–SiO2 Composites“. In High Performance Structural Materials, 899–909. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0104-9_94.
Der volle Inhalt der QuelleKriz, R. D. „Monitoring Elastic Stiffness Degradation in Graphite/Epoxy Composites“. In Solid mechanics research for quantitative non-destructive evaluation, 389–95. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3523-5_24.
Der volle Inhalt der QuelleLiu, Minshan, Qiwu Dong, Xin Gu und Aifang Sun. „Heat Conduction Properties of PTFE/Graphite-Based Composites“. In Particle and Continuum Aspects of Mesomechanics, 769–76. London, UK: ISTE, 2010. http://dx.doi.org/10.1002/9780470610794.ch79.
Der volle Inhalt der QuelleWu, Meng-Chou, und William H. Prosser. „Harmonic Generation Measurements in Unidirectional Graphite/Epoxy Composites“. In Review of Progress in Quantitative Nondestructive Evaluation, 1477–82. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3742-7_44.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Composites avec le graphite"
Gates, Thomas, und L. Brinson. „Acceleration of aging in graphite/bismaleimide and graphite/thermoplastic composites“. In 35th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1994. http://dx.doi.org/10.2514/6.1994-1582.
Der volle Inhalt der QuelleBecker, Wayne. „Aytoclawe Tooling for Thermoplastic/Graphite Composites“. In General Aviation Aircraft Meeting and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. http://dx.doi.org/10.4271/891043.
Der volle Inhalt der QuelleKim, Hahnsang, O. Choi und H. Hahn. „Graphite Fiber Composites Reinforced With Nanopaticles“. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
14th AIAA/ASME/AHS Adaptive Structures Conference
7th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-1853.
Ricciardi, M. R., A. Martone, F. Cristiano, F. Bertocchi und M. Giordano. „Nacre-like composites made by graphite nanoplatelets“. In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045934.
Der volle Inhalt der QuelleMokhtari, Mozaffar, Sean Duffy, Edward Archer, Eileen Harkin-Jones, Noel Bloomfield, Alberto Lario Cabello und Alistair McIlhagger. „Easy processing antistatic PEEK/expanded graphite composites“. In INTERNATIONAL CONFERENCE ON HUMANS AND TECHNOLOGY: A HOLISTIC AND SYMBIOTIC APPROACH TO SUSTAINABLE DEVELOPMENT: ICHT 2022. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0135864.
Der volle Inhalt der QuelleBisal, K. B., und Kamal K. Kar. „Exfoliated Graphite reinforced Acrylonitrile butadiene styrene Composites“. In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-95.
Der volle Inhalt der QuelleGRAVES, MICHAEL, und JAN KOONTZ. „Initiation and extent of impact damage in graphite/epoxy and graphite/PEEK composites“. In 29th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-2327.
Der volle Inhalt der QuelleBrar, N. S., H. Simha und A. Pratap. „High-strain-rate characterization of TPOs and graphite/epoxy and graphite/peek composites“. In Second International Conference on Experimental Mechanics, herausgegeben von Fook S. Chau und Chenggen Quan. SPIE, 2001. http://dx.doi.org/10.1117/12.429554.
Der volle Inhalt der QuelleRaza, M. A., A. V. K. Westwood und C. Stirling. „Graphite nanoplatelet/silicone composites for thermal interface applications“. In 2010 International Symposium on Advanced Packaging Materials: Microtech (APM). IEEE, 2010. http://dx.doi.org/10.1109/isapm.2010.5441382.
Der volle Inhalt der QuelleKaravaev, Dmitrii. „MECHANICAL PROPERTIES OF EXPANDED GRAPHITE / SILICONE RESIN COMPOSITES“. In 14th SGEM GeoConference on NANO, BIO AND GREEN � TECHNOLOGIES FOR A SUSTAINABLE FUTURE. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b61/s24.015.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Composites avec le graphite"
Gupta, Vijay. Mechanism Based Failure Laws for Graphite/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, Juli 1998. http://dx.doi.org/10.21236/ada397678.
Der volle Inhalt der QuelleJenkins, G. M., und L. R. Holland. Hot forging of graphite-carbide composites. Final report. Office of Scientific and Technical Information (OSTI), Juli 1998. http://dx.doi.org/10.2172/638242.
Der volle Inhalt der QuelleKumosa, M. S., K. Searles, G. Odegard, V. Thirumalai und J. McCarthy. Biaxial Failure Analysis of Graphite Reinforced Polymide Composites. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada368821.
Der volle Inhalt der QuelleKumosa, Maciej S., Kevin H. Searles, Greg Odegard und V. Thirumalai. Biaxial Failure Analysis of Graphite Reinforced Polyimide Composites. Fort Belvoir, VA: Defense Technical Information Center, November 1996. http://dx.doi.org/10.21236/ada329883.
Der volle Inhalt der QuelleSun, C. T., und K. J. Yoon. Mechanical Properties of Graphite/Epoxy Composites at Various Temperatures. Fort Belvoir, VA: Defense Technical Information Center, Januar 1988. http://dx.doi.org/10.21236/ada199311.
Der volle Inhalt der QuelleEng, Anthony T. Analysis of the NAVAIRDEVCEN Self-Priming Topcoat on Graphite/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, August 1988. http://dx.doi.org/10.21236/ada205961.
Der volle Inhalt der QuelleKumosa, M. S. Fundamental Issues Regarding the High Temperature Failure Properties of Graphite/Polyimide Fabric Composites. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2004. http://dx.doi.org/10.21236/ada430088.
Der volle Inhalt der QuellePellerin, Roy F. In-Plane Stress Waves for NDE (Nondestructive Evaluation) of Graphite Fiber/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, April 1988. http://dx.doi.org/10.21236/ada197718.
Der volle Inhalt der QuelleSearles, K., J. McCarthy und M. Kumosa. An Image Analysis Technique for Evaluating Internal Damage in Graphite/Polyimide Fabric Composites. Fort Belvoir, VA: Defense Technical Information Center, März 1997. http://dx.doi.org/10.21236/ada329913.
Der volle Inhalt der QuelleMenchhofer, Paul A. INVESTIGATION OF TITANIUM BONDED GRAPHITE FOAM COMPOSITES FOR MICRO ELECTRONIC MECHANICAL SYSTEMS (MEMS) APPLICATIONS. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1246779.
Der volle Inhalt der Quelle