Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Composite beams“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Composite beams" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Composite beams"
Zhao, Wei Jian, Jia Xin Tong, Shen Ming Yuan und Ye Nan Guo. „Research Progress on Reinforced Concrete Composite Beam in China“. Applied Mechanics and Materials 584-586 (Juli 2014): 939–43. http://dx.doi.org/10.4028/www.scientific.net/amm.584-586.939.
Der volle Inhalt der QuelleEndriatno, Nanang. „Experimental Investigation on Vibration Responses of Fiberglass Reinforced Plastic“. International Journal of Engineering and Computer Science 10, Nr. 4 (26.04.2021): 25316–20. http://dx.doi.org/10.18535/ijecs/v10i4.4575.
Der volle Inhalt der QuelleAl-Thabhawee, Hayder Wafi. „Experimental investigation of composite steel–concrete beams using symmetrical and asymmetrical castellated beams“. Curved and Layered Structures 9, Nr. 1 (01.01.2022): 227–35. http://dx.doi.org/10.1515/cls-2022-0019.
Der volle Inhalt der QuelleHUANG, C. W., und Y. H. SU. „DYNAMIC CHARACTERISTICS OF PARTIAL COMPOSITE BEAMS“. International Journal of Structural Stability and Dynamics 08, Nr. 04 (Dezember 2008): 665–85. http://dx.doi.org/10.1142/s0219455408002946.
Der volle Inhalt der QuelleSong, Xingyu, Yan Liu, Xiaodong Fu, Hongwei Ma und Xiaolun Hu. „Experimental Study on Flexural Behaviour of Prestressed Specified Density Concrete Composite Beams“. Sustainability 14, Nr. 22 (08.11.2022): 14727. http://dx.doi.org/10.3390/su142214727.
Der volle Inhalt der QuelleUmer Sial, Sardar, und M. Iqbal Khan. „Performance of Strain hardening cementitious composite as strengthening and protective overlay in flexural members“. MATEC Web of Conferences 199 (2018): 09005. http://dx.doi.org/10.1051/matecconf/201819909005.
Der volle Inhalt der QuelleLu, Tingting, Kai Guan und Haowei Jin. „Experimental Study on Bending Performance of High-Performance Fiber-Reinforced Cement Composite Prefabricated Monolithic Composite Beams“. Buildings 13, Nr. 7 (10.07.2023): 1744. http://dx.doi.org/10.3390/buildings13071744.
Der volle Inhalt der QuelleWang, Boxin, Ruichang Fang und Qing Wang. „Flexural Behavior of Fiber-Reinforced Self-Stressing Concrete T-Shaped Composite Beams“. Advances in Civil Engineering 2020 (24.06.2020): 1–17. http://dx.doi.org/10.1155/2020/8810440.
Der volle Inhalt der QuelleHan, Xiaoli, Jian Dai, Wei Qian, Zhaoyang Zhu und Baolong Li. „Effects of dowels on the mechanical properties of wooden composite beams in ancient timber structures“. BioResources 16, Nr. 4 (27.08.2021): 6891–909. http://dx.doi.org/10.15376/biores.16.4.6891-6909.
Der volle Inhalt der QuelleMaaroof, Atyaf Abdul Azeez, Jasim Ali Abdullah und Suhaib Yahya Kasim. „Performance of Steel Perforated and Partially-Encased Composite Self-Connected Beams“. Jurnal Kejuruteraan 34, Nr. 4 (30.07.2022): 703–17. http://dx.doi.org/10.17576/jkukm-2022-34(4)-18.
Der volle Inhalt der QuelleDissertationen zum Thema "Composite beams"
Bhutta, Salman Ahmed. „Analytical modeling of hybrid composite beams“. Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-11102009-020112/.
Der volle Inhalt der QuelleMegharief, Jihad Dokali. „Behavior of composite castellated beams“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ37273.pdf.
Der volle Inhalt der QuelleMolenstra, Nadia Julia. „Ultimate strength of composite beams“. Thesis, University of Warwick, 1990. http://wrap.warwick.ac.uk/34713/.
Der volle Inhalt der QuelleFan, Chun Keung Roger. „Buckling in continuous composite beams“. Thesis, University of Warwick, 1990. http://wrap.warwick.ac.uk/106724/.
Der volle Inhalt der QuelleJamal, Dany. „Solution methods of composite beams“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2012. http://www.nusl.cz/ntk/nusl-264913.
Der volle Inhalt der QuelleDo, Nascimento Oliveira Jose Emidio. „Deformation and damage analysis of composite beams equipped with polyvinylidene fluoride film sensors /“. [S.l. : s.n.], 2008. http://dk.cput.ac.za/cgi/viewcontent.cgi?article=1001&context=td_cput.
Der volle Inhalt der QuelleKong, Yow Wai. „Computer aided design of composite beams“. Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63364.
Der volle Inhalt der QuelleRakib, Saad Namik. „The behaviour of continuous composite beams“. Thesis, Cardiff University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.425983.
Der volle Inhalt der QuelleBARROS, LUIS PAULO FRANCO DE. „PIEZOELECTRIC PATCHES MODELING FOR COMPOSITE BEAMS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1998. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26509@1.
Der volle Inhalt der QuelleEsta dissertação trata da modelagem dos esforços transmitidos por atuadores piezoelétricos, colados ou embutidos em vigas compósitas laminadas. O trabalho é motivado por aplicações na área de materiais e estruturas inteligentes. Em particular, procura-se avaliar o comportamento de diferentes teorias aproximadas nas faixas de médias e altas frequências, quando os comprimentos de onda podem ser da ordem da espessura da viga. Nestes casos, teorias tradicionais de vigas deixam de representar com acuracidade a resposta dinâmica de estruturas compósitas. Além disso, modelos convencionais que procuram representar os esforços gerados pelo atuador por forças e momentos fletores equivalentes, geralmente resultantes de uma análise estática, deixam de ser efetivos. São estudados modelos baseados na Teoria Clássica de Laminação (hipótese cinemática de Bernoulli-Euler) e na Teoria de Deformação Cisalhante de Primeira Ordem (hipótese cinemática de Timonshenko) e na Teoria discreta de Laminação proposta por Reddy (Reddy’s Layerwise Theory). Os três modelos são escritos na forma de equações de estado, e um método de solução é proposto para se obter a matriz de impedância dos atuadores. Resultados dos modelos estudados são comparados com os obtidos pelo método dos elementos finitos (código ANSYStm). São apresentados resultados para atuadores formados por camadas de PZT e Alumínio, bem como por camadas intercaladas de PZT, Aramide-Epóxi e Alumínio.
This dissertation addresses the problem of modeling the excitation of laminated composite beams by piezoelectric patches bonded or embedded in the structure. This work has been motivated by applications in the field of smart structures and materials. In particular, attention is paid to the electromechanical response in the high-frequency range. An attempt is made to evaluate the capabilities of different laminate theories in the medium and high-frequency ranges, where traditional models, such as the Classical (Bernouli-Euler) or First Order Shear Deformation (Timoshenko) theories, fail to provide accurate assessments of the structural dynamic response. Also, at these frequency ranges, conventional approaches to model the piezoelectric excitation via equivalent forces and bending moments, usually resulting from static analysis, are no longer satisfactory. Three different laminate theories are investigated: Classical, First Order Shear Deformation, and Reddy’s Layerwise theories. In the frequency domain, the governing electro-elastodynamic equations are written in a common state space formulation. A general method of solution is presented where the impedance matrix for the actuator is analytically evaluated. Comparisons are also made with numerical models obtained from a commercial finite element code.
Adhikari, Samiran. „High-definition Modeling of Composite Beams“. University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627666419572229.
Der volle Inhalt der QuelleBücher zum Thema "Composite beams"
Fan, Chun Keung Roger. Buckling in continuous composite beams. [s.l.]: typescript, 1990.
Den vollen Inhalt der Quelle findenMolenstra, Nadia Julia. Ultimate strength of composite beams. [s.l.]: typescript, 1990.
Den vollen Inhalt der Quelle findenUnited States. National Aeronautics and Space Administration., Hrsg. Flutter analysis of composite box beams. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Den vollen Inhalt der Quelle findenKissane, Robert J. Lateral restraint of non-composite beams. Albany, NY: New York State Dept. of Transportation, Engineering Research and Development Bureau, 1985.
Den vollen Inhalt der Quelle findenDarwin, David. Steel and composite beams with web openings: Design of steel and composite beams with web openings. Chicago, Ill: American Institute of Steel Construction, 1990.
Den vollen Inhalt der Quelle findenBanks, H. Thomas. On damping mechanisms in beams. Hampton, Va: ICASE, 1989.
Den vollen Inhalt der Quelle findenCenter, Lewis Research, Hrsg. Free vibrations of delaminated beams. Cleveland, Ohio: National Aeronautics and Space Administration, Lewis Research Center, 1992.
Den vollen Inhalt der Quelle findenGhorashi, Mehrdaad. Statics and Rotational Dynamics of Composite Beams. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14959-2.
Der volle Inhalt der QuelleLibrescu, Liviu. Thin-walled composite beams: Theory and application. Dordrecht: Springer, 2006.
Den vollen Inhalt der Quelle findenW, Hyer M., und United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., Hrsg. Large deformation dynamic bending of composite beams. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Composite beams"
Dolan, Charles W., und H. R. Hamilton. „Composite Beams“. In Prestressed Concrete, 283–300. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97882-6_10.
Der volle Inhalt der QuelleOñate, Eugenio. „3D Composite Beams“. In Structural Analysis with the Finite Element Method Linear Statics, 150–232. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8743-1_4.
Der volle Inhalt der QuelleStrømmen, Einar N. „Stresses in Composite Beams“. In Structural Mechanics, 149–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44318-4_7.
Der volle Inhalt der QuelleOñate, Eugenio. „Composite Laminated Plane Beams“. In Structural Analysis with the Finite Element Method Linear Statics, 98–149. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8743-1_3.
Der volle Inhalt der QuelleÖchsner, Andreas, und M. Merkel. „Beams of Composite Materials“. In One-Dimensional Finite Elements, 209–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31797-2_9.
Der volle Inhalt der QuelleÖchsner, Andreas, und Markus Merkel. „Beams of Composite Materials“. In One-Dimensional Finite Elements, 205–27. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75145-0_9.
Der volle Inhalt der QuelleGangaRao, Hota V. S., und Woraphot Prachasaree. „Analysis of FRP Composite Beams“. In FRP Composite Structures, 149–203. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003196754-5.
Der volle Inhalt der QuelleGay, Daniel. „Torsion of Composite Beams of Any Section Shape“. In Composite Materials, 377–85. 4. Aufl. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195788-20.
Der volle Inhalt der QuelleGay, Daniel. „Bending of Composite Beams of Any Section Shape“. In Composite Materials, 355–76. 4. Aufl. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003195788-19.
Der volle Inhalt der QuelleKvočák, Vincent, und Daniel Dubecký. „Fatigue Tests of Composite Beams“. In SpringerBriefs in Applied Sciences and Technology, 79–87. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66925-6_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Composite beams"
McCarrick, James. „A Composite Target Concept for Multi-Pulse Radiography“. In BEAMS 2002: 14th International Conference on High-Power Particle Beams. AIP, 2002. http://dx.doi.org/10.1063/1.1530821.
Der volle Inhalt der QuelleSheehan, Therese, Xianghe Dai, Jie Yang, Kan Zhou und Dennis Lam. „Flexural behaviour of composite slim floor beams“. In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.6963.
Der volle Inhalt der Quelle„Cyclic Response of Composite Coupling Beams“. In SP-174: Hybrid and Composite Structures. American Concrete Institute, 1998. http://dx.doi.org/10.14359/5959.
Der volle Inhalt der QuelleBradford, Mark A., Yong-Lin Pi und Brian Uy. „Ductility of Composite Beams with Trapezoidal Composite Slabs“. In International Conference on Composite Construction in Steel and Concrete 2008. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41142(396)13.
Der volle Inhalt der QuelleAggelopoulos, Eleftherios, Francois Hanus und Mark Lawson. „Shear connection requirements for composite cellular beams“. In 12th international conference on ‘Advances in Steel-Concrete Composite Structures’ - ASCCS 2018. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/asccs2018.2018.7161.
Der volle Inhalt der QuelleVivek, P. G., Ankuran Saha, Apurba Das, Kazuaki Inaba und Amit Karmakar. „Stiffness Analysis of Delaminated Composite Beams Using Roller Clamps“. In ASME 2021 Gas Turbine India Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gtindia2021-76042.
Der volle Inhalt der QuelleKumar, T. Hemanth, und G. Sri Harsha. „Finite element analysis of composite beams“. In SEVENTH INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0057910.
Der volle Inhalt der QuelleGardner, Leroy, Merih Kucukler und Lorenzo Macorini. „Deformation-Based Design of Composite Beams“. In International Conference on Composite Construction in Steel and Concrete 2013. Reston, VA: American Society of Civil Engineers, 2016. http://dx.doi.org/10.1061/9780784479735.011.
Der volle Inhalt der QuelleGizejowski, Marian A., und Wael A. Salah. „Numerical Modeling of Composite Castellated Beams“. In International Conference on Composite Construction in Steel and Concrete 2008. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/41142(396)45.
Der volle Inhalt der QuelleEmam, Samir A., und Ali H. Nayfeh. „Postbuckling and Free Vibrations of Composite Beams“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35007.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Composite beams"
Ferrante, César A. O., Sebastião A. L. de Andrade, Luciano R. O. de Lima und Pedro C. G. da S. Vellasco. BEHAVIOUR OF COMPOSITE BEAMS WITH EMBEDDED COMPRESSION FLANGE. The Hong Kong Institute of Steel Construction, Dezember 2018. http://dx.doi.org/10.18057/icass2018.p.116.
Der volle Inhalt der QuellePortela, Genock, Ulises Barajas und Jose A. Albarran-Garcia. Analysis and Load Rating of Pre-flex Composite Beams. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada550595.
Der volle Inhalt der QuelleAl-Chaar, Ghassan, Steven Sweeney, Richard Lampo und Marion Banko. Full-scale testing of thermoplastic composite I-Beams for bridges. Construction Engineering Research Laboratory (U.S.), Juni 2017. http://dx.doi.org/10.21079/11681/22641.
Der volle Inhalt der QuelleGoodman, Daniel. Advanced Low-Cost Composite Curing With High Energy Electron Beams. Phase 2. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1998. http://dx.doi.org/10.21236/ada358391.
Der volle Inhalt der QuelleZhu, Ting, Shenggang Fan, Yunlong Han, Runmin Ding und Yang Li. Numerical Investigation on Fire Resistance of Stainless Steel Composite Beams with Rectangular Section. The Hong Kong Institute of Steel Construction, Dezember 2018. http://dx.doi.org/10.18057/icass2018.p.134.
Der volle Inhalt der QuelleTang, Po-Yun. Bending Deformation Increase of Bending-Extension Coupled Composite Beams Bonded with Actuator(s). Fort Belvoir, VA: Defense Technical Information Center, Oktober 1995. http://dx.doi.org/10.21236/ada302002.
Der volle Inhalt der QuelleBank, Lawrence C., Anthony J. Lamanna, James C. Ray und Gerardo I. Velazquez. Rapid Strengthening of Reinforced Concrete Beams with Mechanically Fastened, Fiber-Reinforced Polymeric Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, März 2002. http://dx.doi.org/10.21236/ada400415.
Der volle Inhalt der QuelleRamesh, Selvarajah, Lisa Choe, Mina Seif, Matthew Hoehler, William Grosshandler, Ana Sauca, Matthew Bundy et al. Compartment fire experiments on long-span composite-beams with simple shear connections part 1:. Gaithersburg, MD: National Institute of Standards and Technology, Oktober 2019. http://dx.doi.org/10.6028/nist.tn.2054.
Der volle Inhalt der QuelleChoe, Lisa, Selvarajah Ramesh, Matthew Hoehler, Mina Seif, Matthew Bundy, John Reilly und Branko Glisic. Compartment fire experiments on long-span composite-beams with simple shear connections part 2:. Gaithersburg, MD: National Institute of Standards and Technology, November 2019. http://dx.doi.org/10.6028/nist.tn.2055.
Der volle Inhalt der QuelleRafeeq, Ranj. Torsional Strengthening of Reinforced Concrete Beams Using CFRP Composites. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.3121.
Der volle Inhalt der Quelle