Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Complexe de matroïdes orientés“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Complexe de matroïdes orientés" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Complexe de matroïdes orientés"
Vandeloise, Claude. „L’avant/l’arrière et le devant/le derrière“. Revue québécoise de linguistique 16, Nr. 1 (14.05.2009): 281–307. http://dx.doi.org/10.7202/602587ar.
Der volle Inhalt der QuelleBen Haj Amara, A., J. Ben Brahim, G. Besson und C. H. Pons. „Etude d'une nacrite intercalée par du dimethylsulfoxide et n-methylacetamide“. Clay Minerals 30, Nr. 4 (Dezember 1995): 295–306. http://dx.doi.org/10.1180/claymin.1995.030.4.03.
Der volle Inhalt der QuelleGeffroy, Céline. „La gestuelle du buveur dans le contexte festif andin (note de recherche)“. Anthropologie et Sociétés 36, Nr. 3 (19.02.2013): 77–94. http://dx.doi.org/10.7202/1014166ar.
Der volle Inhalt der QuelleJacob, Bernard, Donatien Macquet und Stéphanie Natalis. „Une réforme globale des soins en santé mentale basée sur une approche communautaire : l’expérience belge“. Santé mentale au Québec 39, Nr. 1 (10.07.2014): 209–42. http://dx.doi.org/10.7202/1025915ar.
Der volle Inhalt der QuellePadrol, Arnau. „Constructing neighborly polytopes and oriented matroids“. Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AR,..., Proceedings (01.01.2012). http://dx.doi.org/10.46298/dmtcs.3032.
Der volle Inhalt der QuelleHorn, Silke. „Tropical Oriented Matroids“. Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AR,..., Proceedings (01.01.2012). http://dx.doi.org/10.46298/dmtcs.3026.
Der volle Inhalt der QuelleCeballos, Cesar, Arnau Padrol und Camilo Sarmiento. „Dyck path triangulations and extendability (extended abstract)“. Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings, 27th..., Proceedings (01.01.2015). http://dx.doi.org/10.46298/dmtcs.2516.
Der volle Inhalt der QuelleOh, Suho. „Generalized permutohedra, h-vectors of cotransversal matroids and pure O-sequences (extended abstract)“. Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AO,..., Proceedings (01.01.2011). http://dx.doi.org/10.46298/dmtcs.2946.
Der volle Inhalt der QuelleOh, Suho, und Hwanchul Yoo. „Triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ and Tropical Oriented Matroids“. Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AO,..., Proceedings (01.01.2011). http://dx.doi.org/10.46298/dmtcs.2947.
Der volle Inhalt der QuelleGendrat-Claudel, Aurélie. „« Parlons de Manzoni ». Correspondances autour des Fiancés (1827), entre réflexion romanesque et sociabilité virtuelle“. L'intime, Nr. 4 (01.01.2016). http://dx.doi.org/10.58335/intime.132.
Der volle Inhalt der QuelleDissertationen zum Thema "Complexe de matroïdes orientés"
Philibert, Manon. „Cubes partiels : complétion, compression, plongement“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0403.
Der volle Inhalt der QuellePartial cubes (aka isometric subgraphs of hypercubes) are a fundamental class of metric graph theory. They comprise many important graph classes (trees, median graphs, tope graphs of complexes of oriented matroids, etc.), arising from different areas of research such as discrete geometry, combinatorics or geometric group theory.First, we investigate the structure of partial cubes of VC-dimension 2. We show that those graphs can be obtained via amalgams from even cycles and full subdivisions of complete graphs. This decomposition allows us to obtain various characterizations. In particular, any partial cube can be completed to an ample partial cube of VC-dimension 2. Then, we show that the tope graphs of oriented matroids and complexes of uniform oriented matroids can also be completed to ample partial cubes of the same VC-dimension.Using a result of Moran and Warmuth, we establish that those classes satisfy the conjecture of Floyd and Warmuth, one of the oldest open problems in computational machine learning. Particularly, they admit (improper labeled) compression schemes of size their VC-dimension.Next, we describe a proper labeled compression scheme of size d for complexes of oriented matroids of VC-dimension d, generalizing the result of Moran and Warmuth for ample sets. Finally, we give a characterization via excluded pc-minors and via forbidden isometric subgraphs of partial cubes isometrically embedded into the grid \mathbb{Z}^2 and the cylinder P_n \square C_{2k} for some n and k > 4
Gioan, Emeric. „Correspondance naturelle entre bases et réorientations des matroïdes orientés“. Bordeaux 1, 2002. http://www.theses.fr/2002BOR12641.
Der volle Inhalt der QuelleSol, Kevin. „Une approche combinatoire novatrice fondée sur les matroïdes orientés pour la caractérisation de la morphologie 3D des structures anatomiques“. Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20183/document.
Der volle Inhalt der QuelleIn this thesis, we propose an innovative combinatorial method based on oriented matroids for the quantitative study of the shape of 3D anatomical structures. We rely on landmarks which were previously defined by experts on the studied anatomical structure. The novelty of this method results from the use of oriented matroids. These mathematical tools allow us to encode the relative position of landmarks in a purely combinatorial way, that is without using concepts of angles or distances, by associating a sign (0, + or -) for each subset of (d+1) landmarks where d is the dimension of space (in our case 2 or 3). In the first part, we assume that there exist constraints of orders on each coordinate axis for the landmarks. We obtain a characterization (in dimension 2 and 3) of the subsets of landmarks of which the associated sign is constant, regardless of the values of the coordinates satisfying the constraints of order. In a second part, we try to classify a set of 3D models, encoding in advance by these lists of signs. We first analyze how to apply classic clustering algorithms, and then describe how to characterize the classes directly, using signs associated with some subsets of landmarks. In the third part, we explain the algorithms and the implementation of this new morphometry method in order to apply it to real data. In the last part, we apply the method to three databases each consisting of several dozens of points defined on several dozens to several hundreds of cranial structures for applications in comparative anatomy, in orthodontics and on clinical cases of children with craniofacial deformities
Konferenzberichte zum Thema "Complexe de matroïdes orientés"
Chambon, Grégory. „Sailing safely along rivers and canals in the Amorite period“. In Le château de mon père – My home my castle. University of West Bohemia, Czech Republic, 2023. http://dx.doi.org/10.24132/zcu.2023.11672-29-40.
Der volle Inhalt der Quelle