Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Complex pore structure“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Complex pore structure" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Complex pore structure"
Panté, Nelly. „Nuclear Pore Complex Structure“. Developmental Cell 7, Nr. 6 (Dezember 2004): 780–81. http://dx.doi.org/10.1016/j.devcel.2004.11.010.
Der volle Inhalt der QuelleGoldberg, Martin W., Irena Solovei und Terence D. Allen. „Nuclear Pore Complex Structure in Birds“. Journal of Structural Biology 119, Nr. 3 (August 1997): 284–94. http://dx.doi.org/10.1006/jsbi.1997.3877.
Der volle Inhalt der QuelleHoelz, André, Erik W. Debler und Günter Blobel. „The Structure of the Nuclear Pore Complex“. Annual Review of Biochemistry 80, Nr. 1 (07.07.2011): 613–43. http://dx.doi.org/10.1146/annurev-biochem-060109-151030.
Der volle Inhalt der QuelleAebi, Ueli. „Nuclear Pore Complex Structure, Conservation and Plasticity“. Biophysical Journal 98, Nr. 3 (Januar 2010): 13a. http://dx.doi.org/10.1016/j.bpj.2009.12.081.
Der volle Inhalt der QuelleMiller, M., M. K. Park und J. A. Hanover. „Nuclear pore complex: structure, function, and regulation.“ Physiological Reviews 71, Nr. 3 (Juli 1991): 909–49. http://dx.doi.org/10.1152/physrev.1991.71.3.909.
Der volle Inhalt der QuelleLin, Daniel H., und André Hoelz. „The Structure of the Nuclear Pore Complex (An Update)“. Annual Review of Biochemistry 88, Nr. 1 (20.06.2019): 725–83. http://dx.doi.org/10.1146/annurev-biochem-062917-011901.
Der volle Inhalt der QuelleZhu, Boyuan, Jianghui Meng, Chen Song, Renfang Pan, Zhengping Zhu und Jineng Jin. „Complexity and Heterogeneity Evaluation of Pore Structures in the Deep Marine Shale Reservoirs of the Longmaxi Formation, China“. Journal of Marine Science and Engineering 11, Nr. 8 (17.08.2023): 1613. http://dx.doi.org/10.3390/jmse11081613.
Der volle Inhalt der QuelleKiseleva, Elena M., Martin W. Goldberg, Janet Cronshaw und Terence D. Allen. „The Nuclear Pore Complex: Structure, Function, and Dynamics“. Critical Reviews in Eukaryotic Gene Expression 10, Nr. 1 (2000): 12. http://dx.doi.org/10.1615/critreveukargeneexpr.v10.i1.110.
Der volle Inhalt der QuelleForbes, D. J. „Structure and Function of the Nuclear Pore Complex“. Annual Review of Cell Biology 8, Nr. 1 (November 1992): 495–527. http://dx.doi.org/10.1146/annurev.cb.08.110192.002431.
Der volle Inhalt der QuelleHampoelz, Bernhard, Amparo Andres-Pons, Panagiotis Kastritis und Martin Beck. „Structure and Assembly of the Nuclear Pore Complex“. Annual Review of Biophysics 48, Nr. 1 (06.05.2019): 515–36. http://dx.doi.org/10.1146/annurev-biophys-052118-115308.
Der volle Inhalt der QuelleDissertationen zum Thema "Complex pore structure"
Dvoyashkin, Muslim, Alexey Khokhlov, Rustem Valiullin, Jörg Kärger und Matthias Thommes. „Fluid behavior in porous silicon channels with complex pore structure“. Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-190953.
Der volle Inhalt der QuelleDvoyashkin, Muslim, Alexey Khokhlov, Rustem Valiullin, Jörg Kärger und Matthias Thommes. „Fluid behavior in porous silicon channels with complex pore structure“. Diffusion fundamentals 11 (2009) 80, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14045.
Der volle Inhalt der QuelleKelich, Joseph M. „Single-Molecule Studies on Nuclear Pore Complex Structure and Function“. Diss., Temple University Libraries, 2018. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/511772.
Der volle Inhalt der QuellePh.D.
Nuclear pore complexes (NPCs) are large macromolecular gateways embedded in the nuclear envelope of Eukaryotic cells that serve to regulate bi-directional trafficking of particles to and from the nucleus. NPCs have been described as creating a selectively permeable barrier mediating the nuclear export of key endogenous cargoes such as mRNA, and pre-ribosomal subunits as well as allow for the nuclear import of nuclear proteins and some viral particles. Remarkably, other particles that are not qualified for nucleocytoplasmic transport are repelled from the NPC, unable to translocate. The NPC is made up of over 30 unique proteins, each present in multiples of eight copies. The two primary protein components of the NPC can be simplified as scaffold nucleoporins which form the main structure of the NPC and the phenylalanine-glycine (FG) motif containing nucleoporins (FG-Nups) which anchor to the scaffold and together create the permeability barrier within the pore. Advances in fluorescence microscopy techniques including single-molecule and super-resolution microscopy have made it possible to label and visualize the dynamic components of the NPC as well as track the rapid nucleocytoplasmic transport process of importing and exporting cargoes. The focus of this dissertation will be on live cell fluorescence microscopy application in probing the dynamic components of the NPC as well as tracking the processes of nucleocytoplasmic transport.
Temple University--Theses
Nordeen, Sarah Ann. „A nanobody suite for yeast scaffold nucleoporins provides details of the Y complex structure and nuclear pore complex assembly“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127138.
Der volle Inhalt der QuelleCataloged from the official PDF of thesis.
Includes bibliographical references.
Nuclear pore complexes (NPCs) are the main conduits for molecular exchange across the nuclear envelope. The NPC is a modular assembly of ~500 individual proteins, called nucleoporins or nups, that can be classified into three categories: 1. Stably associated scaffolding nups, 2. Peripheral nups, and 3. Phenylalanine-glycine (FG) repeat containing nups that form the permeability barrier of the NPC. Most scaffolding nups are organized in two multimeric subcomplexes, the Nup84 or Y complex and the Nic96 complex. Working in S. cerevisiae to study the assembly of these two essential subcomplexes, we developed a suite of twelve nanobodies that recognize seven constituent nucleoporins of the Y and Nic96 complexes. The nanobodies bind their targets specifically and with high affinity, albeit with varying kinetics. We mapped the epitope of eight members of the nanobody library via crystal structures of nup-nanobody co-complexes.
Nuclear pore complexes (NPCs) are the main conduits for molecular exchange across the nuclear envelope. The NPC is a modular assembly of ~500 individual proteins, called nucleoporins or nups, that can be classified into three categories: 1. Stably associated scaffolding nups, 2. Peripheral nups, and 3. Phenylalanine-glycine (FG) repeat containing nups that form the permeability barrier of the NPC. Most scaffolding nups are organized in two multimeric subcomplexes, the Nup84 or Y complex and the Nic96 complex. Working in S. cerevisiae to study the assembly of these two essential subcomplexes, we developed a suite of twelve nanobodies that recognize seven constituent nucleoporins of the Y and Nic96 complexes. The nanobodies bind their targets specifically and with high affinity, albeit with varying kinetics. We mapped the epitope of eight members of the nanobody library via crystal structures of nup-nanobody co-complexes.
In two cases, the nanobodies facilitated the crystallization of novel nup structures, namely the full-length Nup84-Nup133 [alpha]-helical domain structure and the Nup133 [beta]-propeller domain structure. Together these two structures completely characterize the S. cerevisiae Y complex molecular assembly. Further, the Nup133 [beta]-propeller domain contains a structurally conserved amphipathic lipid packing sensor (ALPS) motif thought to anchor the Y complex to the nuclear envelope, which we confirmed by liposome interaction studies. An additional nanobody facilitated the structure of Nic96 at an improved resolution, revealing previously missing helices. In addition to the utility of these nanobodies for in vitro characterization of NPC assemblies, we also show that expression of nanobody-fluorescent protein fusions reveals details of the NPC assembly in their native, in vivo environment, and possibly of NPC heterogeneity within the nuclear envelope.
Overall, this suite of nanobodies provides a unique and versatile toolkit for the study of the NPC.
by Sarah Ann Nordeen.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Biology
Raneri, Simona. „Complex Pore Geometries in Natural Building Stones: an experimental and theoretical approach for the modeling of porosity changes in natural, degraded and treated calcarenites“. Doctoral thesis, Università di Catania, 2016. http://hdl.handle.net/10761/4021.
Der volle Inhalt der QuelleKelley, Kotaro. „Structural and biochemical characterization of nuclear pore complex structural scaffold sub-complexes“. Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113466.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
The nuclear pore complex (NPC) is a large, modular protein assembly that regulates nucleocytoplasmic transport in all eukaryotes. The ~60-120 MDa NPC is a modular assembly of multiple copies of ~30 distinct proteins that are arranged into biochemically distinct sub-complexes. We believe that the structural characterization of the NPC is essential for understanding its transport mechanisms and various pathologies and human diseases associated with deletions or mutations of constituents. To obtain detailed structural information of the NPC, techniques that span several resolution ranges are necessary due to its large size and complexity. For instance, recent progress in the structural characterization of the overall architecture of the NPC by cryo-electron tomography(cryo-ET) to ~23Å resolution has revealed its size, shape, and course arrangement, but lacks distinguishable protein-protein boundaries and secondary structural details.
Although the entire NPC is not amenable to high resolution X-ray crystallography, we complement the cryo-ET reconstructions with a divide and conquer approach by obtaining high resolution X-ray crystal structures of individual subcomplexes. By taking advantage of the modular nature of the NPC, we can dock subcomplexes into the cryo-ET reconstructions to identify their location within the NPC. This composite structure will bridge the meso resolution cryo-ET reconstructions of the entire NPC and the incomplete but high resolution X-ray crystal structure of individual subcomplexes. As a first step towards understanding the detailed organization of the NPC, our goal is to solve the high resolution structures of the two principal structural scaffold subcomplexes, the Y and Nic96 complexes. In this study, we present the high resolution composite X-ray crystal structure of the Y complex.
Docking the composite model into previously solved random conical tilt(RCT) and tomographic reconstructions of negatively stained samples of the Y complex shows overall consistency between the three methods, yet we highlight important structural differences that constrain possible arrangements of multiple Y complexes within the NPC. By docking the composite model into the cryo-ET reconstructions of the entire NPC, we propose an arrangement of multiple Y complexes that is consistent with our composite structure. In addition, progress on structurally characterizing the Nic96 complex will be presented. Preliminary results suggest that Nup1 92 and Nic96 form a flexible, yet semi-ordered interface. Future directions for characterizing the rest of the Nic96 complex, including current challenges and suggestions will be discussed.
by Kotaro Kelley.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Biology
Chemudupati, Mahesh. „Investigating the effects of nuclear envelope proteins on nuclear structure and organization in Aspergillus nidulans“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu148009978216118.
Der volle Inhalt der QuelleYacouba, Amani Abdoul Nasser. „Approche multi-géophysique pour la caractérisation de la fracturation et des propriétés de transport des roches carbonatées“. Electronic Thesis or Diss., Orléans, 2024. http://www.theses.fr/2024ORLE1024.
Der volle Inhalt der QuelleIn a context of global changes and ecological and energy transitions, climate change induces recurrent drought and water resource crisis in several regions and continents. It is crucial to study groundwaters in order to support these transitions and ensure effective management and use of this vital resource. In particular, the vadose zone which plays an important role in the recharge of these groundwaters and the transfer of possible pollutants and inputs. Most of the time this unsaturated zone is characterized by multi-scale heterogeneities (e.g., pore structure, fractures, mineralogical variation) particularly in a limestone environment. These heterogeneities are complexified by diagenetic processes linked mainly to physicochemical and mineralogical alteration which leads to uncertainty in reservoir property (e.g., porosity, permeability, water saturation) estimation from geophysical methods. Among these methods, acoustic and electrical methods are well suited because of the strong relation between heterogeneities and the measured properties.This thesis relies on a multi-geophysical approach in order to better characterize a complex carbonate reservoir using petrophysical measurements combined with microstructural descriptions. Based on this approach, we demonstrated the influence of rock structure on the prediction and modeling of petroacoustic properties. This work leads to a good discrimination of some facies, which can be used to improve simulation and flow models. In addition, we demonstrate the relevance of complex conductivity measurements in limestone characterization and permeability prediction. However, additional developments are needed to understand the upscaling problematic for heterogeneous and complex reservoirs
Walther, Tobias. „The role of Peripheral Nuclear Pore Complex (NPC) structures in nuclear transport and NPC architecture“. Diss., lmu, 2002. http://nbn-resolving.de/urn:nbn:de:bvb:19-4945.
Der volle Inhalt der QuellePartridge, James R. (James Robert). „Biophysical and structural characterization of components from the nuclear pore complex and the ubiquitin pathway“. Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57994.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (p. 136-151).
Formation of an endomembrane system in the eukaryotic cell is a hallmark of biological evolution. One such system is the nuclear envelope (NE), composed of an inner and outer membrane, used to form a nucleus and enclose the cell's genome. Access to the nucleus from the cytoplasm is mediated by a massive macromolecular machine called the nuclear pore complex (NPC). The NPC resides as a circular opening embedded in the NE and is composed of only -30 proteins that assemble with octagonal symmetry as biochemically defined subcomplexes to form the NPC. One such subcomplex is the Nspl / Nup62 complex, composed of three proteins and stabilized by coiled-coil interactions. Here we reconstitute a tetrameric assembly between the Nspl-complex and a fourth nucleoporin (Nup) Nic96. Nic96 harbors a 20 kDa coiled-coil domain at the N-terminus followed by a 65 kDa stacked helical domain. The coiled-coil domain of the Nspl -complex and the N-terminus of Nic96 combine to form a tetrameric assembly, integrated into the NPC lattice scaffold via the stacked helical domain of Nic96. We characterized the coiled-coil assembly with size exclusion chromatography and analytical ultracentrifugation. Deletion experiments and point mutations, directed by hydrophobic cluster analysis, were used to map connecting helices between members of the protein assembly. Although the core of the NPC is a rigid scaffold built for structural integrity, the NPC as a whole is a dynamic macromolecular machine. Protein transport is regulated by the small G protein Ran. Ran interacts with the NPC of metazoa via two asymmetrically localized components, Nupl53 at the nuclear face and Nup358 at the cytoplasmic face. Both Nups contain distinct RANBP2 type zinc finger (ZnF) domains. We present crystallographic data detailing the interaction between Nup1 53-ZnFs and RanGDP. A crystal-engineering approach led to well-diffracting crystals so that all ZnF-Ran complex structures are refined to high resolution. Each of the four zinc finger modules of Nup1 53 binds one Ran molecule in largely independent fashion. Nupl53-ZnFs bind RanGDP with higher affinity than RanGTP, however the modest difference suggests that this may not be physiologically meaningful. ZnFs may be used to concentrate Ran at the NPC to facilitate nucleocytoplasmic transport. In a separate study we present a structural analysis of the HECT domain from the E3 ubiquitin ligase HUWE1 and with biophysical data we show that an N-terminal helix stabilizes the HECT domain. This element modulates activity, as measured by self-ubiquitination induced in the absence of this helix, distinct from its effects on Ub conjugation of substrate Mcl-1. Such subtle structural elements in this domain potentially regulate the variable substrate specificity displayed by all HECT domain type, E3 ubiquitin ligases.
by James R. Partridge.
Ph.D.
Bücher zum Thema "Complex pore structure"
Elger, Marlies, und Wilhelm Kriz. The renal glomerulus. Herausgegeben von Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0043.
Der volle Inhalt der Quellevan Leeuwen, Evert. House of Usher. Liverpool University Press, 2018. http://dx.doi.org/10.3828/liverpool/9781911325604.001.0001.
Der volle Inhalt der QuelleGheciu, Alexandra. Security Entrepreneurs. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198813064.001.0001.
Der volle Inhalt der QuelleBurrow, Colin. Imitating Authors. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198838081.001.0001.
Der volle Inhalt der QuelleBullis, Douglas. Doing Business in Today's India. Praeger, 1998. http://dx.doi.org/10.5040/9798400642036.
Der volle Inhalt der QuelleLawreniuk, Sabina, und Laurie Parsons. Going Nowhere Fast. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198859505.001.0001.
Der volle Inhalt der QuelleSielepin, Adelajda. Ku nowemu życiu : teologia i znaczenie chrześcijańskiej inicjacji dla życia wiarą. Uniwersytet Papieski Jana Pawła II w Krakowie. Wydawnictwo Naukowe, 2019. http://dx.doi.org/10.15633/9788374388047.
Der volle Inhalt der QuelleJohansen, Bruce, und Adebowale Akande, Hrsg. Nationalism: Past as Prologue. Nova Science Publishers, Inc., 2021. http://dx.doi.org/10.52305/aief3847.
Der volle Inhalt der QuelleBuchteile zum Thema "Complex pore structure"
Fahrenkrog, Birthe, und Ueli Aebi. „The Vertebrate Nuclear Pore Complex: From Structure to Function“. In Results and Problems in Cell Differentiation, 25–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-540-44603-3_2.
Der volle Inhalt der QuelleDi Perna, Angela, Sabatino Cuomo und Mario Martinelli. „Modelling of Landslide-Structure Interaction (LSI) Through Material Point Method (MPM)“. In Progress in Landslide Research and Technology, Volume 2 Issue 1, 2023, 159–78. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39012-8_6.
Der volle Inhalt der QuellePante, N., R. Bastos, I. McMorrow, K. N. Goldie, B. Burke und U. Aebi. „Towards a Molecular Understanding of Nuclear Pore Complex Structure and Function“. In The Cytoskeleton, 89–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79482-7_10.
Der volle Inhalt der QuelleWallace, B. A., und K. Ravikumar. „The Gramicidin Pore: Crystal Structure of a Gramicidin/Cesium Chloride Complex“. In The Jerusalem Symposia on Quantum Chemistry and Biochemistry, 103–13. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3075-9_8.
Der volle Inhalt der QuelleZhao, Dan, Li Wang, Zhi-jin Pu, Chang-hong Cai, Jue-dong An und Man-fei Chen. „Study on Pore Shape and Pore Size Distribution of Carbonate Reservoir with Complex Pore Structure in Dengying Formation, Sichuan Basin“. In Proceedings of the 2021 International Petroleum and Petrochemical Technology Conference, 93–108. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9427-1_9.
Der volle Inhalt der QuelleMaco, Bohumil, Birthe Fahrenkrog, Ning-Ping Huang und Ueli Aebi. „Nuclear Pore Complex Structure and Plasticity Revealed by Electron and Atomic Force Microscopy“. In Xenopus Protocols, 273–88. Totowa, NJ: Humana Press, 2006. http://dx.doi.org/10.1007/978-1-59745-000-3_19.
Der volle Inhalt der QuelleZhao, Dan, Hong-bing Chen, Wei Zhang und Ting-zhi Liu. „Acoustic Properties of Carbonate Rocks with Complex Pore Structure in Dengying Formation, Sichuan Basin“. In Proceedings of the International Field Exploration and Development Conference 2021, 3854–67. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2149-0_360.
Der volle Inhalt der QuelleKelich, Joseph, Jingjie Yu und Weidong Yang. „Structure and Function of the Nuclear Pore Complex Revealed by High-Resolution Fluorescence Microscopy“. In Nucleic Acids and Molecular Biology, 249–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77309-4_11.
Der volle Inhalt der QuelleGao, Y., J. Xiang, Z. Yu, G. Han und H. Jing. „Influence of Carbon Nanotubes on the Fracture Surface Characteristics of Cementitious Composites Under the Brazilian Split Test“. In Lecture Notes in Civil Engineering, 503–12. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-3330-3_53.
Der volle Inhalt der QuelleMi, Lan, Longfang Yao und Jiong Ma. „Structure of Yeast Nuclear Pore Complexes“. In Nucleic Acids and Molecular Biology, 15–25. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77309-4_2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Complex pore structure"
Pidaparti, R. M., P. A. Sarma, A. S. C. Sinha, G. Vemuri und A. M. Gacy. „Nuclear Membrane Dynamics of a Nuclear Pore Complex Structure“. In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/bed-23162.
Der volle Inhalt der QuelleYu, Wenhui, Penggui Jing, Wei Zhu, Zhongdong Li, Shihui Zhang und Zan Qu. „Abnormal pore pressure prediction of complex structure in northeast of Sichuan“. In SEG Technical Program Expanded Abstracts 2009. Society of Exploration Geophysicists, 2009. http://dx.doi.org/10.1190/1.3255277.
Der volle Inhalt der QuelleGomaa, Ibrahim, Joshua Porter, Zoya Heidari und Asem Hassan. „Impacts of Reservoir Fluids and Pore Geometry on Hydrogen Adsorption and Diffusion in Rocks with Complex Composition and Pore Structure“. In The Unconventional Resources Technology Conference. Tulsa, OK USA: American Association of Petroleum Geologists, 2024. http://dx.doi.org/10.15530/urtec-2024-4002146.
Der volle Inhalt der QuelleZhao, Bin, Yanjun Shang, Lu Jin und Bao Jia. „Characterizing Connectivity of Multiscale Pore Structure in Unconventional Reservoirs by the Complex Network Theory“. In Unconventional Resources Technology Conference. Tulsa, OK, USA: American Association of Petroleum Geologists, 2017. http://dx.doi.org/10.15530/urtec-2017-2665304.
Der volle Inhalt der QuelleLi, C. J., Y. He und A. Ohmori. „Characterization of Structure of Thermally Sprayed Coating“. In ITSC 1998, herausgegeben von Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0717.
Der volle Inhalt der QuelleAlhadi, Almostafa, Zulkuf Azizoglu und Zoya Heidari. „Assessment of Water Saturation in Carbonate Formations Honoring Complex Pore Structure: A New Insight Into Physics-Based Calibration“. In 2022 SPWLA 63rd Annual Symposium. Society of Petrophysicists and Well Log Analysts, 2022. http://dx.doi.org/10.30632/spwla-2022-0027.
Der volle Inhalt der QuelleLuo, Y., H. Huang, M. Jakobsen und Y. Yang. „Quantitative Interpretation for Complex Pore Structure Deep Sandstone Reservoirs Using an Improved Rock Physics Model“. In 81st EAGE Conference and Exhibition 2019. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201900796.
Der volle Inhalt der QuelleLi, Hongbing, Jiajia Zhang, Haojie Pan und Qiang Gao. „Bayesian nonlinear rock-physics inversion for reservoirs with complex pore structure based on elastic impedance“. In First International Meeting for Applied Geoscience & Energy. Society of Exploration Geophysicists, 2021. http://dx.doi.org/10.1190/segam2021-3590593.1.
Der volle Inhalt der QuelleWang, Xifeng, Shijun Huang, Fenglan Zhao und Xinrong Liu. „Study on Microscopic Pore-Fracture Structure of Metamorphic Buried Hill Reservoirs“. In 58th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2024. http://dx.doi.org/10.56952/arma-2024-0201.
Der volle Inhalt der QuelleLi, H., H. Pan und Q. Gao. „Bayesian nonlinear rock-physics inversion for carbonate reservoirs with complex pore structure based on elastic impedance“. In 82nd EAGE Annual Conference & Exhibition. European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202112575.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Complex pore structure"
Snyder, Victor A., Dani Or, Amos Hadas und S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, April 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Der volle Inhalt der QuelleAndrews, Matt. Getting Real about Unknowns in Complex Policy Work. Research on Improving Systems of Education (RISE), November 2021. http://dx.doi.org/10.35489/bsg-rise-wp_2021/083.
Der volle Inhalt der QuellePerdigão, Rui A. P., und Julia Hall. Spatiotemporal Causality and Predictability Beyond Recurrence Collapse in Complex Coevolutionary Systems. Meteoceanics, November 2020. http://dx.doi.org/10.46337/201111.
Der volle Inhalt der QuelleGiuffrida, Antonio, Roberto F. Iunes und William D. Savedoff. Health and Poverty in Brazil: Estimation by Structural Equation Model with Latent Variables. Inter-American Development Bank, März 2005. http://dx.doi.org/10.18235/0008957.
Der volle Inhalt der QuelleElbaum, Michael, und Peter J. Christie. Type IV Secretion System of Agrobacterium tumefaciens: Components and Structures. United States Department of Agriculture, März 2013. http://dx.doi.org/10.32747/2013.7699848.bard.
Der volle Inhalt der QuelleConnell, Sean D. Geologic map of the Albuquerque - Rio Rancho metropolitan area and vicinity, Bernalillo and Sandoval counties, New Mexico. New Mexico Bureau of Geology and Mineral Resources, 2008. http://dx.doi.org/10.58799/gm-78.
Der volle Inhalt der QuelleCatherine, Hugo. Étude comparative des services nationaux de données de recherche Facteurs de réussite. Ministère de l'enseignement supérieur et de la recherche, Januar 2021. http://dx.doi.org/10.52949/6.
Der volle Inhalt der QuelleJauvin, Nathalie, François Aubry, Francis Ethridge, Isabelle Feillou, Éric Gagnon, Andrew Freeman, Nancy Côté et al. Recherche-action visant le développement d’un modèle d’intervention préventive en SST par et pour les préposés aux bénéficiaires en CHSLD. IRSST, September 2024. http://dx.doi.org/10.70010/nkup8051.
Der volle Inhalt der QuelleSela, Shlomo, und Michael McClelland. Investigation of a new mechanism of desiccation-stress tolerance in Salmonella. United States Department of Agriculture, Januar 2013. http://dx.doi.org/10.32747/2013.7598155.bard.
Der volle Inhalt der QuelleDufour, Quentin, David Pontille und Didier Torny. Contracter à l’heure de la publication en accès ouvert. Une analyse systématique des accords transformants. Ministère de l'enseignement supérieur et de la recherche, April 2021. http://dx.doi.org/10.52949/2.
Der volle Inhalt der Quelle