Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Complex engineered system“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Complex engineered system" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Complex engineered system"
Mehrpouyan, Hoda, Brandon Haley, Andy Dong, Irem Y. Tumer und Christopher Hoyle. „Resiliency analysis for complex engineered system design“. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 29, Nr. 1 (19.01.2015): 93–108. http://dx.doi.org/10.1017/s0890060414000663.
Der volle Inhalt der QuelleLiu, Boyuan, Shuangxi Huang, Wenhui Fan, Tianyuan Xiao, James Humann, Yuyang Lai und Yan Jin. „Data driven uncertainty evaluation for complex engineered system design“. Chinese Journal of Mechanical Engineering 29, Nr. 5 (16.05.2016): 889–900. http://dx.doi.org/10.3901/cjme.2016.0422.058.
Der volle Inhalt der QuelleMcIntire, Matthew G., Christopher Hoyle, Irem Y. Tumer und David C. Jensen. „Safety-informed design: Using subgraph analysis to elicit hazardous emergent failure behavior in complex systems“. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 30, Nr. 4 (04.10.2016): 466–73. http://dx.doi.org/10.1017/s089006041600041x.
Der volle Inhalt der QuelleBasole, Rahul C., Ahsan Qamar, Hyunwoo Park, Christiaan J. J. Paredis und Leon F. McGinnis. „Visual Analytics for Early-Phase Complex Engineered System Design Support“. IEEE Computer Graphics and Applications 35, Nr. 2 (März 2015): 41–51. http://dx.doi.org/10.1109/mcg.2015.3.
Der volle Inhalt der QuelleDimauro, G., S. Impedovo, G. Pirlo und A. Salzo. „Automatic Bankcheck Processing: A New Engineered System“. International Journal of Pattern Recognition and Artificial Intelligence 11, Nr. 04 (Juni 1997): 467–504. http://dx.doi.org/10.1142/s0218001497000214.
Der volle Inhalt der QuelleSun, Eric D., Thomas C. T. Michaels und L. Mahadevan. „Optimal control of aging in complex networks“. Proceedings of the National Academy of Sciences 117, Nr. 34 (12.08.2020): 20404–10. http://dx.doi.org/10.1073/pnas.2006375117.
Der volle Inhalt der QuelleBurg, Timothy, Cheryl A. P. Cass, Richard Groff, Matthew Pepper und Karen J. L. Burg. „Building off-the-shelf tissue-engineered composites“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368, Nr. 1917 (28.04.2010): 1839–62. http://dx.doi.org/10.1098/rsta.2010.0002.
Der volle Inhalt der QuelleNoor, Ahmed K. „The World is More Than Complicated“. Mechanical Engineering 133, Nr. 11 (01.11.2011): 30–35. http://dx.doi.org/10.1115/1.2011-nov-1.
Der volle Inhalt der QuelleChristensen, G., Y. Wang und K. R. Chien. „Physiological assessment of complex cardiac phenotypes in genetically engineered mice“. American Journal of Physiology-Heart and Circulatory Physiology 272, Nr. 6 (01.06.1997): H2513—H2524. http://dx.doi.org/10.1152/ajpheart.1997.272.6.h2513.
Der volle Inhalt der QuelleNossa, Roberta, Joana Costa, Ludovica Cacopardo und Arti Ahluwalia. „Breathing in vitro: Designs and applications of engineered lung models“. Journal of Tissue Engineering 12 (Januar 2021): 204173142110086. http://dx.doi.org/10.1177/20417314211008696.
Der volle Inhalt der QuelleDissertationen zum Thema "Complex engineered system"
Abbas, Manzar. „System-level health assessment of complex engineered processes“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/37260.
Der volle Inhalt der QuelleHaraszti, Reka A. „Engineered Exosomes for Delivery of Therapeutic siRNAs to Neurons“. eScholarship@UMMS, 2018. https://escholarship.umassmed.edu/gsbs_diss/971.
Der volle Inhalt der QuelleHambley, Chris J. „Multilevel design for complex engineered systems“. Thesis, University of Sheffield, 2018. http://etheses.whiterose.ac.uk/22673/.
Der volle Inhalt der QuelleEfatmaneshnik, Mahmoud Mechanical & Manufacturing Engineering Faculty of Engineering UNSW. „Towards immunization of complex engineered systems: products, processes and organizations“. Publisher:University of New South Wales. Mechanical & Manufacturing Engineering, 2009. http://handle.unsw.edu.au/1959.4/43358.
Der volle Inhalt der QuelleHubbard, Ella-Mae. „Supporting the Configuration of Decision-Making Systems for Complex, Long-Life Engineered Systems“. Thesis, Loughborough University, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519717.
Der volle Inhalt der QuelleAgarwal, Kuldeep. „Physics Based Hierarchical Decomposition of Processes for Design of Complex Engineered Systems“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1322152146.
Der volle Inhalt der QuelleDi, Federico Erica. „Complex mechanical conditioning of cell-seeded constructs can influence chondrocyte activity“. Thesis, Queen Mary, University of London, 2014. http://qmro.qmul.ac.uk/xmlui/handle/123456789/7982.
Der volle Inhalt der QuelleAlfaris, Anas (Anas Faris). „The Evolutionary Design Model (EDM) for the design of complex engineered systems : Masdar City as a case study“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/58187.
Der volle Inhalt der Quelle"September 2009." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 150-157).
This thesis develops a framework for constructing an Evolutionary Design Model (EDM) that would enhance the design of complex systems through an efficient process. The framework proposed is generic and suggests a group of systematic methodologies that eventually lead to a fully realized and integrated design model. Within this model, complexities of the design are handled and the uncertainties of the design evolution are managed. Using the framework, vast design spaces can be searched while solutions are intelligently modified, their performance evaluated, and their results aggregated into a compatible set for design decisions. The EDM is composed of several design states as well as design evolving processes. A design state describes a design at a particular point in time and maps the system's object to the system's requirements and identifies its relation to the context in which the system will operate. A design evolving process involves many sub-processes which include formulation, decomposition, modeling, and integration. These sub-processes are not always carried out in a sequential manner, but rather a continuous move back and forth to previous and subsequent stages is expected. The resulting design model is described as an evolutionary model that moves a system's design from simple abstract states to more complex and detailed states throughout its evolution.
(cont.) The framework utilizes system modeling methodologies that include both logical and mathematical modeling methods. The type of model used within the EDM's evolving processes is highly dependent on and driven by design needs of each process. As the design progresses a shift from logical models to mathematical models occurs within the EDM. Finally, a partial EDM is implemented within the context of a computational design system for Masdar city to demonstrate the application of the proposed framework.
By Anas Alfaris.
S.M.
Taylor, James Edward Nathan. „Biochemical and biophysical characterisation of the genetically engineered Type I restriction-modification system, EcoR124I NT“. Thesis, University of Portsmouth, 2005. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424193.
Der volle Inhalt der QuelleSprauer, William A. „Self-organization and Sense-making in Architect-Engineer Design Teams| Leveraging Health Care's Approach to "Managing" Complex Adaptive Systems“. Thesis, The George Washington University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10126014.
Der volle Inhalt der QuelleTraditional, corporate-level risk mitigation procedures and management-led performance improvement efforts tend to ignore the relationship dynamics of Architect-Engineer design teams, and instead focus on the credentials and abilities of the individual designers, the contractual framework surrounding the individual projects, and the process for inspecting and controlling the quality of the team’s output, the design. Management may tacitly acknowledge the complex nature of the design process, but the notion of design teams as complex systems, or more precisely, Complex Adaptive Systems (CAS), with their inherently unpredictable behaviors, is not typically considered.
The research herein analyzed the team dynamics of 113 Architect-Engineer design projects to determine if teams that leveraged or embraced (deliberately or unknowingly) the self-organizing and sense-making properties of CAS, to include improvisation, an emphasis on intra- and cross-boundary communication, broad participation in decision-making, autonomy in managing resources, and deliberate use of conflict and uncertainty to alter standard behavior patterns, delivered more successful projects than teams whose leadership attempted (again, deliberately or unknowingly) to overcome those same CAS properties with detailed design or quality control (QC) procedures, a strong organizational identity that informed behavior, concentrated decision-making authority with a focus on efficiency of effort, and swift resolution of conflict. The parameters for measuring project success included adherence to schedule, project profitability, design errors, contractual disputes or litigation, and customer satisfaction.
An analysis of the data utilizing non-parametric analytical tools, to include Mann-Whitney Rank Sum analysis, calculation of Kendall’s tau-b, and ordinal logistic regression, reveals that while encouraging a design team to improvise can improve project outcomes, fostering or allowing self-organization in general is not associated with improved project performance. On the other hand, an environment that promotes team members’ sense-making abilities (although the use of conflict or noise as tools to promote adaptive thinking remains problematic) leads to improvements in project success factors. Finally, the results suggest that Architect-Engineer design team management is not a linear enterprise, and that in determining project success, the relationships between design team members may be as important as the technical competency of the designers and the design or quality control procedures they follow.
Bücher zum Thema "Complex engineered system"
Braha, Dan, Ali A. Minai und Yaneer Bar-Yam, Hrsg. Complex Engineered Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-32834-3.
Der volle Inhalt der QuelleNemiche, Mohamed, und Mohammad Essaaidi, Hrsg. Advances in Complex Societal, Environmental and Engineered Systems. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-46164-9.
Der volle Inhalt der QuellePhilippe, Blanchard, Hrsg. Dynamics of complex and irregular systems: Bielefeld Encounters in Mathematics and Physics VIII : 16-20 December 1991, Germany. Singapore: River Edge, NJ, 1993.
Den vollen Inhalt der Quelle findenRand, William, und Uri Wilensky. Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. MIT Press, 2015.
Den vollen Inhalt der Quelle findenRand, William, und Uri Wilensky. Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. MIT Press, 2015.
Den vollen Inhalt der Quelle findenRand, William, und Uri Wilensky. Introduction to Agent-Based Modeling: Modeling Natural, Social, and Engineered Complex Systems with NetLogo. MIT Press, 2015.
Den vollen Inhalt der Quelle finden1976-, Rand William, Hrsg. An introduction to agent-based modeling: Modeling natural, social, and engineered complex systems with NetLogo. The MIT Press, 2015.
Den vollen Inhalt der Quelle finden(Editor), D. Braha, Al A. Minai (Editor) und Y. Bar-Yam (Editor), Hrsg. Complex Engineered Systems: Science Meets Technology (Understanding Complex Systems). Springer, 2006.
Den vollen Inhalt der Quelle findenPodofillini, Luca, Bruno Sudret, Bozidar Stojadinovic, Enrico Zio und Wolfgang Kröger, Hrsg. Safety and Reliability of Complex Engineered Systems. CRC Press, 2015. http://dx.doi.org/10.1201/b19094.
Der volle Inhalt der QuelleEssaaidi, Mohammad, und Mohamed Nemiche. Advances in Complex Societal, Environmental and Engineered Systems. Springer, 2018.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Complex engineered system"
Sinha, Kaushik, Narek R. Shougarian und Olivier L. de Weck. „Complexity Management for Engineered Systems Using System Value Definition“. In Complex Systems Design & Management, 155–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49103-5_12.
Der volle Inhalt der QuelleSillitto, Hillary. „Correction to: Nature of an Engineered System: Illustrated from Engineering Artefacts and Complex Systems“. In Handbook of Systems Sciences, C1. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-0720-5_82.
Der volle Inhalt der QuelleDale Thomas, L., und Katherine Burris. „Generational Evolution in Complex Engineered Systems“. In Disciplinary Convergence in Systems Engineering Research, 751–64. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62217-0_52.
Der volle Inhalt der QuelleJohnson, Bonnie. „Engineered Complex Adaptive Systems of Systems: A Military Application“. In Unifying Themes in Complex Systems IX, 499–506. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96661-8_51.
Der volle Inhalt der QuelleBukowski, Lech. „Designing Complex Engineered Systems for the Risky Environment“. In Reliable, Secure and Resilient Logistics Networks, 93–150. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00850-5_4.
Der volle Inhalt der QuelleBhaduri, Budhendra, Ryan McManamay, Olufemi Omitaomu, Jibo Sanyal und Amy Rose. „Urban Energy Systems: Research at Oak Ridge National Laboratory“. In Urban Informatics, 281–308. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8983-6_18.
Der volle Inhalt der QuelleFarnham, Roger, und Erik W. Aslaksen. „Systems Engineering in Modern Power Plant Projects: ‘Stakeholder Engineer’ Roles“. In Complex Systems Design & Management, 269–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25203-7_19.
Der volle Inhalt der QuelleSinha, Kaushik, und Olivier L. de Weck. „STRUCTURAL COMPLEXITY METRIC FOR ENGINEERED COMPLEX SYSTEMS AND ITS APPLICATION“. In Gain competitive advantage by managing complexity, 181–92. München: Carl Hanser Verlag GmbH & Co. KG, 2012. http://dx.doi.org/10.3139/9783446434127.015.
Der volle Inhalt der QuelleSillitto, Hillary. „Nature of an Engineered Systems: Illustrated from Engineering Artefacts and Complex Systems“. In Handbook of Systems Sciences, 1–57. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-13-0370-8_17-1.
Der volle Inhalt der QuelleSillitto, Hillary. „Nature of an Engineered Systems: Illustrated from Engineering Artefacts and Complex Systems“. In Handbook of Systems Sciences, 983–1039. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-0720-5_17.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Complex engineered system"
Youn, Byeng D., Chao Hu und Pingfeng Wang. „Resilience-Driven System Design of Complex Engineered Systems“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48314.
Der volle Inhalt der QuelleMehrpouyan, Hoda, Brandon Haley, Andy Dong, Irem Y. Tumer und Chris Hoyle. „Resilient Design of Complex Engineered Systems“. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13248.
Der volle Inhalt der QuelleHaley, Brandon M., Andy Dong und Irem Y. Tumer. „Creating Faultable Network Models of Complex Engineered Systems“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34407.
Der volle Inhalt der QuelleMehrpouyan, Hoda, Brandon Haley, Andy Dong, Irem Y. Tumer und Chris Hoyle. „Resilient Design of Complex Engineered Systems Against Cascading Failure“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63308.
Der volle Inhalt der QuelleCansler, Ethan Z., Scott M. Ferguson und Christopher A. Mattson. „Identifying and Mapping Excess Relationships in Complex Engineered Systems“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34971.
Der volle Inhalt der QuelleSoria Zurita, Nicolás F., und Irem Y. Tumer. „A Survey: Towards Understanding Emergent Behavior in Complex Engineered Systems“. In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-67453.
Der volle Inhalt der QuelleKeshavarzi, Elham, Kai Goebel, Irem Y. Tumer und Christopher Hoyle. „Model Validation in Early Phase of Designing Complex Engineered Systems“. In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85137.
Der volle Inhalt der QuelleSinha, Kaushik, und Olivier L. de Weck. „Structural Complexity Quantification for Engineered Complex Systems and Implications on System Architecture and Design“. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12013.
Der volle Inhalt der QuelleTerekhoff, Serge A. „Direct, inverse, and combined problems in complex engineered system modeling by artificial neural networks“. In AeroSense '97, herausgegeben von Steven K. Rogers. SPIE, 1997. http://dx.doi.org/10.1117/12.271527.
Der volle Inhalt der QuelleHosseini, Seyedmohsen, Nita Yodo und Pingfeng Wang. „Resilience Modeling and Quantification for Design of Complex Engineered Systems Using Bayesian Networks“. In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-34558.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Complex engineered system"
Szymanski, John. About the Complex Natural and Engineered Systems Pillar. Office of Scientific and Technical Information (OSTI), Februar 2021. http://dx.doi.org/10.2172/1765861.
Der volle Inhalt der QuelleWilson, D., Daniel Breton, Lauren Waldrop, Danney Glaser, Ross Alter, Carl Hart, Wesley Barnes et al. Signal propagation modeling in complex, three-dimensional environments. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40321.
Der volle Inhalt der QuelleHossain, Niamat Ullah Ibne, Raed Jaradat, Michael Hamilton, Charles Keating und Simon Goerger. A historical perspective on development of systems engineering discipline : a review and analysis. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40259.
Der volle Inhalt der QuelleHaring, Christopher, und David Biedenharn. Channel assessment tools for rapid watershed assessment. Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40379.
Der volle Inhalt der QuelleEbeling, Robert, und Barry White. Load and resistance factors for earth retaining, reinforced concrete hydraulic structures based on a reliability index (β) derived from the Probability of Unsatisfactory Performance (PUP) : phase 2 study. Engineer Research and Development Center (U.S.), März 2021. http://dx.doi.org/10.21079/11681/39881.
Der volle Inhalt der Quelle