Zeitschriftenartikel zum Thema „Complex compounds“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Complex compounds.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Complex compounds" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Eichler, Robert, M. Asai, H. Brand, N. M. Chiera, A. Di Nitto, R. Dressler, Ch E. Düllmann et al. „Complex chemistry with complex compounds“. EPJ Web of Conferences 131 (2016): 07005. http://dx.doi.org/10.1051/epjconf/201613107005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Farzaliyev, V. M., M. P. Bayramov, S. Kh Jafarzadeh, P. Sh Mammadova, E. R. Babayev und I. M. Eyvazova. „METAL COMPLEX COMPOUNDS AS EFFECTIVE ADDITIVES TO CUTTING FLUIDS“. Chemical Problems 17, Nr. 1 (2019): 81–86. http://dx.doi.org/10.32737/2221-8688-2019-1-81-86.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Setyawati, Harsasi. „SINTESIS DAN KARAKTERISASI SENYAWA KOMPLEKS Zn(II)-EDTA SEBAGAI SENAYAWA ANTIALGA PADA COOLING WATER INDUSTRI“. Jurnal Kimia Riset 2, Nr. 1 (13.06.2017): 43. http://dx.doi.org/10.20473/jkr.v2i1.3689.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
ABSTRACTA research on the synthesis and characterization of complex compounds of Zn (II)-EDTA as antialgae compound is applied to the cooling water industry. This research aims to determine the activity of complex compounds of Zn (II)-EDTA against algae that live in the water cooling water. The activity antialgae assay of comple compound of Zn(II)-EDTA with luminescence method and dry cell weight method. Complex compound of Zn (II)-EDTA made with mole ratio of ZnCl2: Na2EDTA is 1:1. Complex compound of Zn (II)-EDTA analyzed using UV-Vis spectrophotometer and FTIR spectrophotometer. The results of UV-Vis spectrophotometer analysis showed that the complex compounds of Zn (II)-EDTA has a maximum wavelength at 752 nm. While the results of FTIR analysis showed Zn-O vibration absorption at wave number 478.35 cm-1 and Zn-N vibration absorption at wave number 516.92 cm-1. In the activity antialgae assay of complex compound of Zn (II)-EDTA made with a concentration of 5 ppm, 10 ppm, 50 ppm and 100 ppm. The test results showed that the activity of complex compounds of Zn (II) -EDTA can kill green algae and brown algae. Of the four concentrations of complex compounds of Zn (II)-EDTA, green algae and brown algae can be killed optimally at a concentration of 50 ppm.Keywords: complex Zn(II)-EDTA, cooling water, antialgae, green algae, brown algae
4

Peni, Peni, Risya Sasri und Imelda Hotmarisi Silalahi. „Synthesis of Metal–Curcumin Complex Compounds (M = Na⁺, Mg²⁺, Cu²⁺)“. Jurnal Kimia Sains dan Aplikasi 23, Nr. 3 (20.03.2020): 75–82. http://dx.doi.org/10.14710/jksa.23.3.75-82.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Curcumin complex compound, MLn (L = curcumin; M = Na+, Mg2+, Cu2+) has been synthesized from the reaction between curcumin and metal precursors (NaCl, MgSO4.7H2O, CuCl2.2H2O) in ethanol under reflux conditions. Synthesis takes place through the reaction between the metal ions Na+, Mg2+, or Cu2+ as the central atom and curcumin as the ligand. Curcumin has been consumed after the reaction lasts for four hours, shown by thin-layer chromatography in which a new spot appears at higher Rf as the spot of curcumin disappears in the reaction mixture. Compared with the spectrum of curcumin, the FTIR spectra of the complexes show changes in the absorption bands and shifts of wave numbers particularly in absorption bands of phenolic –OH and C=O enol groups which strongly indicates the coordination of metal ions with the curcumin ligand which is proposed to be in β–1,3 diketone system. Also, the FTIR spectra of the reaction product showed typical absorption bands for the metal-oxygen group, M–O, at 524 cm–1, 670 cm–1 and 470 cm–1 in Na+–curcumin, Mg2+–curcumin and Cu2+–curcumin, respectively.
5

Vasil'ev, V. P. „Thermochemistry of complex compounds“. Theoretical and Experimental Chemistry 27, Nr. 3 (Mai 1991): 242–46. http://dx.doi.org/10.1007/bf01372486.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hausmann, David, und Claus Feldmann. „Complex Zinc Bromide Compounds“. Zeitschrift für anorganische und allgemeine Chemie 638, Nr. 10 (August 2012): 1596. http://dx.doi.org/10.1002/zaac.201204059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ranskiy, Anatoliy, und Natalia Didenko. „Direct Synthesis of Cuprum(II) Complex Compounds Based on Thioamide Ligands“. Chemistry & Chemical Technology 8, Nr. 4 (05.12.2014): 371–78. http://dx.doi.org/10.23939/chcht08.04.371.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

van Lente, Jéré, Monica Pazos Urrea, Thomas Brouwer, Boelo Schuur und Saskia Lindhoud. „Complex coacervates as extraction media“. Green Chemistry 23, Nr. 16 (2021): 5812–24. http://dx.doi.org/10.1039/d1gc01880a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Macroscopic complex coacervates can be used to extract compounds from aqueous supernatants. Compound partitioning depends on the ionic strength, complex composition, and temperature. These findings show their potential as aqueous extraction media.
9

Mayer, G. V., V. Ya Artyukhov, T. N. Kopylova und I. V. Sokolova. „Photoprocesses in complex organic compounds“. Russian Physics Journal 41, Nr. 8 (August 1998): 809–21. http://dx.doi.org/10.1007/bf02510645.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pechenyuk, S. I., und D. P. Domonov. „Properties of binary complex compounds“. Journal of Structural Chemistry 52, Nr. 2 (April 2011): 412–27. http://dx.doi.org/10.1134/s0022476611020259.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Lobzhanidze, Tea. „Synthesis, Study and Use of New Type Biologically Active Arsenic-Organic Complex Compounds“. Chemistry & Chemical Technology 6, Nr. 4 (20.12.2012): 371–76. http://dx.doi.org/10.23939/chcht06.04.371.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Borukaev, Timur A., Luiza I. Kitieva, Zakhirat Kh Sultigova und Rukhsara M. Martazova. „Complex Stabilizer Based on Calcium and Zinc Stearates for PVC Compounds“. Key Engineering Materials 869 (Oktober 2020): 218–23. http://dx.doi.org/10.4028/www.scientific.net/kem.869.218.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Compounds based on polyvinylchloride plasticate containing a complex stabilizer based on salts of calcium and zinc stearates were obtained. The thermal properties of the obtained compounds are investigated. It was found that the introduction of a complex stabilizer in PVC compound leads to increased thermal stability of the compound. It is shown that the complex stabilizer affects the destructive processes that occur in the polymer matrix at elevated temperatures. It was found that the introduction of a complex stabilizer based on a mixture of calcium and zinc stearates in polyvinyl chloride plastics results in materials with improved processability.
13

Belin-Ferré, Esther, und Jean Marie Dubois. „Wetting of aluminium-based complex metallic alloys“. International Journal of Materials Research 97, Nr. 7 (01.07.2006): 985–95. http://dx.doi.org/10.1515/ijmr-2006-0156.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Abstract Many complex metallic alloys are known to form in aluminium-based systems containing transition metals like Cu, Pd, Fe or Cr, the most famous one being the stable icosahedral quasicrystal discovered in the Al –Cu –Fe system. Although covered by a thin native oxide layer, adhesion of water onto the complex compounds is very different from that onto the oxide or onto oxidised aluminium. We show here how this atypical behaviour is related to the structural complexity of the compound. We then produce data that allows us to estimate the actual surface energy of the same compounds, a property that is also a fingerprint of structural complexity in Al-based intermetallics.
14

Gunawan, Ramdhan, und Asep Bayu Dani Nandiyanto. „How to Read and Interpret 1H-NMR and 13C-NMR Spectrums“. Indonesian Journal of Science and Technology 6, Nr. 2 (15.05.2021): 267–98. http://dx.doi.org/10.17509/ijost.v6i2.34189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Nuclear magnetic resonance spectroscopy or NMR is a chemical instrument that can be used to evaluate the structure of a chemical compound other than FTIR, GC-MS, and HPLC. NMR spectroscopy commonly used for compound analysis is 1H-NMR and 13C-NMR. Techniques can be used to determine the structure conformation, the number of protons, and the number of carbons in the structure of a chemical compound. So far, there have been many publications related to the use of this spectroscopic technique. However, the steps in reading and interpreting the spectra of both 1H-NMR and 13C-NMR are not described in detail. Thus, in this paper, we described the steps in reading and interpreting the 1H-NMR and 13C-NMR spectra based on the level of difficulties: (1) simple compounds, (2) fairly complex compounds, (3) more complex compounds, and (4) very complex compounds.
15

Adekenov, Sergazy Mynzhasarovich, Gabiden Maratovich Baysarov, Anar Nikhanbaevna Zhabayeva, Lyubov' Petrovna Suntsova und Aleksandr Valer'yevich Dushkin. „COMPLEX COMPOUNDS BASED ON PINOSTROBIN OXIME“. chemistry of plant raw material, Nr. 1 (16.03.2021): 219–26. http://dx.doi.org/10.14258/jcprm.2021018581.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The article studied the structural features of solid dispersions of pinostrobin oxime with arabinogalactan, disodium salt of glycyrrhizic acid, polyvinylpyrrolidone and basic magnesium carbonate obtained by mechanochemical treatment. The obtained complexes of pinostrobin oxime with arabinogalactan, disodium salt of glycyrrhizic acid, polyvinylpyrrolidone, and basic magnesium carbonate have increased water solubility in comparison with the initial pinostrobin oxime. The thermal effects of pinostrobin oxime and its complex compounds have been studied by differential scanning calorimetry. At the same time, on the DSC-curve, the melting peak of solid dispersions of pinostrobin oxime with disodium salt of glycyrrhizated acid and pinostrobin oxime with arabinogalactan is not displayed, which is associated with the intermolecular interaction of the components of the complex, where the molecule of pinostrobin oxime forms a bond with a complexformation agent during mechanochemical treatment. The complex of pinostrobin oxime with magnesium carbonate is not formed, as evidenced by the thermal curve, where the melting of the sample begins at 182 °C, and complete destruction occurs at a temperature of 782 °C, which is similar to the melting peak of the initial pinostrobin oxime. The results of studying intermolecular bonds in complexes of pinostrobin oxime by the method of NMR-relaxation indicate that the times of spin-lattice and spin-spin relaxation are very sensitive to intermolecular interaction and to the diffusion mobility of molecules.
16

Supattapone, Surachai, Justin Piro und Judy Rees. „Complex Polyamines: Unique Prion Disaggregating Compounds“. CNS & Neurological Disorders - Drug Targets 8, Nr. 5 (01.11.2009): 323–28. http://dx.doi.org/10.2174/187152709789541952.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Samson, Sten. „Fivefold Aggregates in Complex Intermetallic Compounds“. Materials Science Forum 22-24 (Januar 1987): 83–102. http://dx.doi.org/10.4028/www.scientific.net/msf.22-24.83.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Wickleder, Mathias S. „Inorganic Lanthanide Compounds with Complex Anions“. Chemical Reviews 102, Nr. 6 (Juni 2002): 2011–88. http://dx.doi.org/10.1021/cr010308o.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Kobayashi, K., T. Sato, S. Kajishima, T. Kaneko, Y. Ishikawa und T. Saito. „Possible complex organic compounds on Mars“. Advances in Space Research 19, Nr. 7 (Januar 1997): 1067–76. http://dx.doi.org/10.1016/s0273-1177(97)00355-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Bernd, Raduchel, Schmitt-Willich Heribert, Gries Heinz, Schuhmann-Giampieri Gabriele, Vogler Hubert und Conrad Jurgen. „5399340 Use of amide complex compounds“. Magnetic Resonance Imaging 13, Nr. 6 (Januar 1995): XXI. http://dx.doi.org/10.1016/0730-725x(95)96695-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Syt'ko, V. V., und K. V. Bokit'ko. „Nonradiative transitions in complex uranyl compounds“. Journal of Applied Spectroscopy 63, Nr. 6 (November 1996): 833–40. http://dx.doi.org/10.1007/bf02606251.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Adekenov, S. M., G. M. Baysarov, A. N. Zhabayeva, L. P. Suntsova und A. V. Dushkin. „Complex Compounds Based on Pinostrobin Oxime“. Russian Journal of Bioorganic Chemistry 48, Nr. 7 (Dezember 2022): 1373–78. http://dx.doi.org/10.1134/s1068162022070019.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Azizah, Rafida, Tintrim Rahayu, Ari Hayati und Gatra Ervi Jayanti. „Scavenging activity nano complex compounds of kelor (Moringa oleifera Lamk.) leaves and seeds“. Berkala Penelitian Hayati 26, Nr. 1 (24.12.2020): 26–31. http://dx.doi.org/10.23869/bphjbr.26.1.20205.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Moringa oleifera Lamk. is a good source of natural antioxidants because it contains various types of antioxidant compounds such as ascorbic acid, flavonoids, phenolics, and carotenoids. Those antioxidant components forming complex structure have transitional metal as central compound, which have free radical scavenging activity. This study aims to determine the active compounds that act as scavenger in leaves and seeds of M. oleifera. The possible compound found in leaves-seeds is elaborated by in silico analysis, using Dr. Dukes Phytochemical and Ethnobotanical Databases, by mean Pass online, and HitPick software. The results of in silico analysis 3 compounds identified in the leaves that had a high antioxidant role, namely beta-carotene, kaempferol, quercetin, and 2 compounds in seeds that had a high antioxidant role, namely alpha-tocopherol, beta-carotene. The results of this study indicate that the antioxidant activity of the 3 treatments had differences effectiveness of antioxidants. All of these antioxidants has ability to bind transitional metal to form free radical scavenger.
24

Cimpoeşu, F., Marius Andruh und E. Segal. „Thermal behaviour of complex cation-complex anion type coordination compounds“. Thermochimica Acta 177 (April 1991): 93–100. http://dx.doi.org/10.1016/0040-6031(91)80087-y.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Dragoe, N., Marius Andruh und E. Segal. „Thermal behaviour of complex cation-complex anion type coordination compounds“. Thermochimica Acta 176 (März 1991): 241–48. http://dx.doi.org/10.1016/0040-6031(91)80279-r.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Martin, Darren S. D., Siobhán Leonard, Robert Devine, Clara Redondo, Gemma K. Kinsella, Conor J. Breen, Victoria McEneaney et al. „Novel mitochondrial complex I inhibitors restore glucose-handling abilities of high-fat fed mice“. Journal of Molecular Endocrinology 56, Nr. 3 (April 2016): 261–71. http://dx.doi.org/10.1530/jme-15-0225.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Metformin is the main drug of choice for treating type 2 diabetes, yet the therapeutic regimens and side effects of the compound are all undesirable and can lead to reduced compliance. The aim of this study was to elucidate the mechanism of action of two novel compounds which improved glucose handling and weight gain in mice on a high-fat diet. Wildtype C57Bl/6 male mice were fed on a high-fat diet and treated with novel, anti-diabetic compounds. Both compounds restored the glucose handling ability of these mice. At a cellular level, these compounds achieve this by inhibiting complex I activity in mitochondria, leading to AMP-activated protein kinase activation and subsequent increased glucose uptake by the cells, as measured in the mouse C2C12 muscle cell line. Based on the inhibition of NADH dehydrogenase (IC50 27µmolL−1), one of these compounds is close to a thousand fold more potent than metformin. There are no indications of off target effects. The compounds have the potential to have a greater anti-diabetic effect at a lower dose than metformin and may represent a new anti-diabetic compound class. The mechanism of action appears not to be as an insulin sensitizer but rather as an insulin substitute.
27

Panchenko, Tetiana, Maria Evseeva und Anatoliy Ranskiy. „Copper(II) and Nickel(II) with N,N’-bis(salicylidene)thiosemicarbazide Heterometal Complex Compounds“. Chemistry & Chemical Technology 8, Nr. 3 (01.09.2014): 243–48. http://dx.doi.org/10.23939/chcht08.03.243.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Sterner, Teresa R., Tammie R. Covington und David R. Mattie. „Complex Mixtures: Array PBPK Modeling of Jet Fuel Components“. Toxics 11, Nr. 2 (17.02.2023): 187. http://dx.doi.org/10.3390/toxics11020187.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
An array physiologically-based pharmacokinetic (PBPK) model represents a streamlined method to simultaneously quantify dosimetry of multiple compounds. To predict internal dosimetry of jet fuel components simultaneously, an array PBPK model was coded to simulate inhalation exposures to one or more selected compounds: toluene, ethylbenzene, xylenes, n-nonane, n-decane, and naphthalene. The model structure accounts for metabolism of compounds in the lung and liver, as well as kinetics of each compound in multiple tissues, including the cochlea and brain regions associated with auditory signaling (brainstem and temporal lobe). The model can accommodate either diffusion-limited or flow-limited kinetics (or a combination), allowing the same structure to be utilized for compounds with different characteristics. The resulting model satisfactorily simulated blood concentration and tissue dosimetry data from multiple published single chemical rat studies. The model was then utilized to predict tissue kinetics for the jet fuel hearing loss study (JTEH A, 25:1-14). The model was also used to predict rat kinetic comparisons between hypothetical exposures to JP-8 or a Virent Synthesized Aromatic Kerosene (SAK):JP-8 50:50 blend at the occupational exposure limit (200 mg/m3). The array model has proven useful for comparing potential tissue burdens resulting from complex mixture exposures.
29

Kaseer Aman, Ishan. „Changes occur from mixing chemical compounds: electrovalent bonds and covalent bonds“. International Journal Papier Advance and Scientific Review 1, Nr. 1 (30.08.2020): 8–13. http://dx.doi.org/10.47667/ijpasr.v1i1.7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
This article aims to distinguish compounds that have electrovalent and covalent bonds and distinguish between complex and non-complex formation reactions. This method by observing through the materials used in this experiment are NaCl, AgNO3, CHCl3, KCNS, CH3COOH, CCl4, C2H5OH, K3Fe (CN) 6, HCl, methyl orange (MO), BaCl2, K4Fe (CN) 6, CuSO4, NH4OH, and FeCl3. The results of the observations found a difference between complex and non-complex compounds. When mixed with KCNS, they can react which is indicated by a change in color, while non-complex compounds cannot react. The equation between ethanol solution and CHCl3, if each solution is added AgNO3 will produce a covalent compound, but the change is different where ethanol is added to AgNO3 to become cloudy white, while CHCl3 does not react.
30

Isupova, Zalina Y., Azamat A. Zhansitov, Svetlana A. Elcheparova, Svetlana Yu Khashirova, Mohamed Kh Ligidov und Sergey I. Pakhomov. „INVESTIGATION OF COMPLEX COMPOUNDS OF GUANIDINE ACRYLATE WITH MAGNESIUM IONS“. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 60, Nr. 5 (23.06.2017): 63. http://dx.doi.org/10.6060/tcct.2017605.5579.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Metal ions in a composition of the polymer compounds can serve as model objects of biological systems and show a number of important biological functions. Particular practical interest are represent polymeric materials containing stabilized metal ions such as silver; copper; iron; cobalt; nickel and magnesium. It is known that the guanidine-containing polymers have intrinsic antibacterial properties. Therefore; the combination of properties polyguanidines (biological activity; bactericidal and hydrodynamic properties) and metal ions (optical; biological; thermal; electrical properties) causes the forward-received new features based on these polymeric metal complexes. By IR spectroscopy and X-ray diffraction the structure of resulting polymer complex compound was studied. Infrared spectral studies have shown that the addition of magnesium ions to the structure of the polyacrylate guanidine leads to significant changes in their IR spectra. It was found that the Mg2+ ions actively interact with the oxygen atom of a carboxylate ion; and the nitrogen atom of the amino group of guanidine polyacrylate forms a new coordination compound. X-ray data showed that the initial polymer polyacrylate guanidine has diffraction pattern of the crystalline substance. The complex polymer of polyacrylate guanidine/Mg2+ has a more amorphous structure; as indicated by characteristic broad lines (halo) on the X-ray pattern. It was found that the obtained complex compound of polyacrylate guanidine/Mg2+ does not preserve the original features of the polymer. This is possible due to the fact that magnesium ions penetrating into the polymer matrix partially destroy it and form a new complex compound.Forcitation:Isupova Z.Yu.; Elcheparova S.A.; Zhansitov A.A.; Khashirova S.Yu.; Ligidov M.Kh.; Pakhomov S.I. Investigation of complex compounds of guanidine acrylate with magnesium ions. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 5. P. 63-67
31

Mohammed, Haider Shanshool, und Nuha Hussain Al-Saadawy. „Synthesis, Characterization, and Theoretical Study of Novel Charge-Transfer Complexes Derived from 3,4-Selenadiazobenzophenone“. Indonesian Journal of Chemistry 22, Nr. 6 (04.12.2022): 1663. http://dx.doi.org/10.22146/ijc.76537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
In the current study, a direct method was used to synthesize a new series of charge-transfer complex compounds. Reaction of different quinones with 3,4-selenadiazo benzophenone in a 1:1 mole ratio by acetonitrile gave a unique charge-transfer complex compound in a good yield. All compounds were characterized by UV-Vis, FTIR, 1H-NMR, and 13C-NMR. The analysis findings agreed with the produced compound’s proposed chemical structures. The molecular structure of the produced charge-transfer complex compounds has been investigated using density functional theory. The basis set of 3–21G geometrical designs throughout the geometry optimization, HOMO surfaces, LUMO surfaces, and energy gap has been created. The acceptor and donor have also been studied by comparing the HOMO energies of the charge-transfer complexes. The lower case, electron affinity, ionization potential, electronegativity, and electrophilicity where the total energies of donor-acceptor system and geometric structures demonstrate this structure’s stability. Additionally, the donor-acceptor system has higher reactivity than other systems and larger average polarizability when compared to the donor and acceptor. The findings of this study enable us to choose the kind of bridge that will interact with the donor and acceptor to determine the physical characteristics of the donor-bridge-acceptor.
32

Maksymova, І. G. „The Enzyme Membrain-Associated Complex Activity in Rat Brain under Imidazolin Containing Organic Compounds Action“. Ukraïnsʹkij žurnal medicini, bìologìï ta sportu 1, Nr. 2 (19.05.2016): 135–38. http://dx.doi.org/10.26693/jmbs01.02.135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Zeynalov, S. B., S. K. Sharifova, E. R. Huseynov, F. A. Abdullayeva, M. G. Abbasov und A. K. Sharifova. „SYNTHESIS AND STUDY OF COMPLEX COMPOUNDS BASED ON FERRİC CHLORİDE (FeCI3) REACTIONS WITH AMINO ACIDS“. Chemical Problems 18, Nr. 2 (2020): 229–36. http://dx.doi.org/10.32737/2221-8688-2020-2-229-236.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Golichenko, Alexander, und Alexander Shtemenko. „HYDROLYSIS OF RHENIUM(III) CLUSTER COMPOUNDS“. Ukrainian Chemistry Journal 85, Nr. 3 (07.06.2019): 27–34. http://dx.doi.org/10.33609/0041-6045.85.3.2019.27-34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Study of hydrolysis of cis-tetrachlorodi-m-carboxylates of dirhenium (III) was carried out due to the electronic adsorption and IR spectroscopy and pHmeter. As a result, itwas shown that the hydrolysis is a multistage process which can be attributed to the reactions of the pseudo-first order. It is also shown that the electronic absorption spectroscopy (EAS) is a reliable method of investigation to study the hydrolysis of rhenium (III) complex compounds. This conclusion is based on the fact that in the systems with halide and carboxylic ligands, each of the five structural types can be clearly identified by the EAS in the region of both d–d* electron transition and charge transfer transition of L*Hal ®Re type. It is shown that with the increase in the length of the alkyl group and in its branching, the hydrolysis rate decreases, as a result of a change in the positive inductive effect of these groups and, consequently, an increase in the strengthening of quadruple Re–Re bond. In addition, with the help of the EAS, a transition of the chloride ligands to OHgroups can be observed. As a result of the study, a hydrolysis route, which initially leds to the gradual replacement of the chloride ligands of a complex compound with OH groups, and subsequently to the conversion of Re(III) compounds into the derivative of Re(IV) was proposed. The dependence of resistance to hydrolysis on the structure of the complex compound, the temperature and pH was determined. It allowed to predict the stability of the investigated compounds while their usage as biologically active substances and reagents in the synthesis of new compounds. The obtained results allow us to presence of anticancer, cytostabilizing and other biological activities is the coordination of Re(III) complex compounds with the components of biomolecules (proteins, DNA).
35

Golichenko, Alexander, und Alexander Shtemenko. „HYDROLYSIS OF RHENIUM(III) CLUSTER COMPOUNDS“. Ukrainian Chemistry Journal 85, Nr. 3 (07.06.2019): 27–34. http://dx.doi.org/10.33609/6045.85.3.2019.27-34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
Study of hydrolysis of cis-tetrachlorodi-m-carboxylates of dirhenium (III) was carried out due to the electronic adsorption and IR spectroscopy and pHmeter. As a result, itwas shown that the hydrolysis is a multistage process which can be attributed to the reactions of the pseudo-first order. It is also shown that the electronic absorption spectroscopy (EAS) is a reliable method of investigation to study the hydrolysis of rhenium (III) complex compounds. This conclusion is based on the fact that in the systems with halide and carboxylic ligands, each of the five structural types can be clearly identified by the EAS in the region of both d–d* electron transition and charge transfer transition of L*Hal ®Re type. It is shown that with the increase in the length of the alkyl group and in its branching, the hydrolysis rate decreases, as a result of a change in the positive inductive effect of these groups and, consequently, an increase in the strengthening of quadruple Re–Re bond. In addition, with the help of the EAS, a transition of the chloride ligands to OHgroups can be observed. As a result of the study, a hydrolysis route, which initially leds to the gradual replacement of the chloride ligands of a complex compound with OH groups, and subsequently to the conversion of Re(III) compounds into the derivative of Re(IV) was proposed. The dependence of resistance to hydrolysis on the structure of the complex compound, the temperature and pH was determined. It allowed to predict the stability of the investigated compounds while their usage as biologically active substances and reagents in the synthesis of new compounds. The obtained results allow us to presence of anticancer, cytostabilizing and other biological activities is the coordination of Re(III) complex compounds with the components of biomolecules (proteins, DNA).
36

Mariyam, Dewi, Nani Farida, Husni Wahyu Wijaya und I. Wayan Dasna. „Studi Karakterisasi dan Aktivitas Antibakteri Senyawa Kompleks dari Zink(II) Klorida, Kalium Tiosianat dan 2-Aminopiridina“. Jurnal Riset Kimia 13, Nr. 1 (13.03.2022): 100–110. http://dx.doi.org/10.25077/jrk.v13i1.465.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Annotation:
The development of complex compounds as antibacterial continues to be carried out to overcome cases of microbial resistance. One of them is the development of complex compounds with thiocyanate and aminopyridine ligands which show good potential as antibacterial. Complex compound of zinc(II) chloride with thiocyanate and 2-aminopyridine ligands was successfully synthesized. The synthesis was carried out by mixing the reactants with ratio of Zn2+: 2-aminopyridine: SCN 1:2:2 under heating and stirring continuously for 6 hours. The Obtained beam-shaped colorless crystals were characterized using melting point, electrical conductivity, thiocyanate ion qualitative, FTIR, SEM-EDX, XRD powder and antibacterial activity against Salmonella typhi and Staphylococcus aureus test. The crystals melt at 160-165 0C. The results of the electrical conductivity test, qualitative test of thiocyanate ion, FTIR and SEM-EDX analysis indicate the presence of Zn2+, thiocyanate and 2-aminopyridine with ratio 1: 2: 2. Based on XRD powder spectral data and theoritical analysis, the complex synthesized compounds had high crystallinity and predicted has tetrahedral structure. Antibacterial test showed that against S.aureus, the compound had higher antibacterial activity than free ligands, but lower than chloramphenicol. Therefore, the antibacterial activity of the complex compound was classified as moderate.
37

Stoilov, Yu Yu. „Bleaching wave lasers utilizing complex organic compounds“. Uspekhi Fizicheskih Nauk 154, Nr. 4 (1988): 661. http://dx.doi.org/10.3367/ufnr.0154.198804d.0661.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

Cherkasova, T. G., Ye V. Cherkasova, I. V. Isakova, A. V. Tikhomirova und A. A. Bobrovnikova. „"THERMAL ANALYSIS OF DOUBLE COMPLEX COMPOUNDS OF“. Vestnik of Kuzbass State Technical University 18, Nr. 2 (2018): 120–26. http://dx.doi.org/10.26730/1999-4125-2018-2-120-126.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Khodos, M. Y. „Thin Films of Complex Transition-Element Compounds“. Materials Science Forum 62-64 (Januar 1991): 739–40. http://dx.doi.org/10.4028/www.scientific.net/msf.62-64.739.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Borisevich, N. A. „Lasing of Vapours of Complex Organic Compounds“. Optica Acta: International Journal of Optics 32, Nr. 9-10 (September 1985): 1071–87. http://dx.doi.org/10.1080/713821845.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Stoĭlov, Yu Yu. „Bleaching wave lasers utilizing complex organic compounds“. Soviet Physics Uspekhi 31, Nr. 4 (30.04.1988): 354–63. http://dx.doi.org/10.1070/pu1988v031n04abeh005750.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Györyová, K., V. Balek, B. H. Behrens, A. Matuschek und A. Kettrup. „Thermal properties of zinc butyrate complex compounds“. Journal of Thermal Analysis 48, Nr. 6 (Juni 1997): 1263–71. http://dx.doi.org/10.1007/bf01983436.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

LABUDOVA, O. „Nuclease mimetic effect of copper complex compounds“. Journal of Inorganic Biochemistry 61, Nr. 3 (Februar 1996): 227–31. http://dx.doi.org/10.1016/0162-0134(95)00074-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Peter, Heinrich H., und Theophile Moerker. „Process for the preparation of complex compounds“. Nuclear Medicine and Biology 20, Nr. 2 (Februar 1993): II. http://dx.doi.org/10.1016/0969-8051(93)90127-g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Señas, A., J. Rodrı́guez Fernández, J. C. Gómez Sal, J. Garcı́a Soldevilla und J. Rodrı́guez Carvajal. „Complex magnetic structures in TbPt1−xCux compounds“. Physica B: Condensed Matter 276-278 (März 2000): 612–13. http://dx.doi.org/10.1016/s0921-4526(99)01718-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Mitsudo, Take-aki, Nobuyoshi Suzuki, Teruyuki Kondo und Yoshihisa Watanabe. „Ruthenium Complex-Catalyzed Carbonylation of Allylic Compounds“. Journal of Organic Chemistry 59, Nr. 25 (Dezember 1994): 7759–65. http://dx.doi.org/10.1021/jo00104a036.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Enikeeva, Z. M., und A. G. Muftakhov. „Complex compounds based on a colchicine derivative“. Chemistry of Natural Compounds 32, Nr. 5 (September 1996): 710–12. http://dx.doi.org/10.1007/bf01375120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Groeneveld, W. L. „Complex-chlorides I. PCl5-compounds. Preliminary communication“. Recueil des Travaux Chimiques des Pays-Bas 71, Nr. 11 (02.09.2010): 1152–56. http://dx.doi.org/10.1002/recl.19520711114.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Beaudot, P., M. E. De Roy und J. P. Besse. „Intercalation of Platinum Complex in LDH Compounds“. Journal of Solid State Chemistry 161, Nr. 2 (November 2001): 332–40. http://dx.doi.org/10.1006/jssc.2001.9322.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Tsuji, Yasushi, Teruyuki Kondo und Yoshihisa Watanabe. „Platinum complex-catalyzed carbonylation of acetylenic compounds“. Journal of Molecular Catalysis 40, Nr. 3 (Juni 1987): 295–304. http://dx.doi.org/10.1016/0304-5102(87)80094-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Zur Bibliographie