Auswahl der wissenschaftlichen Literatur zum Thema „Complex compounds“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Complex compounds" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Complex compounds"

1

Eichler, Robert, M. Asai, H. Brand, N. M. Chiera, A. Di Nitto, R. Dressler, Ch E. Düllmann, et al. "Complex chemistry with complex compounds." EPJ Web of Conferences 131 (2016): 07005. http://dx.doi.org/10.1051/epjconf/201613107005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Farzaliyev, V. M., M. P. Bayramov, S. Kh Jafarzadeh, P. Sh Mammadova, E. R. Babayev, and I. M. Eyvazova. "METAL COMPLEX COMPOUNDS AS EFFECTIVE ADDITIVES TO CUTTING FLUIDS." Chemical Problems 17, no. 1 (2019): 81–86. http://dx.doi.org/10.32737/2221-8688-2019-1-81-86.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gasanov, H. I., A. N. Azizova, N. M. Kuliyeva та Sh G. Gasimov. "COMPLEX COMPOUNDS OF PALLADIUM (II) WITH γ – GLUTAMIC ACID AMIDE". Chemical Problems 22, № 3 (2024): 342–49. http://dx.doi.org/10.32737/2221-8688-2024-3-342-349.

Der volle Inhalt der Quelle
Annotation:
This study examined the formation of palladium (II) complex compounds with γ-glutamic acid amide in aqueous solutions and calculated the complex stability constants, also known as formation constants. After the complexes were separated from one another, each compound's structure and characteristics were studied individually. Based on data from NMR, IR, and UV spectroscopy it was established, that two ligand molecules coordinate in a monodentate manner along the donor nitrogen atoms of the amino group and in a bidentate manner along the nitrogen atoms of the amino group and oxygen. A planar square internal coordination sphere is formed in the trans- structure, respectively, in the complexes [Pd2Namine2Cl] ([PdL2Cl2]), [Pd2Namine2Ocarb] ([Pd(НL)2]).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Peni, Peni, Risya Sasri, and Imelda Hotmarisi Silalahi. "Synthesis of Metal–Curcumin Complex Compounds (M = Na⁺, Mg²⁺, Cu²⁺)." Jurnal Kimia Sains dan Aplikasi 23, no. 3 (March 20, 2020): 75–82. http://dx.doi.org/10.14710/jksa.23.3.75-82.

Der volle Inhalt der Quelle
Annotation:
Curcumin complex compound, MLn (L = curcumin; M = Na+, Mg2+, Cu2+) has been synthesized from the reaction between curcumin and metal precursors (NaCl, MgSO4.7H2O, CuCl2.2H2O) in ethanol under reflux conditions. Synthesis takes place through the reaction between the metal ions Na+, Mg2+, or Cu2+ as the central atom and curcumin as the ligand. Curcumin has been consumed after the reaction lasts for four hours, shown by thin-layer chromatography in which a new spot appears at higher Rf as the spot of curcumin disappears in the reaction mixture. Compared with the spectrum of curcumin, the FTIR spectra of the complexes show changes in the absorption bands and shifts of wave numbers particularly in absorption bands of phenolic –OH and C=O enol groups which strongly indicates the coordination of metal ions with the curcumin ligand which is proposed to be in β–1,3 diketone system. Also, the FTIR spectra of the reaction product showed typical absorption bands for the metal-oxygen group, M–O, at 524 cm–1, 670 cm–1 and 470 cm–1 in Na+–curcumin, Mg2+–curcumin and Cu2+–curcumin, respectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Vasil'ev, V. P. "Thermochemistry of complex compounds." Theoretical and Experimental Chemistry 27, no. 3 (May 1991): 242–46. http://dx.doi.org/10.1007/bf01372486.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hausmann, David, and Claus Feldmann. "Complex Zinc Bromide Compounds." Zeitschrift für anorganische und allgemeine Chemie 638, no. 10 (August 2012): 1596. http://dx.doi.org/10.1002/zaac.201204059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ranskiy, Anatoliy, and Natalia Didenko. "Direct Synthesis of Cuprum(II) Complex Compounds Based on Thioamide Ligands." Chemistry & Chemical Technology 8, no. 4 (December 5, 2014): 371–78. http://dx.doi.org/10.23939/chcht08.04.371.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bobokalonov, Todzhiddin, and Safarmamad Safarmamadzoda. "Synthesis and physicochemical studies of iron(III) complex compounds with TSC." From Chemistry Towards Technology Step-By-Step 5, no. 3 (October 1, 2024): 78–90. http://dx.doi.org/10.52957/2782-1900-2024-5-3-78-90.

Der volle Inhalt der Quelle
Annotation:
The authors developed methods for the synthesis of coordination compounds of iron(III) with thiosemicarbazide (TSC).The compounds structure was proved by IR spectroscopy, conductometry, X-ray diffraction, and thermogravimetry. The authors found the bidentate coordination of TSC with iron(III) via sulphur and nitrogen atoms. Thermogravimetrically authors have established the proceeding of the complex decomposition in two stages. The first stage involves thermolysis of organic ligands with the formation of the corresponding iron salts; the second one includes decomposition of iron salts and formation of iron(III) oxide. Conductometrically we have established the synthesised complexes are strong electrolytes. X-ray diffraction shows the crystallisation of the complexes into orthorhombic syngonies. There are two structural units in the cell.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mayer, G. V., V. Ya Artyukhov, T. N. Kopylova, and I. V. Sokolova. "Photoprocesses in complex organic compounds." Russian Physics Journal 41, no. 8 (August 1998): 809–21. http://dx.doi.org/10.1007/bf02510645.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pechenyuk, S. I., and D. P. Domonov. "Properties of binary complex compounds." Journal of Structural Chemistry 52, no. 2 (April 2011): 412–27. http://dx.doi.org/10.1134/s0022476611020259.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Dissertationen zum Thema "Complex compounds"

1

Malgas, Rehana. "The application of novel multinuclear catalysts derived from dendrimeric ligands in the polymerization and oligomerization of unsaturated hydrocarbons." Thesis, University of the Western Cape, 2007. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_7858_1183727432.

Der volle Inhalt der Quelle
Annotation:
<p>G1 and G2 dendrimeric salicylaldimine ligands containing both substituted and unsubstituted aryl rings were synthesized via a Schiff base condensation of the appropriate salicylaldehyde and the peripheral amino groups of the corresponding G1 and G2 polypropyleneimine dendrimers. The new ligands were characterized using FTIR, 1H NMR and 13C NMR spectroscopy, elemental analysis and ESI mass spectrometry. The dendrimeric ligands were converted to multinuclear nickel complexes by reaction with nickelacetate. The metal complexes were characterized by FTIR spectroscopy, elemental analysis and ESI mass spectrometry.</p> <p>Some of the dendritic complexes were evaluated as catalyst precursors in the oligomerization of &alpha<br>-olefins such as ethylene and 1-pentene, using aluminium alkyls such as EtAlCl2 and modified methylaluminoxane (MMAO) as activators. All the dendrimeric catalysts evaluated are active in the oligomerization reactions. From the oligomerization results it was observed that there is a clear dendritic effect, in that both catalyst activity as well as selectivity are impacted by the dendrimer generation. In most cases it was observed that the second generation complexes show higher activity than the corresponding first generation complexes.</p> <p>The dendrimeric complexes were also evaluated as catalyst precursors in the vinyl polymerization of norbornene. In this case methylaluminoxane (MAO) were employed as an activator. Once again it was noted that a dendritic effect is operative, with second generation metallodendrimers having a higher activity than the first generation complexes.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kean, Suzanna Dawn. "Modified cyclodextrins and their complexes." Title page, contents and abstract only, 1999. http://web4.library.adelaide.edu.au/theses/09PH/09phk243.pdf.

Der volle Inhalt der Quelle
Annotation:
Addendum page pasted onto front end paper. Copies of author's previously published articles inserted. Includes bibliographical references. Investigates the factors that govern the stability of cyclodextrin inclusion complexes with a range of systematically modified cyclodextrins.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pyrka, Gloria Jean. "Electrochemical and structural studies of one-dimensional copper charge transfer complexes." Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184493.

Der volle Inhalt der Quelle
Annotation:
The electrochemistry of solid electrodes of charge transfer complexes of tetracyanoquinodimethane (TCNQ) and copper complexes with nitrogen containing chelates, such and dipyridylamine (dpaH), bipyridyl (bpy) and 1,10-dimethyl-2,9-phenanthroline (dmp), has been investigated with cyclic voltammetry. Pressed pellet electrodes of these complexes exhibit a broad electrochemically stable region. The oxidative and reductive breakdown reactions involve solid state reactions into the bulk electrode. These materials also act as electron mediators for glucose oxidation in glucose oxidase modified electrodes. The structure of the model compound, copper(I)(dpaH)₂Cl has been determined to have a distorted tetrahedral coordination sphere. The electrochemistry of solid electrodes of charge transfer complexes of tetrathiafulvalene (TTF) with copper chloride and copper bromide has been investigated with cyclic voltammetry. Pressed pellet electrodes do not exhibit a broad stable region, as do the TCNQ complexes. A preliminary structure of the organic part of tetramethyltetraselenafulvalene copper chloride has been determined from the solution of the Patterson function and exhibits a displacive modulation with a repeat unit of seven TMTSF molecules. (TTF)(SCN)₀ͺ₆₆ and (TTF)Cu(SCN)₂ have been investigated by infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. (TTF)(SCN)₀ͺ₆₆ crystallized in a tetragonal space group with a disordered column of thiocyanate anions. (TTF)Cu(SCN)₂ is an insulator with a two-dimensional network of Cu(SCN)₂⁻ ions. X-ray crystal structures of four compounds prepared in association with copper complex chemistry have been determined; (1) 5,5'-dibromo-2,2'-bithiophene, (2) 3,5,5'-tribromo-2,2'-bithiophene, (3) Cu(dmp)(CN)₂ ⁻ · Bu₄N⁺ and (4) the 1:2 adduct of dimercaptosuccinic acid and dimethylformamide.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Leung, Wai-ho Wilkie. "Synthesis, reactivities and electrochemistry of ruthenium and osmium oxo complexes with polypyridine ligands /." [Hong Kong : University of Hong Kong], 1989. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12474332.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hui, Ching-sum, and 許正心. "Study of photosensitizing properties in some rhenium diimine complex containing polymers." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B26666650.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

McQuaid, Michael James. "Spectroscopic characterization of metal-based complexes and metal-based complex oxidation processes." Diss., Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/30334.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Stander, Elzet. "Nuwe reaksies van gedeprotoneerde Fischer-tipe karbeenkomplekse." Thesis, Link to the online version, 2005. http://hdl.handle.net/10019/1222.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Salam, Md Abdus. "Studies in vanadium chemistry /." Title page, contents and summary only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phs1595.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Simpson, Linda. "Trivalent group 13 metal complexes of N-substituted-3-hydroxy-2-methyl-4-pyridinones." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/28885.

Der volle Inhalt der Quelle
Annotation:
The compounds tris(N-ռ-propyl-3-hydroxy-2-methyl-4-pyridinonato) aluminum(III), -gallium(III), and -indium(III) and tris(N-ռ-butyl-3-hydroxy-2-methyl-4-pyridinonato)aluminum(III), -gallium(III), and -indium(III) were synthesized. All six compounds were prepared via the metal template effect. They were characterized by IR, FAB-MS, ¹H NMR, ²⁷Al NMR, and elemental analysis. Three of the six complexes were studied by single-crystal X-ray diffraction. They formed trihydrates, unlike their N-methyl and N-ethyl analogues, which formed dodecahydrates. The ռ-butyl complex Al(C₁₀H₁₄N0₂)₃‧3H₂0 (1) and ռ-propyl complexes Al(C₉H₁₂N0₂)₃‧3H₂0 [2], and Ga(C₉H₁₂N0₂)₃‧3H₂0 {3} were basically isostructural, crystallizing in the space group P3 with the following crystal parameters for 1, [2], and {3}: α= 15.885 (1) ([15.328 (1)], {15.367 (2)}) Å, c = 7.280 (8) ([7.2321 (2)], {7.256 (2)}) Å, Z = 2. The data were refined by using 1280 ([1377], {1802}) reflections with I>3σ(I) to R and Rա values of 0.047 ([0.057], {0.055)) and 0.061 ([0.077], {0.081}), respectively. The complexes exist as the rigidly fac geometries with infinite chains of hydrogen bonds parallel to the c axis.<br>Science, Faculty of<br>Chemistry, Department of<br>Graduate
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Birtles, John. "Solution based studies of tetranuclear (mu₄-oxo)-Cu(II) complexes /." Thesis, Connect to Dissertations & Theses @ Tufts University, 2004.

Den vollen Inhalt der Quelle finden
Annotation:
Thesis (Ph.D.)--Tufts University, 2004.<br>The [mu] in the title is depicted as a Greek letter mu, followed by a subscript 4. Adviser: Samuel P. Kounaves. Submitted to the Dept. of Chemistry. Includes bibliographical references. Access restricted to members of the Tufts University community. Also available via the World Wide Web;
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Bücher zum Thema "Complex compounds"

1

Yatsimirskii, K. B., and V. P. Vasil’ev. Instability Constants of Complex Compounds. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4684-8404-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tomasik, Piotr. Pyridine-metal complexes. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tomasik, Piotr. Pyridine-metal complexes. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Tomasik, Piotr. Pyridine-metal complexes. Edited by Ratajewicz Zbigniew, Newkome George R, and Strekowski Lucjan. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Tomasik, Piotr. Pyridine-metal complexes. Edited by Ratajewicz Zbigniew, Newkome George R, and Strekowski Lucjan. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tomasik, Piotr. Pyridine-metal complexes. Edited by Ratajewicz Zbigniew, Newkome George R, and Strekowski Lucjan. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Tomasik, Piotr. Pyridine-metal complexes. Edited by Ratajewicz Zbigniew, Newkome George R, and Strekowski Lucjan. New York: Wiley, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Toftlund, H. Spin-ligevægt i jern (II): Komplekser. Odense: [s.n.], 1987.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Tilus, Pirkko. The formation of aqueous binary and ternary nickel(II) complexes of nitrogen- and carbon-alkylated ethylenediamines, exhibiting octahedral and square planar species. Helsinki: Suomalainen Tiedeakatemia, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Braunwarth, Horst. Metallorganische Radikalkomplexe: Syntese, Struktur und Redoxchemie. Konstanz: Hartung-Gorre, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Mehr Quellen

Buchteile zum Thema "Complex compounds"

1

Fitzpatrick, Brian J. "More Complex Compounds." In Inorganic Reactions and Methods, 240–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470145333.ch175.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pardasani, R. T., and P. Pardasani. "Magnetic properties of coordination compound having complex cation and complex anion." In Magnetic Properties of Paramagnetic Compounds, 699–700. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54231-6_377.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Pardasani, R. T., and P. Pardasani. "Magnetic properties of coordination compound having complex cation and complex anion." In Magnetic Properties of Paramagnetic Compounds, 701. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54231-6_378.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Pardasani, R. T., and P. Pardasani. "Magnetic properties of coordination compound having complex cation and complex anion." In Magnetic Properties of Paramagnetic Compounds, 702. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54231-6_379.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Pardasani, R. T., and P. Pardasani. "Magnetic properties of coordination compound having complex cation and complex anion." In Magnetic Properties of Paramagnetic Compounds, 703–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54231-6_380.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Pardasani, R. T., and P. Pardasani. "Magnetic properties of coordination compound having complex cation and complex anion." In Magnetic Properties of Paramagnetic Compounds, 705–6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54231-6_381.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Weber, Edwin, and Fritz Vögtle. "Crown-Type Compounds — An Introductory Overview." In Host Guest Complex Chemistry / Macrocycles, 1–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70108-5_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Batsanov, Stepan S., Evgeny D. Ruchkin, and Inga A. Poroshina. "Crystallohydrates of Simple and Complex Compounds." In Refractive Indices of Solids, 85–100. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0797-2_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Blasius, Ewald, and Klaus-Peter Janzen. "Analytical Applications of Crown Compounds and Cryptands." In Host Guest Complex Chemistry / Macrocycles, 189–215. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70108-5_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pardasani, R. T., and P. Pardasani. "Magnetic properties of cyanide bridged bimetallic assembly of complex cation and complex anion." In Magnetic Properties of Paramagnetic Compounds, 253–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54231-6_138.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Complex compounds"

1

Jin, Peng, Srdjan Nesic, and H. Alan Wolf. "Analysis of Corrosion Scales Formed on Steel at High Temperatures in Hydrocarbons Containing Model Naphthenic Acids and Sulfur Compounds." In CORROSION 2014, 1–17. NACE International, 2014. https://doi.org/10.5006/c2014-4075.

Der volle Inhalt der Quelle
Annotation:
Abstract Corrosive naphthenic acids and sulfur compounds in crude oils present a major challenge for refineries from a corrosion perspective. Although it is accepted that some sulfur compounds may form protective FeS scales on the metal surface and deter corrosion, attempting to correlate the characteristics of FeS scale with its protective properties has not been successful. Given the complex chemical compositions of real crudes, model sulfur compound and model naphthenic acids were used to mimic the corrosion by crude fractions in the present study. The iron sulfide scale formed by the model sulfur/acid compounds was challenged by naphthenic acids to examine its protectiveness against corrosion. Moreover, the scale was analyzed with TEM/EDS technique and a layer of iron oxide was found when naphthenic acids were present in the solution. The iron oxide layer appeared to be important for maintaining protection against naphthenic acid corrosion and further analysis revealed that it was composed of magnetite.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Johnson, Richard E., and Vinod S. Agarwala. "Fluorescence Based Chemical Sensors for Corrosion Detection." In CORROSION 1997, 1–7. NACE International, 1997. https://doi.org/10.5006/c1997-97304.

Der volle Inhalt der Quelle
Annotation:
Abstract Several fluorescent materials have been identified as possible corrosion sensing coatings. These are either redox or metal ion complex materials. The redox materials are nonfluorescent in the reduced state and become fluorescent upon oxidation. Incorporated into paint coatings, they provide an early warning of corrosive conditions at the metal or alloy surface. The metal ion complex materials only fluoresce when the organic compound complexes with metal ions such as those generated in corrosion reactions. Fluorescent materials have been incorporated into paint coatings and on metal surfaces for the detection of corrosion. Oxine reacts with aluminum oxide on corroded aluminum to give a fluorescence that can be photographed in UV light. Several other materials were found to have good fluorescence but cannot be reversibly oxidized or reduced at the present time. More work will be done with these compounds as well as with Schiff bases to develop new fluorescent chemical sensing materials for smart coating on alloy surfaces.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kuznetsov, Yu I. "The Role of Chemical Structure of Organic Compounds in Corrosion Inhibition." In CORROSION 1989, 1–67. NACE International, 1989. https://doi.org/10.5006/c1989-89134.

Der volle Inhalt der Quelle
Annotation:
Abstract Some achievements in corrosion inhibition of metals by organic compounds are considered on the basis of analysing the scientific publications during the last decade. The influence of chemical structure of organic compounds on inhibitor protection of various metals dissolving from the active state or undergoing localized corrosion is given special attention. The great importance of considering both the electronic and solvation effects as well as further development of the complex formation concept for better understanding of the inhibition process is emphasized. Attention is drawn to the fact that corrosion inhibition is frequently the consequence of reactions of nucleophilic substitution of ligands in metal surface complexes. The potentialities of the quantitative approach (using the linear free energy and the HSAB principles) for finding out the relations between the chemical structures of compounds and their effectiveness as corrosion inhibitors are demonstrated. The main features of corrosion inhibition in media of various compositions are outlined.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Stahl, John H., and President. "Turning Repairs into Profits: Using Epoxy Patching Materials on Your Next Re-Paint Project." In Paint and Coatings Expo (PACE) 2007, 1–5. SSPC, 2007. https://doi.org/10.5006/s2007-00087.

Der volle Inhalt der Quelle
Annotation:
Abstract The new epoxy based repair materials offer significant advantages over conventional patching compounds. Ease of use, the ability to conduct large and complex repairs with long-term durability make epoxy based repair materials the choice for today’s painting contractor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Aquilano, Dino, Emanuele Costa, and Linda Pastero. "Habit Modification in Calcite Crystals Induced by Random and Epitaxial Adsorption of Inorganic and Organic Compounds." In CORROSION 2007, 1–11. NACE International, 2007. https://doi.org/10.5006/c2007-07055.

Der volle Inhalt der Quelle
Annotation:
Abstract Experimental morphology of calcite is analyzed on crystals population grown both in gel and in aqueous solution. A comparison is made between growth in pure solution and in the presence of specific impurities (such as lithium and acetate ions) giving rise to different habit modifications. The appearance of important {0001} and {011¯8} calcite forms is explained either in terms of 2D epitaxial layers or by random adsorption. Finally, the production of crystalline bubbles of calcite growing in solution around gas cavities is explained as a typical case of heterogeneous nucleation and growth favored at the complex interface solution/gas/crystal. All this complex phenomenology along with its interpretation can be thought as a first physico-chemical and crystallographic step in ruling practical drawbacks such as the crystal caking and the scale problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Tomenko, D., E. Aksenov, and Lyudmila Novikova. "PHENOLIC COMPOUNDS OF CONIFEROUS TREES." In Modern machines, equipment and IT solutions for industrial complex: theory and practice. FSBE Institution of Higher Education Voronezh State University of Forestry and Technologies named after G.F. Morozov, 2021. http://dx.doi.org/10.34220/mmeitsic2021_351-356.

Der volle Inhalt der Quelle
Annotation:
The paper discusses the classification, structure and properties of natural phenolic compounds found in conifers wood species of Russia. The reasons for the variety of detected phenolic compounds (more than 2000) are considered, including the type and conditions of plant growth, environmental factors, as well as methods for extraction of substances. Coniferous extractives include monomeric, dimeric and polymeric phenolic compounds in bound and free form, and their content differs significantly for various species and parts of a woody plant. Depending on the polarity of the solvent used (water, petroleum ether, dimethyl ether, ethyl acetate, acetone, etc.), the yield, chemical composition and structure of the extracted phenolic compound change. It was shown that bark extracts of Larch and Fir contain the most phenolic acids and extractive substances than Pine, Cedar and Spruce, while the content of polar substances is higher in needles, and non- polar substances in plant shoots. Phenolic compounds are secondary plant metabolites, exhibiting fungicidal, virucidal and strong antioxidant effects, that make them a valuable basis for the creation of drugs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ivanova, Elena N., Yu A. Kovalevskaya, and Valentin G. Bessreguenev. "Synthesis ZnS:Sm thin films from volatile complex compounds." In International Symposium on Optical Science and Technology, edited by Ian T. Ferguson, Nadarajah Narendran, Steven P. DenBaars, and Yoon-Soo Park. SPIE, 2002. http://dx.doi.org/10.1117/12.452564.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Antonichen, Magno R., Sergio R. de Lazaro, Luis H. S. Lacerda, Flavia Marszaukowski, Ivelise D. L. Guimarães, Karen Wohnrath, and Rene Boere. "DFT simulations for the [6-p-cymene)RuCl2(apy)] complex." In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol202097.

Der volle Inhalt der Quelle
Annotation:
Anticarcinogen compounds are extensively investigated in current days. Among the potential alternatives to develop effective drugs for this purpose, stands out the ruthenium (II) complex presents satisfactory anti-tumor activity. In particular, this kind of compounds has been investigated as a possible substitute for Platinum-based drugs. However, Ru (II) complexes need more investigation to understand the ligands' effect on biological environments, such as cytotoxicity, metabolism, accumulation on tumor issues, and others. Therefore, in this work, a robust DFT/B3LYP theoretical investigation was performed using GAUSSIAN09 in order to investigate the effects of the +1 and -1 charges on structural and electronic properties of the (6-p-cymene)Ru(II)Cl2(apy) complex. The structure evaluation indicates that +1 charged complex has a slight reduction on the Ru – cymene, Ru – Cl and Ru – apy bond lengths regarding the neutral complex. On the other hand, -1 charged complex shows bond lengths very similar to the neutral compound, except by a very large distance between Ru and one Cl atom, indicating that such atoms were expelled.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Isaac, Rohan, Ajith Ashokan, Veaceslav Coropceanu, and Laurie McNeil. "Organic charge-transfer compounds: complex interactions at the nanoscale." In Quantum Sensing and Nano Electronics and Photonics XVI, edited by Manijeh Razeghi, Jay S. Lewis, Giti A. Khodaparast, and Eric Tournié. SPIE, 2019. http://dx.doi.org/10.1117/12.2505784.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Ershov, V. S., S. M. Gaidar, M. Yu Karelina, and A. A. Akulov. "Method of Alloying Engine Oil with Complex Copper Compounds." In 2021 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED). IEEE, 2021. http://dx.doi.org/10.1109/tirved53476.2021.9639115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Complex compounds"

1

Mosher, Daniel A., Susanne M. Opalka, Xia Tang, Bruce L. Laube, Ronald J. Brown, Thomas H. Vanderspurt, Sarah Arsenault, et al. Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity. Office of Scientific and Technical Information (OSTI), February 2008. http://dx.doi.org/10.2172/923778.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pope, David P., and David E. Luzzi. Twinning Mechanisms in Complex High Tm Intermetallic Compounds. Fort Belvoir, VA: Defense Technical Information Center, May 1999. http://dx.doi.org/10.21236/ada362826.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Ko, Hyunjin. Structural and Electronic Investigations of Complex Intermetallic Compounds. Office of Scientific and Technical Information (OSTI), January 2008. http://dx.doi.org/10.2172/939378.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Xie, Weiwei. The role of zinc on the chemistry of complex intermetallic compounds. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1226562.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hargis, P. J. Jr, B. L. Preppernau, and G. C. Osbourn. Automated detection and reporting of Volatile Organic Compounds (VOCs) in complex environments. Office of Scientific and Technical Information (OSTI), March 1997. http://dx.doi.org/10.2172/469115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sarkisian, Paul, Kaveh Khalili, Lance Kirol, James Langeliers, and Uwe Rockenfeller. Ammonia Storage as Complex Compounds for a Safe and Compact Hydrogen Storage. Fort Belvoir, VA: Defense Technical Information Center, July 2003. http://dx.doi.org/10.21236/ada429096.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Schneider, J. F., H. J. O`Neill, L. A. Raphaelian, N. A. Tomczyk, L. F. Sytsma, V. J. Cohut, H. A. Cobo, D. P. O`Reilly, and R. E. Zimmerman. Air monitoring for volatile organic compounds at the Pilot Plant Complex, Aberdeen Proving Ground, Maryland. Office of Scientific and Technical Information (OSTI), March 1995. http://dx.doi.org/10.2172/95561.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Phillips, Donald A., Yitzhak Spiegel, and Howard Ferris. Optimizing nematode management by defining natural chemical bases of behavior. United States Department of Agriculture, November 2006. http://dx.doi.org/10.32747/2006.7587234.bard.

Der volle Inhalt der Quelle
Annotation:
This project was based on the hypothesis that nematodes interacting with plants as either parasites or beneficial saprophytes are attracted to their host by natural products. This concept was supported by numerous observations that parasitic nematodes are attracted to root exudates. Our overall goal was to identify nematode sensory compounds from root exudates and to use that information for reducing nematicide applications. We applied skills of the investigators to achieve three specific objectives: 1) Identify nematode behavioral cues (e.g., attractants or repellents) in root exudates; 2) Identify new natural nematicidal compounds; and 3) Combine a natural attractant and a nematicide into a nematode trap. Because saprophytic nematodes benefit plants by mineralizing organic matter, we sought compounds attractive primarily to parasitic nematodes. The project was constructed on several complementary foundations. First, data from Dr. Spiegel’s lab showed that under aseptic conditions Ditylenchus dipsaci, a parasite on onion, is attracted to certain fractions of onion root exudates. Second, PI Phillips had a sizeable collection of natural plant products he had identified from previous work on Rhizobium-legume interactions, which could be tested “off the shelf”. Third, Dr. Ferris had access to aseptic and natural populations of various saprophytic and parasitic nematodes. The project focused on five nematode species: D.dipsaci, Heterodera avenae, and Tylenchulussemipenetransat ARO, and Meloidogyne javanicand Caenorhabditis elegans at UCD. Ten pure plant compounds, mostly flavonoids, were tested on the various nematode species using six different assay systems. Results obtained with assorted test systems and by various scientists in the same test systems were essentially irreproducible. Many convincing, Many convincing, i.e. statistically significant, results in one system or with one investigator could not be repeated with other assays or different people. A recent report from others found that these compounds, plus another 30, were inactive as attractants in three additional parasitic nematode species (Wuyts et al. Nematology 8:89- 101, 2006). Assays designed to test the hypothesis that several compounds together are required to attract nematodes have thus far failed to find a reproducibly active combination. In contrast to results using pure plant compounds, complex unfractionated exudates from aseptic onion root reproducibly attracted D. dipsaci in both the ARO and UCD labs. Onion root exudate collection, separation into HPLC fractions, assays using D. dipsaci and MS-MS experiments proceeded collaboratively between ARO and UCD without any definitive identification of an active compound. The final active fraction contained two major molecules and traces of several other compounds. In the end, analytical studies were limited by the amount of onion root exudate and the complexity of the purification process. These tests showed that aseptic plant roots release attractant molecules, but whether nematodes influence that release, as insects trigger release of attractants from plants, is unknown. Related experiments showed that the saprophyte C. elegans stimulates its prey, Pseudomonas bacteria, to increase production of 2, 4-diacetylphloroglucinol (DAPG) a compound that promotes amino acid exudation by plant roots. It is thus possible that saprophytic nematodes are attracted primarily to their bacterial or fungal prey and secondarily to effects of those microorganisms on root exudation. These observations offer promising avenues for understanding root-zone interactions, but no direct routes to controlling nematodes in agriculture were evident. Extracts from two plant sources, Chrysanthemum coronarium and Sequoia sempervirens, showed nematicidal activity at ARO and UCD, respectively. Attempts to purify an active compound from S. sempervirens failed, but preliminary results from C. coronarium are judged to form a potential basis for further work at ARO. These results highlight the problems of studying complex movement patterns in sentient organisms like nematodes and the issues associated with natural product isolation from complex mixtures. Those two difficulties combined with complications now associated with obtaining US visas, slowed and ultimately limited progress on this project. As a result, US investigators expended only 65% of the $207,400 originally planned for this project. The Israeli side of the project advanced more directly toward its scientific goals and lists its expenditures in the customary financial report.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hratchian, Hrant, Christine Isborn, Liang Shi, David Strubbe, and Aurora Pribram-Jones. Improved Methods for Modeling Functional Transition Metal Compounds in Complex Environments: Ground States, Excited States, and Spectroscopies. Office of Scientific and Technical Information (OSTI), January 2024. http://dx.doi.org/10.2172/2282162.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Cheeseman, Kathryn. The Environmental Impacts of Illicit Drug Production. Institute of Development Studies, March 2024. http://dx.doi.org/10.19088/k4dd.2024.017.

Der volle Inhalt der Quelle
Annotation:
This rapid evidence review compiles findings on the environmental impacts of illicit drug production, focusing on water and soil pollution, ecosystem health, land use change, and waste management. It highlights the complexity of the issue, with significant gaps in understanding the long-term effects on ecosystems. The review also examines how prohibitionary drug policies may exacerbate environmental harm. Key findings include distinct regional patterns of drug use, complex relationships between land use change and drug production, and the persistence of biologically active compounds in water systems. Limited data and lack of cross-agency collaboration present challenges in addressing these issues effectively.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!