Auswahl der wissenschaftlichen Literatur zum Thema „Complex coacervate“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Complex coacervate" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Complex coacervate"

1

Kim, Sangsik, Jun Huang, Yongjin Lee, Sandipan Dutta, Hee Young Yoo, Young Mee Jung, YongSeok Jho, Hongbo Zeng und Dong Soo Hwang. „Complexation and coacervation of like-charged polyelectrolytes inspired by mussels“. Proceedings of the National Academy of Sciences 113, Nr. 7 (01.02.2016): E847—E853. http://dx.doi.org/10.1073/pnas.1521521113.

Der volle Inhalt der Quelle
Annotation:
It is well known that polyelectrolyte complexes and coacervates can form on mixing oppositely charged polyelectrolytes in aqueous solutions, due to mainly electrostatic attraction between the oppositely charged polymers. Here, we report the first (to the best of our knowledge) complexation and coacervation of two positively charged polyelectrolytes, which provides a new paradigm for engineering strong, self-healing interactions between polyelectrolytes underwater and a new marine mussel-inspired underwater adhesion mechanism. Unlike the conventional complex coacervate, the like-charged coacervate is aggregated by strong short-range cation–π interactions by overcoming repulsive electrostatic interactions. The resultant phase of the like-charged coacervate comprises a thin and fragile polyelectrolyte framework and round and regular pores, implying a strong electrostatic correlation among the polyelectrolyte frameworks. The like-charged coacervate possesses a very low interfacial tension, which enables this highly positively charged coacervate to be applied to capture, carry, or encapsulate anionic biomolecules and particles with a broad range of applications.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Furlani, Franco, Pietro Parisse und Pasquale Sacco. „On the Formation and Stability of Chitosan/Hyaluronan-Based Complex Coacervates“. Molecules 25, Nr. 5 (27.02.2020): 1071. http://dx.doi.org/10.3390/molecules25051071.

Der volle Inhalt der Quelle
Annotation:
This contribution is aimed at extending our previous findings on the formation and stability of chitosan/hyaluronan-based complex coacervates. Colloids are herewith formed by harnessing electrostatic interactions between the two polyelectrolytes. The presence of tiny amounts of the multivalent anion tripolyphosphate (TPP) in the protocol synthesis serves as an adjuvant “point-like” cross-linker for chitosan. Hydrochloride chitosans at different viscosity average molar mass, M v ¯ , in the range 10,000–400,000 g/mol, and fraction of acetylated units, FA, (0.16, 0.46 and 0.63) were selected to fabricate a large library of formulations. Concepts such as coacervate size, surface charge and homogeneity in relation to chitosan variables are herein disclosed. The stability of coacervates in Phosphate Buffered Saline (PBS) was verified by means of scattering techniques, i.e., Dynamic Light Scattering (DLS) and Small-Angle X-ray Scattering (SAXS). The conclusions from this set of experiments are the following: (i) a subtle equilibrium between chitosan FA and M v ¯ does exist in ensuring colloidal stability; (ii) once diluted in PBS, osmotic swelling-driven forces trigger the enlargement of the polymeric mesh with an ensuing increase of coacervate size and porosity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dompé, Marco, Francisco Javier Cedano-Serrano, Mehdi Vahdati, Dominique Hourdet, Jasper van der Gucht, Marleen Kamperman und Thomas E. Kodger. „Hybrid Complex Coacervate“. Polymers 12, Nr. 2 (04.02.2020): 320. http://dx.doi.org/10.3390/polym12020320.

Der volle Inhalt der Quelle
Annotation:
Underwater adhesion represents a huge technological challenge as the presence of water compromises the performance of most commercially available adhesives. Inspired by natural organisms, we have designed an adhesive based on complex coacervation, a liquid–liquid phase separation phenomenon. A complex coacervate adhesive is formed by mixing oppositely charged polyelectrolytes bearing pendant thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) chains. The material fully sets underwater due to a change in the environmental conditions, namely temperature and ionic strength. In this work, we incorporate silica nanoparticles forming a hybrid complex coacervate and investigate the resulting mechanical properties. An enhancement of the mechanical properties is observed below the PNIPAM lower critical solution temperature (LCST): this is due to the formation of PNIPAM–silica junctions, which, after setting, contribute to a moderate increase in the moduli and in the adhesive properties only when applying an ionic strength gradient. By contrast, when raising the temperature above the LCST, the mechanical properties are dominated by the association of PNIPAM chains and the nanofiller incorporation leads to an increased heterogeneity with the formation of fracture planes at the interface between areas of different concentrations of nanoparticles, promoting earlier failure of the network—an unexpected and noteworthy consequence of this hybrid system.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lu, Tiemei, und Evan Spruijt. „Multiphase Complex Coacervate Droplets“. Journal of the American Chemical Society 142, Nr. 6 (20.01.2020): 2905–14. http://dx.doi.org/10.1021/jacs.9b11468.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Voets, Ilja K., Arie de Keizer und Martien A. Cohen Stuart. „Complex coacervate core micelles“. Advances in Colloid and Interface Science 147-148 (März 2009): 300–318. http://dx.doi.org/10.1016/j.cis.2008.09.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Nguyen Le, My Lan, Hang Nga Le Thi und Vinh Tien Nguyen. „Hydrolyzed Karaya Gum: Gelatin Complex Coacervates for Microencapsulation of Soybean Oil and Curcumin“. Journal of Food Quality 2021 (14.04.2021): 1–10. http://dx.doi.org/10.1155/2021/5593065.

Der volle Inhalt der Quelle
Annotation:
This is the first report on utilizing hydrolyzed karaya gum (HKG) as a novel polyanion material for complex coacervation with gelatin A. With negative zeta potentials at pH > 2.5, HKG formed the complex coacervate with a maximum yield at pH 3.75 and 1 : 1 HKG:gelatin ratio. The optimal complex coacervates were used to encapsulate soybean oil containing curcumin using different shell:core ratios, homogenization speeds, concentrations of emulsifier, and drying techniques. Optical microscopy showed that increasing homogenization speed and Tween 80 concentration produced smaller and more uniform coacervate particles. Increasing the shell:core mass ratio from 1 to 4 resulted in a linear increase in encapsulation efficiencies for both soybean oil and curcumin. Accelerated peroxidation tests on the microcapsules showed enhanced protective effects against oil peroxidation when increasing shell:core ratios and using freeze-drying instead of oven-drying at 50 oC. In vitro release of curcumin in simulated gastric and intestinal fluids was faster when using freeze-drying and decreasing shell:core ratio. This study shows perspective novel applications of HKG in microencapsulating active ingredients for food and pharmaceutical industries.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hofs, B., A. de Keizer, S. van der Burgh, F. A. M. Leermakers, M. A. Cohen Stuart, P. E. Millard und A. H. E. Müller. „Complex coacervate core micro-emulsions“. Soft Matter 4, Nr. 7 (2008): 1473. http://dx.doi.org/10.1039/b802148a.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wang, Qifeng, und Joseph B. Schlenoff. „The Polyelectrolyte Complex/Coacervate Continuum“. Macromolecules 47, Nr. 9 (28.04.2014): 3108–16. http://dx.doi.org/10.1021/ma500500q.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mason, Alexander F., und Jan C. M. van Hest. „Multifaceted cell mimicry in coacervate-based synthetic cells“. Emerging Topics in Life Sciences 3, Nr. 5 (04.09.2019): 567–71. http://dx.doi.org/10.1042/etls20190094.

Der volle Inhalt der Quelle
Annotation:
Cells, the discrete living systems that comprise all life on Earth, are a boundless source of inspiration and motivation for many researchers in the natural sciences. In the field of bottom-up synthetic cells, researchers seek to create multifaceted, self-assembled, chemical systems that mimic the properties and behaviours of natural life. In this perspective, we will describe the relatively recent application of complex coacervates to synthetic cells, and how they have been used to model an expanding range of biologically relevant phenomena. Furthermore, we will explore the unique advantages and disadvantages of coacervate-based synthetic cells, and their potential impact on the field in the years to come.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Dompé, Marco, Francisco J. Cedano-Serrano, Mehdi Vahdati, Ugo Sidoli, Olaf Heckert, Alla Synytska, Dominique Hourdet et al. „Tuning the Interactions in Multiresponsive Complex Coacervate-Based Underwater Adhesives“. International Journal of Molecular Sciences 21, Nr. 1 (21.12.2019): 100. http://dx.doi.org/10.3390/ijms21010100.

Der volle Inhalt der Quelle
Annotation:
In this work, we report the systematic investigation of a multiresponsive complex coacervate-based underwater adhesive, obtained by combining polyelectrolyte domains and thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) units. This material exhibits a transition from liquid to solid but, differently from most reactive glues, is completely held together by non-covalent interactions, i.e., electrostatic and hydrophobic. Because the solidification results in a kinetically trapped morphology, the final mechanical properties strongly depend on the preparation conditions and on the surrounding environment. A systematic study is performed to assess the effect of ionic strength and of PNIPAM content on the thermal, rheological and adhesive properties. This study enables the optimization of polymer composition and environmental conditions for this underwater adhesive system. The best performance with a work of adhesion of 6.5 J/m2 was found for the complex coacervates prepared at high ionic strength (0.75 M NaCl) and at an optimal PNIPAM content around 30% mol/mol. The high ionic strength enables injectability, while the hydrated PNIPAM domains provide additional dissipation, without softening the material so much that it becomes too weak to resist detaching stress.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Complex coacervate"

1

Sureka, Hursh Vardhan. „Protein immobilization using complex coacervates and complex coacervate thin films“. Thesis, Massachusetts Institute of Technology, 2021. https://hdl.handle.net/1721.1/130824.

Der volle Inhalt der Quelle
Annotation:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, February, 2021
Cataloged from the official PDF of thesis.
Includes bibliographical references.
Enzymes can enable a wide and growing range of chemistries, often outperforming synthetic catalysts. However, enzymes must often be converted to heterogeneous catalysts. Protein immobilization enables this conversion and can enhance the stability of enzymes. Complex coacervates are highly effective at encapsulating and stabilizing enzymes. This thesis demonstrates the use of complex coacervate thin films for the immobilization of enzymes and systematically probes methods to enhance the performance of these materials. The first study presents a proof-of-concept demonstration of complex coacervate thin films for the synthesis of functional biomaterials. The immobilization method itself is all-aqueous, reducing the likelihood of enzyme denaturation, and facile, only requiring two steps: coating followed by crosslinking.
A model biosensor was synthesized and demonstrated to have both high sensitivity and selectivity, and the immobilization method imparted increased thermal stability on the enzyme. From here, two directions were explored: how protein properties affect their coacervation behavior and optimizing the performance of the complex coacervate thin films. The second study aims to quantify the surface charge distribution or the "patchiness" of proteins and relate this to their complexation behavior. A patchiness parameter that averaged pair correlations between neighboring points on the protein surface was shown to correlate with the coacervation behavior of proteins with greater patchiness favoring the formation of complexes. Further work will enable this parameter to be incorporated with other protein properties in order to create robust predictive algorithms for protein-polymer coacervation.
The third and fourth studies aimed to enhance the performance and properties of complex coacervate thin films. The third study probed whether the morphology of these composite materials could be controlled and found that morphologies varied greatly as a function of the polyelectrolyte strength and the loading of the encapsulated molecule. The strongest interactions led to precipitation, but weaker interactions led to micellization in both solution and the films. The fourth study aimed to understand how various polymer properties, including polyelectrolyte strength and monomer conformational freedom, affect the performance of complex coacervate thin films. Strong interactions were found to favor greater catalytic activity but lower stability, while weaker interactions favored greater stability.
by Hursh Vardhan Sureka.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Chemical Engineering
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sampaio, Nayara Syndel Franco Soares. „Estudo da formaÃÃo de coacervatos com nitrosilos complexos de rutÃnio“. Universidade Federal do CearÃ, 2013. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=11049.

Der volle Inhalt der Quelle
Annotation:
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico
O trabalho reporta o estudo da formaÃÃo de um novo coacervato preparado a partir da mistura de soluÃÃes aquosas de polifosfato de sÃdio e nitrosilos complexos de rutÃnio. Foram utilizados os nitrosilos complexos cis-[Ru(bpy)2(L)(NO)]n+, com L=1-metilimidazol (MeimN), imidazol (ImN) ou sulfito (SO32-). A formaÃÃo dos coacervatos se mostrou possÃvel alterando a metodologia tradicional pela adiÃÃo de etanol. Com relaÃÃo à caracterizaÃÃo dos coacervatos a espectroscopia eletrÃnica na regiÃo do UV-Vis mostra as bandas caracterÃsticas dos complexos indicando a presenÃa deles nos coacervatos. A espectroscopia de absorÃÃo na regiÃo do infravermelho indica que apÃs a coacervaÃÃo, o oxido nÃtrico (NO) mantÃm-se coordenado ao complexo na forma NO+ sugerindo que os coacervatos nÃo interferem no estado de oxidaÃÃo do NO nos complexos. Os espectros de ressonÃncia magnÃtica nuclear de 1H apontam a presenÃa dos ligantes (L) que fazem parte da esfera de coordenaÃÃo dos complexos, mais uma vez sugerindo a presenÃa dos complexos nos coacervatos. Os resultados mostram que à possÃvel controlar a quantidade de complexo no coacervato simplesmente aumentando a quantidade de complexo no inÃcio da mistura. Os resultados mostram que as soluÃÃes de polifosfato e os coacervatos exercem um efeito muito interessante no processo de conversÃo nitrosilo-nitro. Em soluÃÃes de polifosfato o processo de conversÃo ocorre lentamente em pH 7,0 enquanto nos coacervatos o complexo permanece estÃvel por atà 12 meses sem sofrer conversÃo. O processo de conversÃo foi monitorado por espectroscopia eletrÃnica a regiÃo do UV-Vis pelo deslocamento da banda de transferÃncia de carga metal-ligante (MLCT) de 332nm para 450nm. A liberaÃÃo do Ãxido nÃtrico foi estudada nos coacervatos em testes baseados na reduÃÃo fotoquÃmica e na reduÃÃo quÃmica. Em ambos a liberaÃÃo foi possÃvel mostrando que os complexos nos coacervatos mantem sua capacidade de liberadores de NO.
This work reports the preparation of a new coacervate by mixture of aqueous solution of sodium polyphosphate and nitrosyl ruthenium complexes. The complexes used were: cis-[Ru(bpy)2(L)(NO)]n+, where L = 1-methylimidazole (MeimN), imidazole (ImN) and sulfite (SO32-). The preparation of the coacervates is possible only when ethanol is used. In accord of characterization of the coacervates the electronic absorption spectroscopy (UV-Vis) shows the characteristics bands of complex indicating their presence in the coacervates. Even after the preparation of the coacervates the infrared spectra show the presence of the NO+ group. Therefore, the preparation doesnât change the form (oxidation state) of the NO ligand attached in the complexes. The nuclear magnetic resonance (NMR) 1H spectra have showed the signals of the hydrogen of the ligands into the coordination sphere of the complexes. Several compositions to coacervates are possible only changing the initial concentration of the complexes into mixture. The aqueous solution of sodium polyphosphate and the coacervates have showed interesting features related to conversion process nitrosyl-nitro. The conversion process nitrosyl-nitro occurs slowly into aqueous solution of the sodium polyphosphate at pH 7,0 but into the coacervates thereâs no evidence of conversion process nitrosyl-nitro during 12 months. The shifting of the metal-ligand charge-transfer (MLCT) band from 332nm to 450nm was used to evaluated the conversion process nitrosyl-nitro by electronic absorption spectroscopy (UV-Vis). The release of the nitric oxide in the coacervates was induced by photochemical and chemical reduction. In both situations the release occurred and the complexes showed the properties of the nitric oxide releasing.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kaur, Sarbjit. „Adhesive complex coacervate inspired by the sandcastle worm as a sealant for fetoscopic defects“. Thesis, The University of Utah, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3704736.

Der volle Inhalt der Quelle
Annotation:

Inspired by the Sandcastle Worm, biomimetic of the water-borne adhesive was developed by complex coacervation of the synthetic copolyelectrolytes, mimicking the chemistries of the worm glue. The developed underwater adhesive was designed for sealing fetal membranes after fetoscopic surgery in twin-to-twin transfusion syndrome (TTTS) and sealing neural tissue of a fetus in aminiotic sac for spina bifida condition.

Complex coacervate with increased bond strength was created by entrapping polyethylene glycol diacrylate (PEG-dA) monomer within the cross-linked coacervate network. Maximum shear bond strength of ~ 1.2 MPa on aluminum substrates was reached. The monomer-filled coacervate had complex flow behavior, thickening at low shear rates and then thinning suddenly with a 16-fold drop in viscosity at shear rates near 6 s-1. The microscale structure of the complex coacervates resembled a three-dimensional porous network of interconnected tubules. This complex coacervate adhesive was used in vitro studies to mimic the uterine wall-fetal membrane interface using a water column with one end and sealed with human fetal membranes and poultry breast, and a defect was created with an 11 French trocar. The coacervate adhesive in conjunction with the multiphase adhesive was used to seal the defect. The sealant withstood an additional traction of 12 g for 30−60 minutes and turbulence of the water column without leakage of fluid or slippage. The adhesive is nontoxic when in direct contact with human fetal membranes in an organ culture setting.

A stable complex coacervate adhesive for long-term use in TTTS and spina bifida application was developed by methacrylating the copolyelectrolytes. The methacrylated coacervate was crosslinked chemically for TTTS and by photopolymerization for spina bifida. Tunable mechanical properties of the adhesive were achieved by varying the methacrylation of the polymers. Varying the amine to phosphate (A/P) ratio in the coacervate formation generated a range of viscosities. The chemically cured complex coacervate, with sodium (meta) periodate crosslinker, was tested in pig animal studies, showing promising results. The adhesive adhered to the fetal membrane tissue, with maximum strength of 473 ± 82 KPa on aluminum substrates. The elastic modulus increased with increasing methacrylation on both the polyphosphate and polyamine within the coacervate. Photopolymerized complex coacervate adhesive was photocured using Eosin-Y and treiethanolamine photoinitiators, using a green laser diode. Soft substrate bond strength increased with increasing PEG-dA concentration to a maximum of ~90 kPa. The crosslinked complex coacervate adhesives with PEG networks swelled less than 5% over 30 days in physiological conditions. The sterile glue was nontoxic, deliverable through a fine cannula, and stable over a long time period. Preliminary animal studies show a novel innovative method to seal fetal membrane defects in humans, in utero.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Heimonen, Johanna. „Synthesis of a polar conjugated polythiophene for 3D-printing of complex coacervates“. Thesis, Linköpings universitet, Laboratoriet för organisk elektronik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177396.

Der volle Inhalt der Quelle
Annotation:
The aim of this thesis was to synthesize a functionalized polar conjugated polythiophene that could be (3D-) printed into form-stable structures for bio-interfacing. The material design rationale aimed for a water-processable polymer that had the capability of electronic and ionic conduction, by using a thiophene backbone and oligoethylene side chains. Functionalization of the oligoethylene side chains with carboxylate groups created a polyanion, which allowed for a bio-inspired approach to combine printability and form-stability through formation of complex coacervates. The synthesis of the conjugated monomer and polymer was optimized to provide a more sustainable and material efficient synthesis route. Combined structural analysis with 1H-NMR, FT-IR and UV-vis revealed successful synthesis of the target polymer. Spectro electrochemistry revealed that the polymer was optically and electrochemically active in both the protected and deprotected form. The obtained material is processable from water, and initial tests revealed that crosslinking can be achieved through formation of acid dimers, ionic crosslinks with Ca2+ ions and complex coacervation with a polycation.

Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet

APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

ZHANG, HUAN. „EFFECTS OF SOLUTION COMPOSITION (SALTS, PH, DIELECTRIC CONSTANT) ON POLYELECTROLYTE COMPLEX (PEC) FORMATION AND THEIR PROPERTIES“. University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1543848436422118.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Miranda, Tavares Guilherme. „Coacervats de B-lactoglobuline et de lactoferrine : caractérisation et application potentielle pour l'encapsulation de bioactifs“. Thesis, Rennes, Agrocampus Ouest, 2015. http://www.theses.fr/2015NSARB268/document.

Der volle Inhalt der Quelle
Annotation:
Le bénéfice de l’encapsulation des molécules bioactives a séduit les industries agroalimentaires depuis plusieurs décennies. Plus récemment des études ont montré la capacité de protéines alimentaires de charge opposée à s’assembler en microsphères par coacervation complexe. La compréhension des forces gouvernant le processus de coacervation entre protéines et l’influence exercée par la présence de bioactifs demeurent des prérequis pour l’utilisation des coacervats complexes comme agent d’encapsulation. Dans ce contexte, l’objectif de mon projet de thèse a été de comprendre le mécanisme de coacervation complexe entre la ¿-lactoglobuline (¿-LG) chargée négativement, et la lactoferrine (LF) chargée positivement, en absence et en présence de petits ligands. La LF a présenté une coacervation préférentielle avec le variant A de la¿¿-LG qui se distingue du variant B par la substitution de 2 acides aminés. Au niveau moléculaire, deux sites de fixation de la ¿-LG sur la LF ont été identifiés.En outre, par la mesure d’une part des coefficients de diffusion rotationnel et d’autre part de la cinétique de diffusion des entités moléculaires constituant les coacervats, il est suggéré que ces derniers sont formés à partir de -LG libre¿¿de pentamère, LF(-LG2)2, ainsi que des entités plus larges, (LF-LG2)n. Afin d’évaluer l’effet de la présence de petits ligands sur la coacervation complexe entre la -LG et la LF, des ligands modèles (ANS et acide folique) ont été utilisés. Dans les conditions expérimentales testées ces deux ligands n’ont pas d’affinité pour la -LG, mais après interact
Encapsulation of bioactives has been used by the food industries for decades and represents a great potential for the development of innovative products. Given their versatile functional properties, milk proteins in particular from whey have been used for encapsulation purposes using several encapsulation techniques. In parallel, recent studies showed the ability of oppositely charged food proteins to co-assemble into microspheres through complex coacervation. Understanding the driving forces governing heteroprotein coacervation process and how it is affected by the presence of ligands (bioactives) is a prerequisite to use heteroprotein coacervates as encapsulation device. In this context, the objective of my thesis work was to understand the mechanism of complex coacervation between -lactoglobulin (-LG) and lactoferrin (LF) in the absence and presence of small ligands. The conditions of optimal ¿-LG - LF coacervation were found at pH range 5.4-6 with a molar excess of ¿-LG. RemarkabAt molecular level, the presence of two binding sites on LF for -LG was evidenced. Moreover, the heterocomplexes such as pentamers LF(-LG2)2 and quite large complexes (LF-LG2)n were identified as the constituent molecular species of the coacervate phase. To evaluate the -LG - LF complex coacervation in the presence of small ligands, models of hydrophobic (ANS) and hydrophilic molecules (folic acid) were used. Although under the experimental conditions tested the small ligands did not interact with -LG, both interacted with LF inducing its self-association into nanoparticles. High relati
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Wadhawan, Kirty. „Factors Influencing the Formation of Zein and Gum Arabic Complex Coacervates“. Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27345.

Der volle Inhalt der Quelle
Annotation:
Complex Coacervates are mixtures of biopolymers such as proteins and polysaccharides. The objectives of this research were to (1) determine the optimum biopolymer ratio and pH for the formation of Zein protein and gum arabic complex coacervates, (2) determine the stability of Zein: GA coacervates as an emulsifier using flax oil, Transglutaminase (Tgase), Tween 80, and Span 80 (surfactants), and (3) determine optimum temperature for the stability of formed Zein: GA complex coacervates. The optimum ratio, pH and temperature were determined using turbidimetric and Zeta (?) potential analysis. Analysis confirmed the formation of stable Zein: GA coacervates at ratio 2:1, at pH 4.5 ? 0.05 and most stable at temperature 25 ? 2 ?C. Zeta (?) potential analysis also confirmed the formation of stable emulsion using Zein: GA coacervates at 5% Tgase and 25% Span 80. Therefore, Zein: GA complex coacervates could be used as an emulsifier in food industry.
North Dakota Corn and Soybean Councils
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Tavares, Guilherme Miranda. „β-lactoglobulin and lactoferrin complex coacervates: Characterization and putative applications as encapsulation device“. Universidade Federal de Viçosa, 2015. http://www.locus.ufv.br/handle/123456789/7801.

Der volle Inhalt der Quelle
Annotation:
Submitted by Marco Antônio de Ramos Chagas (mchagas@ufv.br) on 2016-06-06T15:05:41Z No. of bitstreams: 1 texto completo.pdf: 3560441 bytes, checksum: 82236d1734bfb37faef9de46c5042ddf (MD5)
Made available in DSpace on 2016-06-06T15:05:41Z (GMT). No. of bitstreams: 1 texto completo.pdf: 3560441 bytes, checksum: 82236d1734bfb37faef9de46c5042ddf (MD5) Previous issue date: 2015-10-08
Conselho Nacional de Desenvolvimento Científico e Tecnológico
A encapsulação de moléculas bioativas é utilizada há décadas pelas industrias de alimentos e representa uma real oportunidade de desenvolvimento de produtos inovadores. Dada a sua versatilidade funcional, as proteínas do leite, em particular as proteínas do soro de leite, tem sido utilizadas para fins de encapsulação por meio de diferentes técnicas. Complementarmente, estudos recentes mostraram a habilidade de proteínas alimentares de carga oposta de se co-associar formando micro-esferas através da coacervação complexa. Compreender as forças que governam o processo de coacervação de hetero-proteínas e o efeito da presença de pequenos ligantes (bioativos) são pré-requisitos para o uso de coacervados complexos de hetero-proteínas como agentes de encapsulação. Neste contexto, o objetivo do meu projeto de tese foi entender o mecanismo de coacervação complexa entre β-lactoglobulina (β-LG) e lactoferrina (LF) na ausência ou na presença de pequenos ligantes. As condições ótimas para a coacervação entre β-LG e LF foram identificadas como sendo entre os pH 5.4 – 6.0 e em presença de um excesso molar de β-LG. Interessantemente, LF demonstrou uma seletividade de coacervação com a β-LG A, a isoforma ligeiramente mais eletronegativa. A nivel molecular, a presença de dois sítios de interação da β-LG com a LF foram evidenciados. Em complemento, hetero-complexos como o pentâmero LF(β-LG 2 ) 2 e outros complexos maiores (LFβ- LG 2 ) n foram identificados como constituintes da fase coacervada. Para avaliar o efeito da presença de pequenos ligantes na coacervação complexa entre β-LG e LF, foram usados modelos de moléculas hidrofóbica (ANS) e hidrofílica (ácido fólico). Embora nas condições experimentais os pequenos ligantes não tenham interagido com a β-LG, ambos interagiram com a LF induzindo sua auto-associação em nano- partículas. Concentrações relativamente elevadas de pequenos ligantes afetaram a interação entre as duas proteínas levando a uma transição entre os regimes de coacervação e agregação.
Le bénéfice de l’encapsulation des molécules bioactives a séduit les industries agroalimentaires depuis plusieurs décennies et constitue toujours un levier de développement pour des produits innovants. Plus récemment des études ont montré la capacité de protéines alimentaires de charge opposée à s’assembler en microsphères par coacervation complexe. La compréhension des forces gouvernant le processus de coacervation complexe entre protéines et l’influence exercée par la présence de petits ligands (bioactifs) demeurent des prérequis pour l’utilisation des coacervats complexes de protéines comme agent d’encapsulation. Dans ce contexte, l’objectif de mon projet de thèse a été de comprendre le mécanisme de coacervation complexe entre une protéine chargée négativement, la β-lactoglobuline (β-LG), et une protéine chargée positivement, la lactoferrine (LF), issues du lactosérum en absence et en présence de petits ligands. Les conditions optimales de coacervation entre la β-LG et la LF ont été définies entre pH 5.4 et 6.0 ainsi qu’en présence d’un excès de β-LG. La LF a présenté une coacervation préférentielle avec le variant A de la β-LG qui se distingue du variant B par la substitution de 2 acides aminés. Au niveau moléculaire, deux sites de fixation de la β-LG sur la LF ont été identifiés. En outre, par la mesure d’une part des coefficients de diffusion rotationnel et d’autre part de la cinétique de diffusion des entités moléculaires constituant les coacervats, il est suggéré que ces derniers sont formés à partir de β-LG libre, de pentamère, LF(β- LG 2 ) 2 , ainsi que des entités plus larges, (LFβ-LG 2 ) n . Afin d’évaluer l’effet de la présence de petits ligands sur la coacervation complexe entre la β-LG et la LF, des ligands modèles, l’un hydrophobe (ANS), l’autre hydrophile (acide folique) ont été utilisés. Dans les conditions expérimentales testées ces deux ligands n’ont pas d’affinité pour la β-LG, mais après interaction avec la LF ils sont capables d’induire son auto-association en nanoparticules. En concentrations élevées de ligands, la coacervation complexe entre la β-LG et la LF est perturbée et une transition vers un régime d’agrégation est observée.
Encapsulation of bioactives has been used by the food industries for decades and represents a great potential for the development of innovative products. Given their versatile functional properties, milk proteins in particular from whey have been used for encapsulation purposes using several encapsulation techniques. In parallel, recent studies showed the ability of oppositely charged food proteins to co-assemble into microspheres through complex coacervation. Understanding the driving forces governing heteroprotein coacervation process and how it is affected by the presence of ligands (bioactives) is a prerequisite to use heteroprotein coacervates as encapsulation device. In this context, the objective of my thesis work was to understand the mechanism of complex coacervation between β-lactoglobulin (β-LG) and lactoferrin (LF) in the absence and presence of small ligands. The conditions of optimal β-LG - LF coacervation were found at pH range 5.4-6 with a molar excess of β-LG. Remarkably, LF showed selective coacervation with β-LG A, the slightly more negative isoform. At molecular level, the presence of two binding sites on LF for β-LG was evidenced. Moreover, the heterocomplexes such as pentamers LF(β-LG 2 ) 2 and quite large complexes (LFβ-LG 2 )n were identified as the constituent molecular species of the coacervate phase. To evaluate the β-LG - LF complex coacervation in the presence of small ligands, models of hydrophobic (ANS) and hydrophilic molecules (folic acid) were used. Although under the experimental conditions tested the small ligands did not interact with β-LG, both interacted with LF inducing its self- association into nanoparticles. High relative concentrations of small ligands affected the interaction between the two proteins leading to a transition from coacervation to aggregation regime.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sampaio, Nayara Syndel Franco Soares. „Estudo da formação de coacervatos com nitrosilos complexos de rutênio“. reponame:Repositório Institucional da UFC, 2013. http://www.repositorio.ufc.br/handle/riufc/14135.

Der volle Inhalt der Quelle
Annotation:
SAMPAIO, N. S. F. S. Estudo da formação de coacervatos com nitrosilos complexos de rutênio. 2013. 75 f. Dissertação (Mestrado em Química) - Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2013.
Submitted by Daniel Eduardo Alencar da Silva (dealencar.silva@gmail.com) on 2014-11-26T21:13:16Z No. of bitstreams: 1 2013_dis_nsfssampaio.pdf: 6573398 bytes, checksum: df38cc1de438d15d468f16728faeb5ec (MD5)
Approved for entry into archive by José Jairo Viana de Sousa(jairo@ufc.br) on 2015-11-25T12:31:59Z (GMT) No. of bitstreams: 1 2013_dis_nsfssampaio.pdf: 6573398 bytes, checksum: df38cc1de438d15d468f16728faeb5ec (MD5)
Made available in DSpace on 2015-11-25T12:31:59Z (GMT). No. of bitstreams: 1 2013_dis_nsfssampaio.pdf: 6573398 bytes, checksum: df38cc1de438d15d468f16728faeb5ec (MD5) Previous issue date: 2013
This work reports the preparation of a new coacervate by mixture of aqueous solution of sodium polyphosphate and nitrosyl ruthenium complexes. The complexes used were: cis-[Ru(bpy)2(L)(NO)]n+, where L = 1-methylimidazole (MeimN), imidazole (ImN) and sulfite (SO32-). The preparation of the coacervates is possible only when ethanol is used. In accord of characterization of the coacervates the electronic absorption spectroscopy (UV-Vis) shows the characteristics bands of complex indicating their presence in the coacervates. Even after the preparation of the coacervates the infrared spectra show the presence of the NO+ group. Therefore, the preparation doesn’t change the form (oxidation state) of the NO ligand attached in the complexes. The nuclear magnetic resonance (NMR) 1H spectra have showed the signals of the hydrogen of the ligands into the coordination sphere of the complexes. Several compositions to coacervates are possible only changing the initial concentration of the complexes into mixture. The aqueous solution of sodium polyphosphate and the coacervates have showed interesting features related to conversion process nitrosyl-nitro. The conversion process nitrosyl-nitro occurs slowly into aqueous solution of the sodium polyphosphate at pH 7,0 but into the coacervates there’s no evidence of conversion process nitrosyl-nitro during 12 months. The shifting of the metal-ligand charge-transfer (MLCT) band from 332nm to 450nm was used to evaluated the conversion process nitrosyl-nitro by electronic absorption spectroscopy (UV-Vis). The release of the nitric oxide in the coacervates was induced by photochemical and chemical reduction. In both situations the release occurred and the complexes showed the properties of the nitric oxide releasing.
O trabalho reporta o estudo da formação de um novo coacervato preparado a partir da mistura de soluções aquosas de polifosfato de sódio e nitrosilos complexos de rutênio. Foram utilizados os nitrosilos complexos cis-[Ru(bpy)2(L)(NO)]n+, com L=1-metilimidazol (MeimN), imidazol (ImN) ou sulfito (SO32-). A formação dos coacervatos se mostrou possível alterando a metodologia tradicional pela adição de etanol. Com relação à caracterização dos coacervatos a espectroscopia eletrônica na região do UV-Vis mostra as bandas características dos complexos indicando a presença deles nos coacervatos. A espectroscopia de absorção na região do infravermelho indica que após a coacervação, o oxido nítrico (NO) mantém-se coordenado ao complexo na forma NO+ sugerindo que os coacervatos não interferem no estado de oxidação do NO nos complexos. Os espectros de ressonância magnética nuclear de 1H apontam a presença dos ligantes (L) que fazem parte da esfera de coordenação dos complexos, mais uma vez sugerindo a presença dos complexos nos coacervatos. Os resultados mostram que é possível controlar a quantidade de complexo no coacervato simplesmente aumentando a quantidade de complexo no início da mistura. Os resultados mostram que as soluções de polifosfato e os coacervatos exercem um efeito muito interessante no processo de conversão nitrosilo-nitro. Em soluções de polifosfato o processo de conversão ocorre lentamente em pH 7,0 enquanto nos coacervatos o complexo permanece estável por até 12 meses sem sofrer conversão. O processo de conversão foi monitorado por espectroscopia eletrônica a região do UV-Vis pelo deslocamento da banda de transferência de carga metal-ligante (MLCT) de 332nm para 450nm. A liberação do óxido nítrico foi estudada nos coacervatos em testes baseados na redução fotoquímica e na redução química. Em ambos a liberação foi possível mostrando que os complexos nos coacervatos mantem sua capacidade de liberadores de NO.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Newton, David William. „Physical studies of including drugs within complex coacervates of gelatin-acacia to produce microglobules for use in parenteral pharmaceutical dosage forms /“. Ann Arbor,Mich. : University Microfilms International, 1992. http://www.gbv.de/dms/bs/toc/016106555.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Complex coacervate"

1

Peker, Sümer, Şerife Helvacı und Handan Esen. „UREA Permeation through Complex Coacervate Membranes“. In Biomedical Science and Technology, 73–80. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5349-6_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Burges, D. J., und J. E. Carless. „Complex Coacervate Formation Between Acid- and Alkaline-Processed Gelatins“. In ACS Symposium Series, 251–60. Washington, DC: American Chemical Society, 1986. http://dx.doi.org/10.1021/bk-1986-0302.ch021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Fang, Liang, Honglei Xi und Dongmei Cun. „Formation of Ion Pairs and Complex Coacervates“. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement, 175–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45013-0_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Devi, Nirmala, Chayanika Deka, Prajnya Nath und Dilip Kumar Kakati. „Encapsulation of Theophylline in Gelatin A–Pectin Complex Coacervates“. In Advances in Experimental Medicine and Biology, 63–74. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7572-8_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Huisinga, Lisa R., und Robert Y. Lochhead. „Investigation of the Structure of Polyelectrolyte-Based Complex Coacervates and the Effects of Electrolyte Order of Addition“. In ACS Symposium Series, 97–122. Washington, DC: American Chemical Society, 2007. http://dx.doi.org/10.1021/bk-2007-0961.ch005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Blocher McTigue, Whitney C., und Sarah L. Perry. „Incorporation of proteins into complex coacervates“. In Methods in Enzymology. Elsevier, 2020. http://dx.doi.org/10.1016/bs.mie.2020.06.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Turgeon, Sylvie L., und Sandra I. Laneuville. „Protein + Polysaccharide Coacervates and Complexes“. In Modern Biopolymer Science, 327–63. Elsevier, 2009. http://dx.doi.org/10.1016/b978-0-12-374195-0.00011-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schmitt, C., L. Aberkane und C. Sanchez. „Protein–polysaccharide complexes and coacervates“. In Handbook of Hydrocolloids, 420–76. Elsevier, 2009. http://dx.doi.org/10.1533/9781845695873.420.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Köse, Merve D., Oguz Bayraktar und Özge K. Heinz. „Application of complex coacervates in controlled delivery“. In Design and Development of New Nanocarriers, 475–507. Elsevier, 2018. http://dx.doi.org/10.1016/b978-0-12-813627-0.00013-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Brzozowska, Agata Maria. „On the Use of Complex Coacervates for Encapsulation“. In Polymer Capsules, 119–70. Jenny Stanford Publishing, 2019. http://dx.doi.org/10.1201/9780429428739-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie