Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Complementary wind production“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Complementary wind production" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Complementary wind production"
Pimentel, Lauanne Oliveira, und Jeane de Almeida do Rosário. „Evaluation of Energy Complementarity Between Wind, Solar and Water Resources in the Municipality of Lages (Santa Catarina, Brazil)“. Revista de Gestão Social e Ambiental 18, Nr. 5 (15.03.2024): e05462. http://dx.doi.org/10.24857/rgsa.v18n5-030.
Der volle Inhalt der QuelleCai, Wen Bin, Kang Du, Xing Peng und Hua Yang Liu. „Study on Pumping Units with Wind Power Generation Complementary Power Supply System“. Advanced Materials Research 361-363 (Oktober 2011): 479–82. http://dx.doi.org/10.4028/www.scientific.net/amr.361-363.479.
Der volle Inhalt der QuelleNogueira, Erika Carvalho, Rafael Cancella Morais und Amaro Olimpio Pereira. „Offshore Wind Power Potential in Brazil: Complementarity and Synergies“. Energies 16, Nr. 16 (10.08.2023): 5912. http://dx.doi.org/10.3390/en16165912.
Der volle Inhalt der QuelleWang, Hui, Xiaowen Chen, Qianpeng Yang, Bowen Li, Zongyu Yue, Jeffrey Dankwa Ampah, Haifeng Liu und Mingfa Yao. „Optimization of Renewable Energy Hydrogen Production Systems Using Volatility Improved Multi-Objective Particle Swarm Algorithm“. Energies 17, Nr. 10 (15.05.2024): 2384. http://dx.doi.org/10.3390/en17102384.
Der volle Inhalt der QuelleHe, Xueqian, Tianguang Lu und Zhifan Liu. „Benefit Evaluation of Hydrogen Production System Harnessing Curtailed Wind Considering Integrated Demand Response“. Journal of Physics: Conference Series 2584, Nr. 1 (01.09.2023): 012020. http://dx.doi.org/10.1088/1742-6596/2584/1/012020.
Der volle Inhalt der QuelleLu, Cun, Leping Yang, Wen Qi und Zhan Han. „Research on Control Strategy of Multi-Energy Complementary Microgrid for Wind-Solar Hydrogen Production“. International Journal of Energy 5, Nr. 3 (24.12.2024): 11–14. https://doi.org/10.54097/30vt8h35.
Der volle Inhalt der QuelleLu, Cun, Leping Yang, Wen Qi und Zhan Han. „Research on Control Strategy of Multi-energy Complementary Microgrid for Wind-solar Hydrogen Production“. Journal of Innovation and Development 9, Nr. 1 (19.11.2024): 18–22. http://dx.doi.org/10.54097/b1170w49.
Der volle Inhalt der QuelleSellek, Andrew D., Naman S. Bajaj, Ilaria Pascucci, Cathie J. Clarke, Richard Alexander, Chengyan Xie, Giulia Ballabio et al. „Modeling JWST MIRI-MRS Observations of T Cha: Mid-IR Noble Gas Emission Tracing a Dense Disk Wind“. Astronomical Journal 167, Nr. 5 (17.04.2024): 223. http://dx.doi.org/10.3847/1538-3881/ad34ae.
Der volle Inhalt der QuelleSuo, Xun, Shuqiang Zhao und Yanfeng Ma. „Multipoint Layout Planning Method for Multienergy Sources Based on Complex Adaptive System Theory“. International Transactions on Electrical Energy Systems 2022 (05.07.2022): 1–15. http://dx.doi.org/10.1155/2022/8948177.
Der volle Inhalt der QuelleGrant, E., K. Brunik, J. King und C. E. Clark. „Hybrid power plant design for low-carbon hydrogen in the United States“. Journal of Physics: Conference Series 2767, Nr. 8 (01.06.2024): 082019. http://dx.doi.org/10.1088/1742-6596/2767/8/082019.
Der volle Inhalt der QuelleDissertationen zum Thema "Complementary wind production"
Sari, Kheirreddine. „Vers une gestion régionale de l'intermittence éolienne : une approche statistique de la complémentarité de la production“. Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMOND020.
Der volle Inhalt der QuelleThis thesis explores the role of wind complementarity in managing intermittency at the sub-regional level in France. Through an empirical and statistical approach, this work examines how the geographical distribution of wind farms can help mitigate production fluctuations due to the variable and volatile nature of wind, thus promoting a more stable coverage of electricity demand. The first contribution of this research lies in the use of real wind speed data, offering greater precision compared to satellite data and enabling a fine-tuned identification of complementary sites within France. By leveraging time series classification methods, this thesis identified clusters of negatively correlated wind sites, indicating a complementarity potential that enhances wind energy availability and reduces intermittency events. The study then incorporates an analysis of the technical, environmental, and economic constraints of wind farms, highlighting the feasibility of this complementarity. The economic evaluation of site combinations shows that these configurations are not only viable but also affordable in terms of the levelized cost of electricity (LCOE). The results demonstrate that complementary wind farms increase demand coverage by at least 10% compared to a single site, reaching up to a 30% coverage rate.Finally, time-series analysis is used to quantify the dynamic effects of complementarity on production and residual demand, integrating time-varying Granger causality tests (TVGC). This approach reveals that the spatio-temporal complementarity of wind reduces residual demand, especially during periods of high demand, such as in winter, and underscores the importance of seasonal consideration in effective wind planning. In summary, this research demonstrates that sub-regional wind complementarity, based on a refined site analysis and empirical data, can play a strategic role in managing intermittency. These findings provide relevant insights for developing local, and potentially global, energy policies, especially within the framework of Renewable Energy Acceleration Zones in France
Buchteile zum Thema "Complementary wind production"
Nahm, Jonas. „Wind and Solar Invention in the United States“. In Collaborative Advantage, 151–83. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780197555361.003.0006.
Der volle Inhalt der QuelleKumawat, Hitesh, und Raunak Jangid. „Using AI Techniques to Improve the Power Quality of Standalone Hybrid Renewable Energy Systems“. In Crafting a Sustainable Future Through Education and Sustainable Development, 219–50. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-9601-5.ch011.
Der volle Inhalt der QuelleMcElroy, Michael B. „Power from the Sun Abundant But Expensive“. In Energy and Climate. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190490331.003.0015.
Der volle Inhalt der QuelleShang, Yizi, Xiaofei Li und Ling Shang. „Hydropower Development in China: A Leapfrog Development Secured by Technological Progress of Dam Construction“. In Technological Innovations and Advances of Hydropower Engineering [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103902.
Der volle Inhalt der QuelleStankovic, Sladjan, Miroslav Kostic, Igor Kostic und Slobodan Krnjajic. „Practical Approaches to Pest Control: The Use of Natural Compounds“. In Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.91792.
Der volle Inhalt der QuelleBassetti, Chiara. „Building the Playground for Collective Imagination: Ethnography of a Détournement around Moneywork and Carework“. In Ethnographies of Collaborative Economies across Europe: Understanding Sharing and Caring, 149–72. Ubiquity Press, 2022. http://dx.doi.org/10.5334/bct.i.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Complementary wind production"
Liang, Tao, BoFeng Sun, Dabin Mi und Zhijin Sha. „Operation Optimization of Wind-solar Complementary Hydrogen Production System Based on MOGEO“. In 2022 7th International Conference on Power and Renewable Energy (ICPRE). IEEE, 2022. http://dx.doi.org/10.1109/icpre55555.2022.9960331.
Der volle Inhalt der QuelleJia, Dong, Hua Li, Yang Li, Hailong Zhang und Tianze Yuan. „Capacity Aptimization Allocation of Hydrogen Production System for Wind-Solar Complementary Power Generation“. In 2023 International Conference on Smart Electrical Grid and Renewable Energy (SEGRE). IEEE, 2023. http://dx.doi.org/10.1109/segre58867.2023.00068.
Der volle Inhalt der QuelleAdams, Benjamin M., und Thomas H. Kuehn. „The Complementary Nature of CO2-Plume Geothermal (CPG) Energy Production and Electrical Power Demand“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-88704.
Der volle Inhalt der QuelleSun, Mengxin, Lin Yang, Yang Liu, Zuoxia Xing, Yeqin Shao und Jinsong Liu. „Optimized control of hydrogen production and energy storage system for wind-solar complementary power generation“. In 2022 First International Conference on Cyber-Energy Systems and Intelligent Energy (ICCSIE). IEEE, 2023. http://dx.doi.org/10.1109/iccsie55183.2023.10175247.
Der volle Inhalt der QuelleZAENAL, Mohammed U., Swash Sami Mohammed, Ahmed A. Wahhab und O. J. Abdalgbar. „Complementary Power Supply to compensate the Wind Power in Water Electrolytic System for Hydrogen Production“. In 2019 Global Conference for Advancement in Technology (GCAT). IEEE, 2019. http://dx.doi.org/10.1109/gcat47503.2019.8978319.
Der volle Inhalt der QuelleCoe, Ryan G., George Lavidas, Giorgio Bacelli, Peter H. Kobos und Vincent S. Neary. „Minimizing Cost in a 100% Renewable Electricity Grid: A Case Study of Wave Energy in California“. In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-80731.
Der volle Inhalt der QuelleSchreck, S., und M. Robinson. „Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control“. In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37651.
Der volle Inhalt der QuelleJedrzejewski, F. „Entropy and Lyapunov Exponents Relationships in Stochastic Dynamical Systems“. In ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-1822.
Der volle Inhalt der QuelleMacadré, Laura-Mae, Keith O’Sullivan, Antoine Breuillard und Stéphane le Diraison. „Risk-Based Approach for the Development of Guidelines and Standards on Combined Marine Renewable Energy Platforms“. In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23812.
Der volle Inhalt der QuelleShin, Yong-su, und Jungsoo Lee. „Analysis of Aerodynamic Characteristics of Fan-Type Wheels“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-2540.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Complementary wind production"
Bar-Joseph, Moshe, William O. Dawson und Munir Mawassi. Role of Defective RNAs in Citrus Tristeza Virus Diseases. United States Department of Agriculture, September 2000. http://dx.doi.org/10.32747/2000.7575279.bard.
Der volle Inhalt der Quelle