Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Communications 5G“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Communications 5G" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Communications 5G"
Choi, Young B., und Matthew E. Bunn. „The Security Risks and Challenges of 5G Communications“. International Journal of Cyber Research and Education 3, Nr. 2 (Juli 2021): 46–53. http://dx.doi.org/10.4018/ijcre.2021070104.
Der volle Inhalt der QuelleManale, Boughanja, und Tomader Mazri. „Security of communication 5G-V2X: A proposed approach based on securing 5G-V2X based on Blockchain“. ITM Web of Conferences 43 (2022): 01025. http://dx.doi.org/10.1051/itmconf/20224301025.
Der volle Inhalt der QuelleShah, Syed Adeel Ali, Ejaz Ahmed, Muhammad Imran und Sherali Zeadally. „5G for Vehicular Communications“. IEEE Communications Magazine 56, Nr. 1 (Januar 2018): 111–17. http://dx.doi.org/10.1109/mcom.2018.1700467.
Der volle Inhalt der QuelleDemestichas, Konstantinos, Evgenia Adamopoulou und Michał Choraś. „5G Communications: Energy Efficiency“. Mobile Information Systems 2017 (2017): 1–3. http://dx.doi.org/10.1155/2017/5121302.
Der volle Inhalt der QuelleBhardwaj, Anshu. „5G for Military Communications“. Procedia Computer Science 171 (2020): 2665–74. http://dx.doi.org/10.1016/j.procs.2020.04.289.
Der volle Inhalt der QuelleBoeding, Matthew, Paul Scalise, Michael Hempel, Hamid Sharif und Juan Lopez. „Toward Wireless Smart Grid Communications: An Evaluation of Protocol Latencies in an Open-Source 5G Testbed“. Energies 17, Nr. 2 (11.01.2024): 373. http://dx.doi.org/10.3390/en17020373.
Der volle Inhalt der QuelleHameed, Nazia, und Dr Vipin Gupta. „Future Antenna for 5G Mobile Communications“. International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (31.10.2018): 982–85. http://dx.doi.org/10.31142/ijtsrd18820.
Der volle Inhalt der QuelleChih-Lin, I., Shuangfeng Han, Zhikun Xu, Qi Sun und Zhengang Pan. „5G: rethink mobile communications for 2020+“. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, Nr. 2062 (06.03.2016): 20140432. http://dx.doi.org/10.1098/rsta.2014.0432.
Der volle Inhalt der QuelleAbdullayeva, A. S., A. K. Aitim und A. V. Tyan. „ПЕРЕХОД СЕТИ 4G НА 5G. ИННОВАЦИОННЫЙ ПОТЕНЦИАЛ ЭКОСИСТЕМЫ 5G“. INTERNATIONAL JOURNAL OF INFORMATION AND COMMUNICATION TECHNOLOGIES 3, Nr. 2(10) (15.06.2022): 47–58. http://dx.doi.org/10.54309/ijict.2022.10.2.005.
Der volle Inhalt der QuelleZu, Chenyu. „An investigation on fronthaul and millimeter wave technologies for 5G“. Journal of Physics: Conference Series 2132, Nr. 1 (01.12.2021): 012037. http://dx.doi.org/10.1088/1742-6596/2132/1/012037.
Der volle Inhalt der QuelleDissertationen zum Thema "Communications 5G"
Artusi, Denise. „5g mobile communications systems“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7563/.
Der volle Inhalt der QuelleGopala, Kalyana. „Multiple Antenna Communications for 5G“. Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS352.
Der volle Inhalt der QuelleTime Division Duplexing (TDD) Massive Multiple Input Multiple Output (MaMIMO) with a massive number of base station (BS) antennas relies on channel reciprocity to obtain Channel State Information at Transmitter (CSIT). However the overall end to end digital channel is not reciprocal due to the presence of Transmit (Tx) and Receive (Rx) chains which need to be corrected using calibration factors. Our work provides a simple and elegant expression of the Cramer Rao Bound (CRB) for calibration parameter estimation. We provide analysis for the existing least squares approaches and propose optimal algorithms to estimate the calibration parameters. We also consider beamforming for a rapidly time-varying point to point MIMO link. In an Orthogonal Frequency Division Multiplexing (OFDM) sytem, this results in inter-carrier interference (ICI). With an assumption of linear channel variation across the OFDM symbol, it is observed that the beamformer design problem is similar to that of a MIMO Interfering Broadcast Channel (IBC) beamforming design. The beamformer design takes into account receive windowing using the excess cyclic prefix and the window is jointly designed with the Tx beamformer. In addition to full CSIT, we also investigate partial CSIT approaches that maximize Expected Weighted Sum Rate (EWSR) where the Tx has only partial knowledge of the channel. First, we use a large system approximation that also works well for a small number of Tx and Rx antennas to derive the beamformers. In our work, we also analyze the possibility of using the Expected-signal- expected-interference-WSR metric instead of the EWSR. Finally, experimental results on the Eurecom MaMIMO testbed are presented
Nguyen, Tran Quang Khai. „Développement de système antennaire pour les communications 5G“. Thesis, Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ4100.
Der volle Inhalt der QuelleThe work in this thesis has been funded by the French FUI project MASS-START (2017-2020). The project aims at the integration of 5G compatible baseband and radio subsystems into an Over-Air-Interface-based 5G terminal and gNodeB demonstrator, and the antenna array for end-to-end Multiple Input Multiple Output link experimentation. The scope of the thesis concerns the design and assessment of antenna systems that are to be used in the project.At 5G Frequency Range 1 band, the work concentrates on the development of a methodology to design antenna with a matching circuit for mobile terminals with limited area. The bandwidth limitation is evaluated using Quality-Factor. A Particle Swarm Optimization algorithm is proposed and examined in different antenna designs for mobile terminals. The final design demonstrates a system with three non-resonating coupling elements covering most of the sub-6GHz bands of 5G. At 5G Frequency Range 2 band, more precisely band n258 of Europe, different types of array antennas are studied. The work first checks two types of feeding for a patch antenna that can be integrated into Printed Circuit Board to have a low profile antenna and ease the fabrication procedure. The designs are later fabricated and experimentally evaluated. With a Millimeter-Wave array at hand, we proceed a measurement campaign in which the effects of the user's finger at close proximity of the antenna are evaluated. The losses due to absorption, reflection, diffraction are quantified and compared with numerical estimations in literature. A system of multiple end-fire arrays placed at different locations in a terminal is also studied showing the compromising effectiveness if one array is severely blocked
Nguyen, Thanh-Son-Lam. „Wireless Resource Allocation in 5G-NR V2V Communications“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG052.
Der volle Inhalt der QuelleThis doctoral dissertation explores the enhancement of wireless resource allocation in Vehicle-to-Everything (V2X) communications, as specified by the 3GPP Release 16 standard. The specific area of our research is the NR-V2X Sidelink communication, also known as the New Radio-Vehicles to Vehicles (NR-V2V) communication. Our goal is to formulate a novel optimization protocol that not only guarantees high-quality services (QoS) but also outperforms existing methodologies in NR-V2V communication.Initially, we introduce Adaptive Physical Configuration (APC), a search-based algorithm designed to identify the optimal physical layer configuration within a set of environmental factors, specifically tailored for a broadcast communication scheme. Following this, we evolve APC into a Radio Aware variant (RA-APC), broadening its scope by incorporating unicast communication and establishing a more flexible structure for PHY resources. In the final phase, we further refine RA-APC by integrating a machine learning algorithm, specifically a decision tree. This integration uncovers patterns within the input factors, thereby augmenting both the accuracy and efficiency of the allocation optimization process
Torabian, Esfahani Tahmineh, und Stefanos Stefanidis. „High Performance Reference Crystal Oscillator for 5G mmW Communications“. Thesis, Linköpings universitet, Elektroniska komponenter, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112568.
Der volle Inhalt der QuelleVlachos, Christoforos. „Integrating device-to-device communications in 5G cellular networks“. Thesis, King's College London (University of London), 2018. https://kclpure.kcl.ac.uk/portal/en/theses/integrating-devicetodevice-communications-in-5g-cellular-networks(b4700367-dfd1-41df-b880-651bdb3b0b7b).html.
Der volle Inhalt der QuelleÖzenir, Onur. „Redundancy techniques for 5G Ultra Reliable Low Latency Communications“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25082/.
Der volle Inhalt der QuelleCampestri, Mattia. „Performance Improvement of D2D Random Access in 5G Communications“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Den vollen Inhalt der Quelle findenDI, STASIO FRANCESCO. „Link optimization considerations for 5G and beyond wireless communications“. Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2950490.
Der volle Inhalt der QuelleRajabi, Khamesi Atieh. „A Stochastic Geometry approach towards Green Communications in 5G“. Doctoral thesis, Università degli studi di Padova, 2018. http://hdl.handle.net/11577/3422676.
Der volle Inhalt der QuelleIn this dissertation, we investigate two main research directions towards net- work efficiency and green communications in heterogeneous cellular networks (HetNets) as a promising network structure for the fifth generation of mobile systems. In order to analyze the networks, we use a powerful mathematical tool, named stochastic geometry. In our research, first we study the performance of MIMO technology in single-tier and two-tier HetNets. In this work, we apply a more realistic network model in which the correlation between tiers is taken into account. Comparing the obtained results with the commonly used model shows performance enhancement and greater efficiencies in cellular networks. As the second part of our research, we apply two Cell Zooming (CZ) techniques to HetNets. With focus on green communications, we present a K−tier HetNet in which BSs are only powered by energy har- vesting. Despite the uncertain nature of energy arrivals, combining two CZ techniques, namely telescopic and ON/OFF scenarios, enables us to achieve higher network performance in terms of the coverage and blocking probabilities while reducing the total power consumption and increasing the energy and spectral efficiencies.
Bücher zum Thema "Communications 5G"
Xiang, Wei, Kan Zheng und Xuemin Shen, Hrsg. 5G Mobile Communications. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-34208-5.
Der volle Inhalt der QuelleMarriwala, Nikhil, C. C. Tripathi, Shruti Jain und Dinesh Kumar, Hrsg. Mobile Radio Communications and 5G Networks. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7018-3.
Der volle Inhalt der QuelleMarriwala, Nikhil, C. C. Tripathi, Dinesh Kumar und Shruti Jain, Hrsg. Mobile Radio Communications and 5G Networks. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7130-5.
Der volle Inhalt der QuelleDohler, Mischa, und Takehiro Nakamura. 5G Mobile and Wireless Communications Technology. Herausgegeben von Afif Osseiran, Jose F. Monserrat und Patrick Marsch. Cambridge: Cambridge University Press, 2016. http://dx.doi.org/10.1017/cbo9781316417744.
Der volle Inhalt der QuelleAsif, Saad Z. 5G Mobile Communications Concepts and Technologies. First edition. | Boca Raton, FL : CRC Press/Taylor & Francis: CRC Press, 2018. http://dx.doi.org/10.1201/9780429466342.
Der volle Inhalt der QuelleCheng, Xiang, Rongqing Zhang und Liuqing Yang. 5G-Enabled Vehicular Communications and Networking. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-02176-4.
Der volle Inhalt der QuelleWen, Miaowen, Xiang Cheng und Liuqing Yang. Index Modulation for 5G Wireless Communications. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51355-3.
Der volle Inhalt der QuelleMarriwala, Nikhil, C. C. Tripathi, Shruti Jain und Dinesh Kumar, Hrsg. Mobile Radio Communications and 5G Networks. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7982-8.
Der volle Inhalt der QuelleSatellite communications in the 5G Era. Stevenage: IET, 2018.
Den vollen Inhalt der Quelle findenMarriwala, Nikhil Kumar, Sunil Dhingra, Shruti Jain und Dinesh Kumar, Hrsg. Mobile Radio Communications and 5G Networks. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0700-3.
Der volle Inhalt der QuelleBuchteile zum Thema "Communications 5G"
Ratasuk, Rapeepat, Amitava Ghosh und Benny Vejlgaard. „M2M Communications“. In Towards 5G, 250–74. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118979846.ch12.
Der volle Inhalt der QuelleVook, Frederick W., Amitava Ghosh und Timothy A. Thomas. „Massive MIMO Communications“. In Towards 5G, 342–64. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118979846.ch15.
Der volle Inhalt der QuelleMolisch, Andreas F., Mingyue Ji, Joongheon Kim, Daoud Burghal und Arash Saber Tehrani. „Device-to-Device Communications“. In Towards 5G, 162–98. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118979846.ch9.
Der volle Inhalt der QuelleVan Chien, Trinh, und Emil Björnson. „Massive MIMO Communications“. In 5G Mobile Communications, 77–116. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34208-5_4.
Der volle Inhalt der QuelleAlonso-Zarate, Jesus, und Mischa Dohler. „M2M Communications in 5G“. In 5G Mobile Communications, 361–79. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34208-5_13.
Der volle Inhalt der QuelleWang, Yi, und Zhenyu Shi. „Millimeter-Wave Mobile Communications“. In 5G Mobile Communications, 117–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34208-5_5.
Der volle Inhalt der QuelleSingh, Shubhranshu, Ji Lianghai, Daniel Calabuig, David Garcia-Roger, Nurul H. Mahmood, Nuno Pratas, Tomasz Mach und Maria Carmela De Gennaro. „D2D and V2X Communications“. In 5G System Design, 409–49. Chichester, UK: John Wiley & Sons, Ltd, 2018. http://dx.doi.org/10.1002/9781119425144.ch14.
Der volle Inhalt der QuelleJiang, Dajie, und Guangyi Liu. „An Overview of 5G Requirements“. In 5G Mobile Communications, 3–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34208-5_1.
Der volle Inhalt der QuelleDarwazeh, Izzat, Ryan C. Grammenos und Tongyang Xu. „Spectrally Efficient Frequency Division Multiplexing for 5G“. In 5G Mobile Communications, 261–97. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34208-5_10.
Der volle Inhalt der QuelleZhou, Mingxin, Yun Liao und Lingyang Song. „Full-Duplex Wireless Communications for 5G“. In 5G Mobile Communications, 299–335. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34208-5_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Communications 5G"
Ramabadran, Prasidh, Sidath Madhuwantha, Pavel Afanasyev, Ronan Farrell und John Dooley. „Wideband Interleaved Vector Modulators for 5G Wireless Communications“. In 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G). IEEE, 2018. http://dx.doi.org/10.1109/imws-5g.2018.8484496.
Der volle Inhalt der QuelleFutter, P. W., und J. Soler. „Antenna design for 5g communications“. In 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2017. http://dx.doi.org/10.1109/apcap.2017.8420649.
Der volle Inhalt der QuelleRusch, Leslie Ann, Xun Guan, Mingyang Lyu und Wei Shi. „Silicon Photonics for 5G Communications“. In 2020 IEEE Photonics Conference (IPC). IEEE, 2020. http://dx.doi.org/10.1109/ipc47351.2020.9252548.
Der volle Inhalt der QuelleAgrawal, Anurag Vijay, und Meenakshi Rawat. „HSR Communications in 5G Era“. In 2019 IEEE 16th India Council International Conference (INDICON). IEEE, 2019. http://dx.doi.org/10.1109/indicon47234.2019.9029080.
Der volle Inhalt der QuelleKourtis, Michail-Alexandros, Michael Batistatos, George Xilouris, Thanos Sarlas, Themis Anagnostopoulos, Ioannis P. Chochliouros und Anastasios Kourtis. „5G Slicing for Emergency Communications“. In 2021 Eighth International Conference on Software Defined Systems (SDS). IEEE, 2021. http://dx.doi.org/10.1109/sds54264.2021.9732142.
Der volle Inhalt der QuelleChih-Lin I. „Pearls of 5G“. In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/acp.2013.aw2a.2.
Der volle Inhalt der QuelleChih-Lin, I. „Pearls of 5G“. In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/acpc.2013.aw2a.2.
Der volle Inhalt der QuelleMoradi, Hussein, und Behrouz Farhang-Boroujeny. „Underlay Scheduling Request for Ultra-Reliable Low-Latency Communications“. In 2019 IEEE 2nd 5G World Forum (5GWF). IEEE, 2019. http://dx.doi.org/10.1109/5gwf.2019.8911714.
Der volle Inhalt der QuelleBhatia, Randeep, Bhawna Gupta, Steven Benno, Jairo Esteban, Dragan Samardzija, Marcos Tavares und T. V. Lakshman. „Massive Machine Type Communications over 5G using Lean Protocols and Edge Proxies“. In 2018 IEEE 5G World Forum (5GWF). IEEE, 2018. http://dx.doi.org/10.1109/5gwf.2018.8517086.
Der volle Inhalt der QuelleKurtz, Fabian, Dennis Overbeck, Caner Bektas und Christian Wietfeld. „Control Plane Fault Tolerance for Resilient Software-Defined Networking based Critical Infrastructure Communications“. In 2018 IEEE 5G World Forum (5GWF). IEEE, 2018. http://dx.doi.org/10.1109/5gwf.2018.8516975.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Communications 5G"
Cintron, Fernando J., David W. Griffith, Chunmei Liu, Richard Rouil, Yishen Sun, Jian Wang, Peng Liu, Chen Shen, Aziza Ben Mosbah und Samantha Gamboa. Study of 5G New Radio (NR) Support for Direct Mode Communications. National Institute of Standards and Technology, Mai 2021. http://dx.doi.org/10.6028/nist.ir.8372.
Der volle Inhalt der QuelleAl-Qadi, Imad, Yanfeng Ouyang, Eleftheria Kontou, Angeli Jayme, Noah Isserman, Lewis Lehe, Ghassan Chehab et al. Planning for Emerging Mobility: Testing and Deployment in Illinois. Illinois Center for Transportation, November 2023. http://dx.doi.org/10.36501/0197-9191/23-025.
Der volle Inhalt der QuelleCarpenter, Marie, und William Lazonick. The Pursuit of Shareholder Value: Cisco’s Transformation from Innovation to Financialization. Institute for New Economic Thinking Working Paper Series, Februar 2023. http://dx.doi.org/10.36687/inetwp202.
Der volle Inhalt der Quelle