Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Comfort textile“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Comfort textile" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Comfort textile"
Tadesse, Melkie Getnet, Carmen Loghin, Ionuț Dulgheriu und Emil Loghin. „Comfort Evaluation of Wearable Functional Textiles“. Materials 14, Nr. 21 (28.10.2021): 6466. http://dx.doi.org/10.3390/ma14216466.
Der volle Inhalt der QuelleHARADA, TAKASHI. „New Textile for Comfort“. Sen'i Gakkaishi 52, Nr. 2 (1996): P85—P90. http://dx.doi.org/10.2115/fiber.52.p85.
Der volle Inhalt der QuelleLama, John, Andy Yau, Guorui Chen, Aditya Sivakumar, Xun Zhao und Jun Chen. „Textile triboelectric nanogenerators for self-powered biomonitoring“. Journal of Materials Chemistry A 9, Nr. 35 (2021): 19149–78. http://dx.doi.org/10.1039/d1ta02518j.
Der volle Inhalt der QuelleChatterjee, Kony, Jordan Tabor und Tushar K. Ghosh. „Electrically Conductive Coatings for Fiber-Based E-Textiles“. Fibers 7, Nr. 6 (01.06.2019): 51. http://dx.doi.org/10.3390/fib7060051.
Der volle Inhalt der QuelleGeraldes, Maria José, C. Monteiro und Lubos Hes. „Study and Interpretation of the Mass Transfer Phenomena through Textile Structures in the Wet State“. Defect and Diffusion Forum 326-328 (April 2012): 205–8. http://dx.doi.org/10.4028/www.scientific.net/ddf.326-328.205.
Der volle Inhalt der QuelleKANIA, ANNA, und MARCIN BARBURSKI. „IMPROVING LOCAL THERMAL COMFORT IN BUILDINGS: A STUDY OF PROPERTIES OF HEATING TEXTILE COMPOSITES IN CONSTRUCTION INDUSTRY“. Fibres and Textiles 30, Nr. 1 (2023): 80–83. http://dx.doi.org/10.15240/tul/008/2023-1-014.
Der volle Inhalt der QuelleRistić, Nebojša, Dragana Marković-Nikolić, Aleksandra Zdravković, Ivanka Mičić und Ivanka Ristić. „Biofunctional textile materials: Cosmetic textiles“. Advanced Technologies 11, Nr. 1 (2022): 63–75. http://dx.doi.org/10.5937/savteh2201063r.
Der volle Inhalt der QuelleAffatato, Lorena, und Cosimo Carfagna. „Smart Textiles: A Strategic Perspective of Textile Industry“. Advances in Science and Technology 80 (September 2012): 1–6. http://dx.doi.org/10.4028/www.scientific.net/ast.80.1.
Der volle Inhalt der QuelleChau, Kam Hong, Chris Kwan Yu Lo und Chi Wai Kan. „A Literature Review of Manufacturing Eco-Friendly Comfort Textiles and Future Agenda“. Applied Mechanics and Materials 866 (Juni 2017): 444–47. http://dx.doi.org/10.4028/www.scientific.net/amm.866.444.
Der volle Inhalt der QuelleMemon, Abdul Wahab, Igor Lima de Paula, Benny Malengier, Simona Vasile, Patrick Van Torre und Lieva Van Langenhove. „Breathable Textile Rectangular Ring Microstrip Patch Antenna at 2.45 GHz for Wearable Applications“. Sensors 21, Nr. 5 (26.02.2021): 1635. http://dx.doi.org/10.3390/s21051635.
Der volle Inhalt der QuelleDissertationen zum Thema "Comfort textile"
Arabuli, Svitlana, Olena Kyzymchuk, Viktoriia Vlasenko, Vladimir Bajzik, Larysa Ocheretna und Maros Tunak. „Thermophysiological comfort properties of textile shields against EMR“. Thesis, Київський національний університет технологій та дизайну, 2020. https://er.knutd.edu.ua/handle/123456789/16816.
Der volle Inhalt der QuelleSmith, J. E. „The evaluation and optimization of sensorial comfort“. Thesis, University of Salford, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.381736.
Der volle Inhalt der QuelleBritz, Lizaan. „A comparison of the comfort properties, measured with a sweating manikin (WalterTM), of clothing containing different fibres“. Thesis, Nelson Mandela Metropolitan University, 2017. http://hdl.handle.net/10948/14752.
Der volle Inhalt der QuelleWolff, Metternich Maria Antonia. „Comfort Zones : The delicate relationship between knitted surfaces and filling materials experienced through human comfort/discomfort“. Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-22044.
Der volle Inhalt der QuelleKapsali, Veronika. „Metropolitan comfort : biomimetic interpretation of hygroscopic botanical mechanisms into a smart textile for the management of physiological discomfort during urban travel“. Thesis, University of Bath, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.521206.
Der volle Inhalt der QuelleStoffberg, Marguerite Ester. „A comparative study of the comfort related properties of commercial apparel fabrics containing natural and man-made fibres“. Thesis, Nelson Mandela Metropolitan University, 2013. http://hdl.handle.net/10948/d1020931.
Der volle Inhalt der QuelleAndersson, Catherine Jane. „Relationships between physical textile properties and human comfort during wear trials of chemical biological protective garment systems“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ40022.pdf.
Der volle Inhalt der QuelleEuler, Luisa. „Impedance and Stimulation Comfort of Knitted Electrodes for Neuromuscular Electrical Stimulation (NMES) : Influence of electrode construction and pressure application to the electrode“. Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-23896.
Der volle Inhalt der QuelleKaleem, ullah Hafiz Muhammad. „Développement de fibres bicomposantes innovantes pour le textile de confort thermique“. Electronic Thesis or Diss., Centrale Lille Institut, 2022. http://www.theses.fr/2022CLIL0034.
Der volle Inhalt der QuelleThis study is part of Interreg European Project between Haute de France and Belgium. The project is called Photonitex. The aim of this project is to develop a personal thermal regulation intelligent textile that dynamically controls skin temperature. This work was done in collaboration between Centre Européen des Textiles Innovants (CETI) and School National Superior of Textile Arts and Industries (ENSAIT).The objective of this thesis is to develop a bicomponent fibers for thermal comfort textile. The literature review was done to select the most suitable polymer materials that are commonly used in textile industry. In addition, based on the literature review, the design of the trilobal bicomponent fibers was finalized to realize the dynamic thermal comfort textile. Moreover, used polymer materials must exhibit hydrophilic difference to achieve the dynamic thermal properties in fabrics. The inner material of this bicomponent trilobal fiber must be more hydrophilic than the outer material. PA6 and PA6-6 were selected as hydrophilic core and PET hydrophobic outer material for trilobal bicomponent filaments. However, PA6 and PA6-6 are incompatible and immiscible to PET. The major challenge to achieve the desired bicomponent fibers is to acquire a sufficient adhesion at the interface to avoid the pre-splitting or separation between these two polymer materials. In order to improve their miscibility at the interface PA12 was added in PA6 and PA6-6 at 5, 10, 15% wt % via polymer compounding process. In order to produce trilobal bicomponent filament via coextrusion melt spinning process, rheological behavior of the used polymer materials play an important role. To select the most suitable materials for trilobal bicomponent fiber, rheological studies were conducted on pure and polymer blends using capillary rheometer. In addition, hydrophilic properties of each polymer and their blends were also tested on knitted fabrics with contact angle and wicking measurements. To evaluate the effect of PA12 on PET and PA6 interfacial adhesion, bicomponent PET/PA6 sheath/core fibers were produced via melt spinning process and interfacial adhesion was investigated through techniques (tensile test, dynamic mechanical thermal analysis (DMTA), Wide Angle Xray Diffraction (WAXD), Differential scanning calorimetry (DSC), and Scanning Electron Microscope (SEM)). Based on the obtained results from the above mentioned techniques, the most suitable composition was produced in trilobal bicomponent fibers for thermal comfort fabrics. Simulation studies were also performed using Compuplast 3D FEM software to optimize the melt spinning process settings and produce trilobal bicomponent fibers.The textile made out of such innovative bicomponent fibers will show a self-actuation phenomenon are autonomous, self-empowered, and adaptive to the environment. This will help to mitigate the higher energy consumptions by conventional indoor heating, cooling, and ventilation systems and eventually minimizes the global energy consumptions and climate issues
Alhajj, Assaf Salim. „Innovative nanostructured textiles for thermal comfort“. Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1I012.
Der volle Inhalt der QuelleFor the past ten years, photonic nanostructures have represented a paradigm for the control of thermal radiations, offering a panel of exciting properties for energy applications. Because of their abilities to control and manage electromagnetic waves at the Mid-Infrared (Mid-IR) wavelength scale, photonic nanostructures demonstrate their ability to manage thermal radiations properties in a way drastically different from conventional thermal emitters. The fundamental advances in controlling thermal radiation led to different applications in the energy domain, as thermo photovoltaic devices or through the concept of daytime radiative cooling to passively decrease the temperature of terrestrial structures. Recently, another field of application has appeared in the thermal radiation control, with the introduction of photonic nanostructures in textiles for personal thermoregulation. The goal of the thesis is to study different passive photonic membranes that modulate the human body optical radiations in the Mid-IR for personal thermoregulation. We have investigated the optical properties of different polymer membranes, considering the effect of their structuration. We showed that a photonic crystal membrane is able to modulate the transmission coefficient by 28% in benefit or deficit of both the absorption and reflection. We analyzed the thermal balance between the human body and the indoor environment through the photonic membrane, considering the radiation, convection and conduction mechanisms. We found that the temperature of the skin is almost 2°C higher when the human body is clothed with a structured membrane. The study was carried out on analytical calculations and numerical simulation with the help of the finite element method (FEM). The numerical study was supported by experiments in fabrication in the IEMN cleaning room and in characterization by infrared spectroscopy (FTIR) at the HEI engineering school
Bücher zum Thema "Comfort textile"
Marsha, MacDowell, Dewhurst C. Kurt und Michigan State University Museum, Hrsg. To honor and comfort: Native quilting traditions. Santa Fe, N.M: Museum of New Mexico Press in association with Michigan State University Museum, 1997.
Den vollen Inhalt der Quelle findenMarsha, MacDowell, Dewhurst C. Kurt und Michigan State University Museum, Hrsg. To honor and comfort: Native quilting traditions. Santa Fe, N.M: Museum of New Mexico Press in association with Michigan State University Museum, 1997.
Den vollen Inhalt der Quelle findenR, Alagirusamy, Hrsg. Science in clothing comfort. New Delhi: Woodhead Pub. India, 2010.
Den vollen Inhalt der Quelle findenKerkhoven, Marijke. Comfort zones: Textiles in the Canadian landscape : Dorothy Caldwell, Emily Carr, David Hannan, Albert Lohnes, Lyla Rye, Joyce Wieland. Toronto: Textile Museum of Canada, 2001.
Den vollen Inhalt der Quelle findenJensen, Lynette. Cottage comfort: Country-cottage style decorating, entertaining, gardening, and quilting inspirations for creating all the comforts of home. Cumming, IA: Landauer Books, 2001.
Den vollen Inhalt der Quelle findenE, Roy Gerald, Hrsg. Antique quilts & textiles: A price guide to functional and fashionable cloth comforts. Paducah, KY: Collector Books, 2004.
Den vollen Inhalt der Quelle findenHuff, Mary Elizabeth Johnson, 1944-, Hrsg. The American quilt: A history of cloth and comfort, 1750-1950. New York: Clarkson Potter, 1993.
Den vollen Inhalt der Quelle findenHuff, Mary Elizabeth Johnson, 1944-, Hrsg. The American quilt: A history of cloth and comfort, 1750-1950. New York: Clarkson Potter, 1993.
Den vollen Inhalt der Quelle findenThe Comfort Zone. Collins & Brown, 2001.
Den vollen Inhalt der Quelle findenBawden, Juliet. The Comfort Zone. Creative Publishing International, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Comfort textile"
Umbach, K. H. „Evaluation of Textile and Garment Comfort“. In European Textile Research: Competitiveness Through Innovation, 14–36. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4323-0_5.
Der volle Inhalt der QuelleKopitar, Dragana, Beti Rogina-Car und Zenun Skenderi. „Thermo-Physiological Comfort and Microbial Properties of Different Textile Raw Materials and Structures“. In Functional Textiles and Clothing, 285–94. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7721-1_22.
Der volle Inhalt der QuelleHarlin, Ali, Kirsi Jussila und Elina Ilen. „Sports Textiles and Comfort Aspects“. In High Performance Technical Textiles, 37–67. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781119325062.ch3.
Der volle Inhalt der QuelleRossi, René. „Thermal Comfort of Compression Textiles“. In Compression Textiles for Medical, Sports, and Allied Applications, 79–92. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003298526-7.
Der volle Inhalt der QuelleBartels, Volkmar T. „Physiological Comfort of BiofunctionalTextiles“. In Biofunctional Textiles and the Skin, 51–66. Basel: KARGER, 2006. http://dx.doi.org/10.1159/000093936.
Der volle Inhalt der QuelleRathinamoorthy, R., und M. Senthilkumar. „Elastane in garment fit and comfort“. In Elastane in Sports and Medical Textiles, 69–86. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429094804-4.
Der volle Inhalt der QuelleDabolina, Inga, Eva Lapkovska und Ausma Vilumsone. „Dynamic Anthropometry for Investigation of Body Movement Comfort in Protective Jacket“. In Functional Textiles and Clothing, 241–59. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7721-1_20.
Der volle Inhalt der Quellezelik, Gonca, Nilgn zdil und Gamze Spren. „Sensorial Comfort of Textile Materials“. In Woven Fabrics. InTech, 2012. http://dx.doi.org/10.5772/37596.
Der volle Inhalt der QuelleCimilli Duru, Sena, Cevza Candan und Banu Uygun Nergis. „Innovation in the Comfort of Intimate Apparel“. In Textile Manufacturing Processes. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.87115.
Der volle Inhalt der QuelleJavaid, Sana, Nadia Saleem und Shafi Ur Rehman. „Polymeric Nano-Emulsion in Functional Textile Finishing“. In Nanoemulsions - Design and Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1004397.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Comfort textile"
Bunford, Ruth, Braid MacRae, James Waldie und Rajiv Padhye. „The Development of a Base Layer for a Sensorimotor Countermeasure Skinsuit: Garment Comfort and Mobility“. In 22th AUTEX World Textile Conference. Switzerland: Trans Tech Publications Ltd, 2024. http://dx.doi.org/10.4028/p-yeqrb8.
Der volle Inhalt der QuelleBudeanu, Ramona. „SOFTWARE SYSTEM FOR THE ANALYSIS OF COMFORT PARAMETERS IN SUSTAINABLE TEXTILE FINISHING WITH A SERIES OF NATURAL DYES“. In eLSE 2021. ADL Romania, 2021. http://dx.doi.org/10.12753/2066-026x-21-164.
Der volle Inhalt der QuelleDupler, Ellen, Nika Gagliardi, Esther Foo, Simon Ozbek, Sophia Utset-Ward und Lucy Dunne. „Toward Textile-Based Heating Devices for the Distal Extremities: Experimental Characterization of System Design Parameters“. In 2019 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dmd2019-3290.
Der volle Inhalt der QuelleScarlat, Razvan victor, Eduard ionut Stefan, Cristina Grosu und Mirela Blaga. „DIGITAL CATALOGUE OF MEDICAL DEVICES FOR HERNIA REPAIR“. In eLSE 2021. ADL Romania, 2021. http://dx.doi.org/10.12753/2066-026x-21-167.
Der volle Inhalt der QuelleFebiyani, Anastasia, Bambang Suhardi und Eko Pujiyanto. „Evaluation of thermal comfort room garment workshop in textile vocational school“. In 2018 5th International Conference on Industrial Engineering and Applications (ICIEA). IEEE, 2018. http://dx.doi.org/10.1109/iea.2018.8387097.
Der volle Inhalt der QuelleFarima, Daniela, Mirela Blaga und Georgios Priniotakis. „SOFTWARE APPLICATION FOR THE FUNCTIONAL THERMO - DESIGN OF THE CLOTHING“. In eLSE 2019. Carol I National Defence University Publishing House, 2019. http://dx.doi.org/10.12753/2066-026x-19-194.
Der volle Inhalt der QuelleCaldas, Artemisia L., Miguel A. Carvalho und Monique Caldas Souza. „The Applicability of Ergonomics in the Development of Clothing for Bodies in Transformation“. In 20th AUTEX World Textile Conference - Unfolding the future. Switzerland: Trans Tech Publications Ltd, 2022. http://dx.doi.org/10.4028/p-56y043.
Der volle Inhalt der QuelleGagliardi, Nika, Esther Foo, Ellen Dupler, Simon Ozbek und Lucy Dunne. „Design of a Stitched Textile-Based Thermal Actuator Garment to Attenuate Peripheral Microclimate Experience“. In 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6965.
Der volle Inhalt der QuelleGibson, Phillip W., und Majid Charmchi. „Application of Computational Fluid Dynamics to Protective Clothing System Evaluation“. In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1570.
Der volle Inhalt der QuelleAWAIS, Muhammad, Ellen WENDT und Sybille KRZYWINSKI. „Analysis of Thermal Comfort of Clothing with Different Textile Material through Thermal Simulation“. In 3DBODY.TECH 2019 - 10th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 22-23 Oct. 2019. Ascona, Switzerland: Hometrica Consulting - Dr. Nicola D'Apuzzo, 2019. http://dx.doi.org/10.15221/19.127.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Comfort textile"
Harmon, Jennifer, Logan Fairbourn und Natalie Thibault. Comfort and Aesthetic Properties of Bacterial Cellulose for Textile Applications. Ames: Iowa State University, Digital Repository, 2017. http://dx.doi.org/10.31274/itaa_proceedings-180814-275.
Der volle Inhalt der QuelleBaker, Lynn, Hsiou-Lien Chen und Brigitte Cluver. The Effect of Textiles on Perceived Physiological Comfort While Backpacking in the Cold. Ames: Iowa State University, Digital Repository, 2013. http://dx.doi.org/10.31274/itaa_proceedings-180814-884.
Der volle Inhalt der Quelle