Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Combustion ratio“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Combustion ratio" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Combustion ratio"
Cheng, Zhe, Wen Jun Wang, Wen Qing Shen, Ai Wu Fan und Wei Liu. „Flame Stability of Methane/Air Mixture in a Heat-Recirculating-Type Mesoscale Channel with a Bluff-Body“. Applied Mechanics and Materials 325-326 (Juni 2013): 12–15. http://dx.doi.org/10.4028/www.scientific.net/amm.325-326.12.
Der volle Inhalt der QuelleCao, H. L., J. N. Zhao, K. Zhang, D. B. Wang und X. L. Wei. „Diffusion Combustion Characteristics of H2/Air in the Micro Porous Media Combustor“. Advanced Materials Research 455-456 (Januar 2012): 413–18. http://dx.doi.org/10.4028/www.scientific.net/amr.455-456.413.
Der volle Inhalt der QuelleWakabayashi, T., S. Ito, S. Koga, M. Ippommatsu, K. Moriya, K. Shimodaira, Y. Kurosawa und K. Suzuki. „Performance of a Dry Low-NOx Gas Turbine Combustor Designed With a New Fuel Supply Concept“. Journal of Engineering for Gas Turbines and Power 124, Nr. 4 (24.09.2002): 771–75. http://dx.doi.org/10.1115/1.1473154.
Der volle Inhalt der QuelleWang, Taiyu, Zhenguo Wang, Zun Cai, Jian Chen, Mingbo Sun, Zeyu Dong und Bin An. „Effects of combustor geometry on the combustion process of an RBCC combustor in high-speed ejector mode“. Modern Physics Letters B 33, Nr. 27 (30.09.2019): 1950330. http://dx.doi.org/10.1142/s0217984919503305.
Der volle Inhalt der QuelleDu, Zhibin, Chao Chen und Lei Wang. „Combustion characteristics of and bench test on “gasoline + alternative fuel”“. Thermal Science, Nr. 00 (2020): 324. http://dx.doi.org/10.2298/tsci200704324d.
Der volle Inhalt der QuelleColantonio, R. O. „The Applicability of Jet-Shear-Layer Mixing and Effervescent Atomization for Low-NOx Combustors“. Journal of Engineering for Gas Turbines and Power 120, Nr. 1 (01.01.1998): 17–23. http://dx.doi.org/10.1115/1.2818073.
Der volle Inhalt der QuelleOzturk, Suat. „A Numerical Investigation on Emissions of Partially Premixed Shale Gas Combustion“. International Journal of Heat and Technology 38, Nr. 3 (15.10.2020): 745–51. http://dx.doi.org/10.18280/ijht.380319.
Der volle Inhalt der QuelleChein, Reiyu, Yen-Cho Chen, Jui-Yu Chen und J. N. Chung. „Premixed Methanol–Air Combustion Characteristics in a Mini-scale Catalytic Combustor“. International Journal of Chemical Reactor Engineering 14, Nr. 1 (01.02.2016): 383–93. http://dx.doi.org/10.1515/ijcre-2014-0061.
Der volle Inhalt der QuelleNaeemi, Saeed, und Seyed Abdolmehdi Hashemi. „Numerical investigations on the liftoff velocity of H2-air premixed combustion in a micro-cylindrical combustor with gradually changed section area“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, Nr. 17 (25.03.2020): 3497–508. http://dx.doi.org/10.1177/0954406220914925.
Der volle Inhalt der QuelleAndersson, Ingemar, Mikael Thor und Tomas McKelvey. „The torque ratio concept for combustion monitoring of internal combustion engines“. Control Engineering Practice 20, Nr. 6 (Juni 2012): 561–68. http://dx.doi.org/10.1016/j.conengprac.2011.12.007.
Der volle Inhalt der QuelleDissertationen zum Thema "Combustion ratio"
Lundin, Eva. „Adaptive air-fuel ratio control for combustion engines“. Thesis, Linköping University, Department of Electrical Engineering, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-56651.
Der volle Inhalt der QuelleAround the world, vehicle emission regulations become stricter, increasing exhaust emission demands. To manage these rules and regulations, vehicle manufacturers put a lot of effort into minimizing the exhaust emissions. The three-way catalytic converter was developed, and today it is the most commonly used device to control the exhaust emissions.
To work properly the catalytic converter needs to control the air-fuel mixture with great precision. This then increases the demands on the engine management systems, causing them to become more complex. With increased complexity, the time effort of optimizing parameters has grown drastically, hence increasing development costs. In addition to this, operating conditions change due to vehicles age, requiring further optimization of the parameters while running.
To minimize development cost and to control the air-fuel mixture with great precision during an engines full life span, this master thesis proposes a self-optimized system, i.e. an adaptive system, to control the air-fuel mixture.
In the suggested method, the fuel injection to the engine is controlled with help of a linear lambda sensor, which measures the air-fuel mixture. The mapping from injection to measured air-fuel mixture forms a nonlinear system. It can be approximated as a linear function at static engine operating points, allowing the system at each static point to be modelled as a first order system with long time delay. To enable utilization over full operating area, and not only in static point, the controller uses large maps, so called gain-scheduling maps, to change control parameters.
The tested controller is model based. It uses an Otto-Smith Predictor and a feed forward connection of target air-fuel. The model parameters in the controller are updated while driving and the adaptation method used is based on a least squares algorithm.
The performance of the adapted controller and the adaptation method is tested in both simulation environment and in vehicle, showing good potential.
Brandstetter, Markus. „Robust air-fuel ratio control for combustion engines“. Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627144.
Der volle Inhalt der QuelleKirtaş, Mehmet. „Large Eddy Simulation of a High Aspect Ratio Combustor“. Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/14134.
Der volle Inhalt der QuelleDe, Zoysa Merrenna Manula. „Neural network estimation of air-fuel ratio in internal combustion engines“. Thesis, University of Brighton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399048.
Der volle Inhalt der QuelleGrant, Marcus Paul. „Computer control of air-gas ratio for nozzle mix systems“. Thesis, Coventry University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.390222.
Der volle Inhalt der QuelleTEIXEIRA, RENATO NUNES. „INTERNAL COMBUSTION ENGINES WITH VARIABLE COMPRESSION RATIO: A THEORETICAL AND EXPERIMENTAL ANALYSIS“. PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1992. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19099@1.
Der volle Inhalt der QuelleCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
É realizado um estudo teórico experimental sobre motores a combustão interna operando com taxa de compressão variável. É feita uma análise teórica sobre determinado mecanismo que permite variar a taxa de compressão. Para tal foi utilizado um programa de simulação para motores com ignição por centelha. No presente trabalho o modelo de simulação foi aprimorado, com a inclusão de previsão de detonação, de emissão de hidrocarbonetos, do cálculo da potencia de atrito, assim como a inclusão do dispositivo do mecanismo de taxa de compressão variável, entre outras alterações. Uma parte experimental foi também realizada, como o objetivo de validar os resultados do modelo teórico e de quantificar os benefícios proporcionados pelo mecanismo em questão. Para tal um motor de pesquisa de combustível – motor CFR – foi utilizado. Uma comparação dos resultados teóricos e experimentais obtidos no presente trabalho com os de outros pesquisadores é também apresentada.
The present work is concerned with a theoretical and expererimental study of variable compression ratio spark ignition internal combustion engines. A theoretical analysis of the engine, operating with a mechanism allows for variable compression ratio, is carried out. For that a simulation program is utilized. In the present work the simulation model was updated with the inclusion of friction, knocking and hidrocarbon emission models, among other things. An experimental work was also carried out, with a CFR engine. The objective was a wo-fold to validade the results of the theoretical model and to assens the benefits of running an engine with variable compression ratio. A comparison is also made between the rrsults of the present work and those from other authors.
Alshuqaiq, Mohammad Abdullah. „An Analysis of Oil Combustion on Snow“. Digital WPI, 2014. https://digitalcommons.wpi.edu/etd-theses/789.
Der volle Inhalt der QuelleKamal, Rajit. „CFD simulation of mixing in a carbon black reactor : optimum geometry and momentum ratio“. Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/11254.
Der volle Inhalt der QuelleFaulkner, Jason Christopher. „A study of ignition and flame propagation in a small, high surface-to-volume ratio combustor“. Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/12439.
Der volle Inhalt der QuellePetrolati, Andrea. „Fate of nitrogen/trace metals species during combustion and gasification of biomass“. Thesis, Cranfield University, 2010. http://dspace.lib.cranfield.ac.uk/handle/1826/7011.
Der volle Inhalt der QuelleBücher zum Thema "Combustion ratio"
DuBeau, Robert William. An investigation of the effects of fuel composition on combustion characteristics in a T-63 combustor. Monterey, Calif: Naval Postgraduate School, 1985.
Den vollen Inhalt der Quelle findenJankowsky, Robert S. Experimental performance of a high-area-ratio rocket nozzle at high combustion chamber pressure. [Cleveland, Ohio]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1996.
Den vollen Inhalt der Quelle findenJankovsky, Robert S. High-area-ratio rocket nozzle at high combustion chamber pressure--experimental and analytical validation. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Den vollen Inhalt der Quelle findenPitts, William M. The global equivalence ratio concept and the prediction of carbon monoxide formation in enclosure fires. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1994.
Den vollen Inhalt der Quelle findenPerkins, Hugh Douglas. Effects of fuel distribution on detonation tube performance. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Den vollen Inhalt der Quelle findenHorler, Greg. The design and use of a digital radio telemetry system for measuring internal combustion engine piston parameters. Leicester: De Montfort University, 1999.
Den vollen Inhalt der Quelle findenHaugen, Peter. World History for Dummies. New York, USA: Hungry Minds, 2001.
Den vollen Inhalt der Quelle findenWorld History For Dummies. New York, USA: Wiley Publishing, 2001.
Den vollen Inhalt der Quelle findenHaugen, Peter. Historia del mundo. Bogotá: Norma, 2002.
Den vollen Inhalt der Quelle findenE, Smith C., Holdeman J. D und United States. National Aeronautics and Space Administration., Hrsg. CFD assessment of orifice aspect ratio and mass flow ratio on jet mixing in rectangular ducts. [Washington, DC: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Combustion ratio"
Neij, H. M., B. Johansson und M. Aldén. „Cycle-Resolved Two-Dimensional Laser-Induced Fluorescence Measurements of Fuel/Air Ratio Correlated to Early Combustion in a Spark-Ignition Engine“. In Unsteady Combustion, 383–89. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1620-3_17.
Der volle Inhalt der QuelleBestehorn, M., und H. Haken. „Synergetics Applied to Pattern Formation in Large-Aspect-Ratio Systems“. In Dissipative Structures in Transport Processes and Combustion, 110–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84230-6_10.
Der volle Inhalt der QuelleChen, Yang, Junnan Chao, Hairui Yang, Junfu Lv, Hai Zhang, Qing Liu und Guangxi Yue. „Mass Balance Performance of A 300 MW CFB Boiler Burning Blend Fuel with Different Mixing Ratio“. In Cleaner Combustion and Sustainable World, 579–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-30445-3_78.
Der volle Inhalt der QuelleSaxena, Mohit Raj, und Rakesh Kumar Maurya. „Impact of Fuel Premixing Ratio and Injection Timing on Reactivity Controlled Compression Ignition Engine“. In Combustion for Power Generation and Transportation, 277–96. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3785-6_13.
Der volle Inhalt der QuelleUddalok Sen, Aayush Sharma, Suvabrata Panja, Saikat Mukherjee, Swarnendu Sen und Achintya Mukhopadhyay. „Correlation of Equivalence Ratio with Spectrometric Analysis for Premixed Combustion“. In Fluid Mechanics and Fluid Power – Contemporary Research, 1475–83. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2743-4_141.
Der volle Inhalt der QuelleHötte, Felix, Oliver Günther, Christoph von Sethe, Matthias Haupt, Peter Scholz und Michael Rohdenburg. „Lifetime Experiments of Regeneratively Cooled Rocket Combustion Chambers and PIV Measurements in a High Aspect Ratio Cooling Duct“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 279–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_18.
Der volle Inhalt der QuelleLi, Peng, Jianjun Zhu und Wenjie Wu. „The Influence of Methanol Mass Ratio and Compression Ratio on Combustion Characteristics of Dual-Fuel Engine“. In Lecture Notes in Electrical Engineering, 513–24. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9718-9_38.
Der volle Inhalt der QuelleGao, Yang, Liguang Li, Xiao Yu, Jun Deng und Zhijun Wu. „Effect of Compression Ratio on Internal Combustion Rankine Cycle Based on Simulations“. In Lecture Notes in Electrical Engineering, 129–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-45043-7_14.
Der volle Inhalt der QuelleJameel Basha, S. M. „Adopting SDR Fluctuations to Non-premixed Turbulent Combustion by Varying Swirl Ratio“. In Lecture Notes in Mechanical Engineering, 399–413. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9931-3_39.
Der volle Inhalt der QuelleKanti, Roy Mithun, Nobuyuki Kawahara, Eiji Tomita und Takashi Fujitani. „Effect of Equivalence Ratio on Combustion Characteristics in a Hydrogen Direct-Injection SI Engine“. In Sustainable Automotive Technologies 2012, 97–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-24145-1_14.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Combustion ratio"
Ilic, Mladen S., Simeon N. Oka und M. Radovanovic. „EXPERIMENTAL INVESTIGATION OF CHAR COMBUSTION KINETICS - CO/CO2 RATIO DURING COMBUSTION“. In International Heat Transfer Conference 10. Connecticut: Begellhouse, 1994. http://dx.doi.org/10.1615/ihtc10.4990.
Der volle Inhalt der QuelleCaton, Jerald A. „The Effects of Compression Ratio and Expansion Ratio on Engine Performance Including the Second Law of Thermodynamics: Results From a Cycle Simulation“. In ASME 2007 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/icef2007-1647.
Der volle Inhalt der QuelleSaxena, Aditi, und Abdelkader Frendi. „Effect of Equivalence Ratio on Combustion Instabilities“. In 10th AIAA/CEAS Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-2931.
Der volle Inhalt der QuelleDyuisenakhmetov, Aibolat, Harsh Goyal, Moez Ben Houidi, Rafig Babayev, Jihad Badra und Bengt Johansson. „Isobaric Combustion at a Low Compression Ratio“. In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-01-0797.
Der volle Inhalt der QuelleSattelmayer, Thomas. „Influence of the Combustor Aerodynamics on Combustion Instabilities From Equivalence Ratio Fluctuations“. In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0082.
Der volle Inhalt der QuelleMalpress, Ray, und David R. Buttsworth. „A Comparison Between Two-Position Variable Compression Ratio and Continuously Variable Compression Ratio Engines Using Numerical Simulation“. In ASME 2009 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/icef2009-14042.
Der volle Inhalt der QuellePaschereit, Christian Oliver, Ephraim Gutmark und Wolfgang Weisenstein. „Control of Combustion Driven Oscillations by Equivalence Ratio Modulations“. In ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/99-gt-118.
Der volle Inhalt der QuelleAndrews, G. E., und M. C. Mkpadi. „High Turndown Ratio Low NOx Gas Turbine Combustion“. In ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/2001-gt-0059.
Der volle Inhalt der QuelleZhu, Lingqi, Liwen Guo und Hua Yin. „Spontaneous Combustion Prediction and Combustion Regime Analysis Basing on Experiments by Gas Ratio“. In 2010 International Conference on Logistics Engineering and Intelligent Transportation Systems (LEITS). IEEE, 2010. http://dx.doi.org/10.1109/leits.2010.5664995.
Der volle Inhalt der QuelleCipollone, R., und M. Sughayyer. „Transient Air/Fuel Ratio Control in SI Engines“. In ASME 2002 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/icef2002-536.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Combustion ratio"
Kudo, Yugo, und Hiroshi Nakajima. Numerical Study on Frequency Distribution of Equivalence Ratio for Diesel Combustion. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0654.
Der volle Inhalt der QuelleGeyer, Klaus, Christine Hallé und Heiko Roßkamp. Fast Response Measurement of Combustion Air to Fuel Ratio for Stratified Two-Stroke Engines. Warrendale, PA: SAE International, Oktober 2005. http://dx.doi.org/10.4271/2005-32-0109.
Der volle Inhalt der QuelleKitabatake, Ryo, Naoki Shimazaki und Terukazu Nishimura. Expansion of Premixed Compression Ignition Combustion Region by Supercharging Operation and Lower Compression Ratio Piston. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0436.
Der volle Inhalt der QuelleMorikawa, Koji, Makot Kaneko, Yasuo Moriyoshi und Masaki Sano. Proposition of a New Gasoline Combustion System With High Compression Ratio and High Thermal Efficiency~2nd Report: An Experimental Verification and Combustion Analysis. Warrendale, PA: SAE International, Mai 2005. http://dx.doi.org/10.4271/2005-08-0007.
Der volle Inhalt der QuelleLongwell, J. P., A. F. Sarofim, E. Bar-Ziv und Chun-Hyuk Lee. Effects of catalytic mineral matter on CO/CO[sub 2] ratio, temperature and burning time for char combustion. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6746185.
Der volle Inhalt der QuelleLongwell, J. P., A. F. Sarofim, Chun-Hyuk Lee, A. J. Modestino und C. Cho. Effects of catalytic mineral matter on CO/CO sub 2 ratio, temperature and burning time for char combustion. Office of Scientific and Technical Information (OSTI), Januar 1991. http://dx.doi.org/10.2172/5541821.
Der volle Inhalt der QuelleLongwell, J. P., A. F. Sarofim, C. H. Lee, A. J. Modestino und E. Cho. Effects of catalytic mineral matter on CO/CO sub 2 ratio, temperature and burning time for char combustion. Office of Scientific and Technical Information (OSTI), Oktober 1991. http://dx.doi.org/10.2172/6375392.
Der volle Inhalt der QuelleLongwell, J. P., A. F. Sarofim und Chun-Hyuk Lee. Effects of catalytic mineral matter on CO/CO sub 2 ratio, temperature and burning time for char combustion. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/6221607.
Der volle Inhalt der QuelleLongwell, J. P., A. F. Sarofim, L. Tognotti und Zhiyou Du. Effects of catalytic mineral matter CO/CO[sub 2] ratio on temperature and burning time for char combustion. Office of Scientific and Technical Information (OSTI), Januar 1989. http://dx.doi.org/10.2172/6781943.
Der volle Inhalt der QuelleLongwell, J. P., A. F. Sarofim, E. Bar-Ziv, Chun-Hyuk Lee und Z. Du. Effects of catalytic mineral matter on CO/CO[sub 2] ratio, temperature and burning time for char combustion. Office of Scientific and Technical Information (OSTI), Januar 1990. http://dx.doi.org/10.2172/7053887.
Der volle Inhalt der Quelle