Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Combustion chambre“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Combustion chambre" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Combustion chambre"
Serbin, Sergey. „THERMO ACOUSTIC PROCESSES IN LOW EMISSION COMBUSTION CHAMBER OF GAS TURBINE ENGINE CAPACITY 25 MW“. Science Journal Innovation Technologies Transfer, Nr. 2019-2 (05.05.2019): 86–90. http://dx.doi.org/10.36381/iamsti.2.2019.86-90.
Der volle Inhalt der QuelleLéger, Bruno, Patrick André, Guy Grienche und Gérard Schott. „Contrôle thermique de parois de chambre de combustion. Banc d'essai du laboratoire aquitain de recherche en aérothermique“. Revue Générale de Thermique 35, Nr. 417 (Oktober 1996): 625–30. http://dx.doi.org/10.1016/s0035-3159(96)80025-0.
Der volle Inhalt der QuelleKashdan, Julian. „Visualisation du mélange gazeux au sein de la chambre de combustion des moteurs par la fluorescence induite par laser“. Photoniques, Nr. 52 (März 2011): 34–36. http://dx.doi.org/10.1051/photon/20115234.
Der volle Inhalt der QuelleŁapinski, Damian, und Janusz Piechna. „Improvements in the turbo-engine by replacement of conventional combustion chamber by a pulse combustion chamber“. Archive of Mechanical Engineering 60, Nr. 4 (01.12.2013): 481–94. http://dx.doi.org/10.2478/meceng-2013-0029.
Der volle Inhalt der QuelleArumugam, Sozhi, Pitchandi Kasivisvanathan, M. Arventh und P. Maheshkumar. „Effect of Re-Entrant and Toroidal Combustion Chambers in a DICI Engine“. Applied Mechanics and Materials 787 (August 2015): 722–26. http://dx.doi.org/10.4028/www.scientific.net/amm.787.722.
Der volle Inhalt der QuelleKomarov, I. I., D. M. Kharlamova, A. N. Vegera und V. Y. Naumov. „Study on effect CO2 diluent on fuel cоmbustion in methane-oxygen combustion chambers“. Vestnik IGEU, Nr. 2 (30.04.2021): 14–22. http://dx.doi.org/10.17588/2072-2672.2021.2.014-022.
Der volle Inhalt der QuelleКозел, Дмитрий Викторович. „Выбор геометрических характеристик фронтового устройства и длины камеры сгорания прямоточного типа“. Aerospace technic and technology, Nr. 4sup2 (27.08.2021): 19–28. http://dx.doi.org/10.32620/aktt.2021.4sup2.03.
Der volle Inhalt der QuellePošta, J., B. Kadleček und T. Hladík. „Engine combustion chamber tightness diagnostics“. Research in Agricultural Engineering 49, No. 3 (08.02.2012): 115–18. http://dx.doi.org/10.17221/4961-rae.
Der volle Inhalt der QuelleNaeemi, Saeed, und Seyed Abdolmehdi Hashemi. „Numerical investigations on the liftoff velocity of H2-air premixed combustion in a micro-cylindrical combustor with gradually changed section area“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, Nr. 17 (25.03.2020): 3497–508. http://dx.doi.org/10.1177/0954406220914925.
Der volle Inhalt der QuelleShang, Yong, Fu Shui Liu, Xiang Rong Li und Jing Wu. „Research on Parametric Design Method of Combustion Chamber on Diesel Engine“. Advanced Materials Research 383-390 (November 2011): 1431–40. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.1431.
Der volle Inhalt der QuelleDissertationen zum Thema "Combustion chambre"
Philip, Maxime. „Dynamique de l’allumage circulaire dans les foyers annulaires multi-injecteurs“. Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLC034/document.
Der volle Inhalt der QuelleIgnition constitutes a critical phase in many combustion applications and specifically those related to aerospace propulsion. One of the current challenges has been to develop large eddy simulations of this transient phenomenon in realistic configurations like those found in aeroengines.In this respect, the pioneering work of Boileau et a. (2008) indicated that complete calculations of this process in a full annular combustor geometry could be carried out and that they provided first hand information on the light-round process.It was however important to see if the simulation can match well controlled experimental data. This is accomplished in the present work which uses a novel experimental device named MICCA. The thesis describes the experimental set of data,the calculation methodology and its validation in a single burner configuration,results of large eddy simulation of the full light round process, a detailed analysis of the numerical results and an attempt to build a simplified model of the process based on macroscopic balance equations
Prieur, Kevin. „Dynamique de la combustion dans un foyer annulaire multi-injecteurs diphasique“. Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLC070/document.
Der volle Inhalt der QuelleThese last decades have seen many innovations in the field of combustion to reduce fuel consumption and pollutant emissions. New types of injector, for example LPP - Lean Premixed Prevaporized, have then been developed to reduce the fuel / air ratio and aim to pre-vaporize the fuel upstream of the combustion in order to mix it better with the air coming from the compressor. Unfortunately this architecture makes annular chambers more sensitive to unsteady phenomena which disturb the functioning of the system, increase the heat flows towards the walls of the chamber, induce vibrations of structures, cause cyclic fatigue of mechanical parts and in extreme cases lead to irreversible damage. The objective of this thesis is to continue the effort undertaken at the EM2C laboratory on this topic and more particularly on the dynamics of combustion in annular chambers comprising a set of injectors. The thesis concerns more particularly the case where the injection of the fuel takes place in liquid form. This configuration reproduces, in idealized form, what can be found in practice in aeronautical engines. It is also a configuration studied at the fundamental level. The chamber, known as MICCA-Spray, is equipped with 16 swirled injectors that can be powered by liquid or gaseous fuel, thus enabling two-phase or fully premixed combustion. The system has quartz walls giving optical access to the flame zone. It is also equipped with a set of diagnostics such as microphones, photomultipliers and high-speed imaging systems
Cuif, Sjöstrand Marianne. „Simulations Numériques Directes d’une méso-chambre de combustion : Mise en oeuvre et analyses“. Thesis, Rouen, INSA, 2012. http://www.theses.fr/2012ISAM0022/document.
Der volle Inhalt der QuelleMeso-combustion can be defined as the combustion regime where the involved lenghts scales are close but slightly larger than the quenching distance of the flame, tipically smaller than a cm. By taking advantage of the high energetic density of liquid hydrocarbons, it would become possible to build small-sized combustion-based long-lived lighter electrical power systems. However combsution phenomena at these meso-scales have their own shortcomings. Indeed, by decreasing the system size, the usual phenomenological balance betwenne chemical reactions, mixing, turbulence and heat transfer is changed. In the present work, we focus on the DNS calculation of a cubic meso-combsution chamber of 8 x 10 x 8 mm3. This works presents the implementation of the numerical strategy used, with a specific attention to the no-slip wall compressible boundary condition. We then present an analysis of this particular reactive flow. The results are useful for future modeling of such a combustor
Moreau, Denis. „Etude de mélange de jets gazeux dans une chambre de combustion“. Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37616639q.
Der volle Inhalt der QuelleMoreau, Denis. „Etude de mélange de jets gazeux dans une chambre de combustion“. Rouen, 1988. http://www.theses.fr/1988ROUES043.
Der volle Inhalt der QuelleKechabia, Rachid Alexandre. „Etude experimentale et numerique d'une chambre de combustion de laser chimique“. Paris 6, 1992. http://www.theses.fr/1992PA066195.
Der volle Inhalt der QuelleCourtois, Raphaël. „Simulation aux grandes échelles de l'écoulement dans un chambre de combustion en forme de marche descendante“. Châtenay-Malabry, Ecole centrale de Paris, 2005. http://www.theses.fr/2005ECAP1004.
Der volle Inhalt der QuelleThe large Eddy Simulation (LES) has been used ti simulate the flow in a backward facing step combustor. The LES allows to investigate the unsteady phenomena and, in particular, the interaction of the flame with the flow. The use of LES for reacting flows is recent because is started in the middle of ninety’s. For that reason many validation studies continue to be undertaken. In this thesis, the experimental backward facing step chamber, named A3C, has been chosen. Many measurements have been carried out in the LAERTE (ONERA) and have given rise to important data basis in mean temperature (DRASC) and mean velocity (LDV). These results are compared with our LES simulations. The unsteady phenomena appearing in the simulations are also analysed. The AVBP code developed by the CERFACS has been used for these simulations. Initially, our study concerned the simplified case of non reactive flow. Twodimensional simulations have been first carried out to learn the use and the behaviour of the AVBP code. Then, more realistic tridimensional calculations have been carried out in order to validate the code. In a second time, the combustion has been introduced by the means of the thiskened flame model. Twodimensional simulations have been first undertaken in order to evaluate the reliability of such calculations. Then, tridimensional simulations have been achieved in order to take into account the influence of the tridimensional turbulence in front flame. These tridimensional simulationshave a very high coast and their interest is discussed
Alizon, Franck Pascal. „Transferts de chaleur convectifs dans la chambre de combustion des moteurs à combustion interne : Influence de l'aérodynamique interne“. Paris 6, 2005. http://www.theses.fr/2005PA066116.
Der volle Inhalt der QuelleErchiqui, Fouad. „Modelisation mathematique d'une chambre de combustion par la methode des plans imaginaires“. Thèse, Chicoutimi : Université du Québec à Chicoutimi, 1987. http://theses.uqac.ca.
Der volle Inhalt der QuelleEn tete du titre: Memoire presente a l'Universite du Queec a Chicoutimi comme exigence partielle pour l'obtention du grade de maitre es sciences appliquees. CaQCU Bibliogr.: ff. 60-61. Document électronique également accessible en format PDF. CaQCU
Fortier-Topping, Hugo. „Conception d'une chambre de combustion pour la microturbine à gaz SRGT-2“. Mémoire, Université de Sherbrooke, 2014. http://hdl.handle.net/11143/5417.
Der volle Inhalt der QuelleBücher zum Thema "Combustion chambre"
Combustion system design. Tulsa, Okla: PennWell Books, 1996.
Den vollen Inhalt der Quelle findenMoon, H. J. Soot generation in a diesel combustion chamber. Manchester: UMIST, 1996.
Den vollen Inhalt der Quelle findenQuentmeyer, Richard J. Rocket combustion chamber life-enhancing design concepts. [Cleveland, Ohio?]: National Aeronautics and Space Administration, Lewis Research Center, 1990.
Den vollen Inhalt der Quelle findenGrigorʹev, A. V. Teorii︠a︡ kamery sgoranii︠a︡. Sankt-Peterburg: Nauka, 2010.
Den vollen Inhalt der Quelle findenShyy, W. A numerical study of flow in gas-turbine combustor. New York: AIAA, 1987.
Den vollen Inhalt der Quelle findenTamaru, Takashi. Hydrogen fueled subsonic-ram-combustor model tests for an air-turbo-ram engine. Tokyo, Japan: National Aerospace Laboratory, 1990.
Den vollen Inhalt der Quelle findenHu, Tin Cheung John. An experimental and computational investigation of an annular reverse-flow combustor. [Downsview, Ont.]: University of Toronto, 1991.
Den vollen Inhalt der Quelle findenColannino, Joseph. Modeling of combustion systems: A practical approach. Boca Raton, FL: CRC/Taylor & Francis, 2006.
Den vollen Inhalt der Quelle findenGafurov, R. A. Diagnostika vnutrikamernykh prot͡s︡essov v ėnergeticheskikh ustanovkakh. Moskva: "Mashinostroenie", 1991.
Den vollen Inhalt der Quelle findenJacobs, P. A. Flow establishment in a generic scramjet combustor. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1990.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Combustion chambre"
Seitz, Timo, Ansgar Lechtenberg und Peter Gerlinger. „Rocket Combustion Chamber Simulations Using High-Order Methods“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 381–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_24.
Der volle Inhalt der QuelleEl Hefni, Baligh, und Daniel Bouskela. „Combustion Chamber Modeling“. In Modeling and Simulation of Thermal Power Plants with ThermoSysPro, 165–85. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-05105-1_8.
Der volle Inhalt der QuelleArmbruster, Wolfgang, Justin S. Hardi und Michael Oschwald. „Experimental Investigation of Injection-Coupled High-Frequency Combustion Instabilities“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 249–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_16.
Der volle Inhalt der QuelleHaidn, Oskar J., Nikolaus A. Adams, Rolf Radespiel, Thomas Sattelmayer, Wolfgang Schröder, Christian Stemmer und Bernhard Weigand. „Collaborative Research for Future Space Transportation Systems“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 1–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_1.
Der volle Inhalt der QuelleOlmeda, R., P. Breda, C. Stemmer und M. Pfitzner. „Large-Eddy Simulations for the Wall Heat Flux Prediction of a Film-Cooled Single-Element Combustion Chamber“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 223–34. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_14.
Der volle Inhalt der QuellePfeifer, Christian, Jonas P. Moeck, C. Oliver Paschereit und Lars Enghardt. „Localization of Sound Sources in Combustion Chambers“. In Combustion Noise, 269–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02038-4_10.
Der volle Inhalt der QuelleFiedler, Torben, Joachim Rösler, Martin Bäker, Felix Hötte, Christoph von Sethe, Dennis Daub, Matthias Haupt, Oskar J. Haidn, Burkard Esser und Ali Gülhan. „Mechanical Integrity of Thermal Barrier Coatings: Coating Development and Micromechanics“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 295–307. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_19.
Der volle Inhalt der QuelleHötte, Felix, Oliver Günther, Christoph von Sethe, Matthias Haupt, Peter Scholz und Michael Rohdenburg. „Lifetime Experiments of Regeneratively Cooled Rocket Combustion Chambers and PIV Measurements in a High Aspect Ratio Cooling Duct“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 279–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_18.
Der volle Inhalt der QuelleRichter, Christoph, Łukasz Panek, Verina Krause und Frank Thiele. „Investigations Regarding the Simulation of Wall Noise Interaction and Noise Propagation in Swirled Combustion Chamber Flows“. In Combustion Noise, 217–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02038-4_8.
Der volle Inhalt der QuelleBake, Friedrich, André Fischer, Nancy Kings und Ingo Röhle. „Investigation of the Correlation of Entropy Waves and Acoustic Emission in Combustion Chambers“. In Combustion Noise, 125–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02038-4_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Combustion chambre"
Sakurai, Takashi, und Shunsuke Nakamura. „Performance and Operating Characteristics of Micro Gas Turbine Driven by Pulse, Pressure Gain Combustor“. In ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/gt2020-15000.
Der volle Inhalt der QuelleTamaru, T., K. Shimodaira, Y. Kurosawa und T. Kuyama. „Combustion Instability of a Gas Turbine Combustor up to 50-Atmosphere Condition“. In ASME 1986 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1986. http://dx.doi.org/10.1115/86-gt-175.
Der volle Inhalt der QuelleTsuji, Yoshifumi, Bennett Sprague, David Walther, Albert Pisano, Carlos Fernandez-Pello und Carlos Fernandez-Pello. „Effect of Chamber Width on Flame Characteristics in Small Combustion Chambers“. In 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-943.
Der volle Inhalt der QuelleVítek, Oldřich, Jan Macek und Miloš Polášek. „Simulation of Pre-Chambers in an Engine Combustion Chamber Using Available Software“. In SAE 2003 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-0373.
Der volle Inhalt der QuelleLiu, Chengke, und G. A. Karim. „3D-CFD Simulation of Diesel and Dual Fuel Engine Combustion“. In ASME 2007 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/icef2007-1621.
Der volle Inhalt der QuelleHessel, Randy P., Ettore Musu, Salvador M. Aceves und Daniel L. Flowers. „A General Rezoning Technique for KIVA3V Internal Combustion Engines CFD Simulations“. In ASME 2010 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/icef2010-35147.
Der volle Inhalt der QuelleKalghatgi, G. T., und R. J. Price. „Combustion Chamber Deposit Flaking“. In International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-2858.
Der volle Inhalt der Quellede Boer, C. D., und D. W. Grigg. „Gasoline Engine Combustion — The Nebula Combustion Chamber“. In 22nd FISITA Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1988. http://dx.doi.org/10.4271/885148.
Der volle Inhalt der QuelleSchwalb, James A., und Thomas W. Ryan. „Emissions Measurements in a Steady Combusting Spray Simulating the Diesel Combustion Chamber“. In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1992. http://dx.doi.org/10.4271/920185.
Der volle Inhalt der QuelleAghakashi, V., M. H. Saidi, A. Ghafourian und A. A. Mozafari. „Analysis of Temperature Distribution Over a Gas Turbine Shaft Exposed to a Swirl Combustor Flue“. In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22628.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Combustion chambre"
Kellar, S. A., W. R. A. Huff, E. J. Moler, S. Yeah und Z. Hussain. Characterization of combustion chamber products by core-level photoabsorption spectroscopy. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/603652.
Der volle Inhalt der QuelleIkeda, Takeshi, Takeshi Nakajima, Daisuke Kawai und Yoji Fukami. Improvement of transitional characteristic by measuring pressure in the combustion chamber. Warrendale, PA: SAE International, Oktober 2005. http://dx.doi.org/10.4271/2005-32-0050.
Der volle Inhalt der QuelleWherley, Brian, Don Ulmer und Scott Claflin. Injector and Combustion Chamber Advances Demonstrated on the Thrust Cell Technologies Program. Fort Belvoir, VA: Defense Technical Information Center, Juni 1999. http://dx.doi.org/10.21236/ada405893.
Der volle Inhalt der QuelleDols, W. Stuart. Ventilation characterization of the Consumer Product Safety Commission combustion test chamber facility. Gaithersburg, MD: National Institute of Standards and Technology, 1990. http://dx.doi.org/10.6028/nist.ir.4415.
Der volle Inhalt der QuelleChoi, Seung-hwan, Yasuo Moriyoshi und Shigemi Kobayashi. Measurement of Local Gas Temperature Inside a Combustion Chamber Using Two-Wired Thermocouple. Warrendale, PA: SAE International, Mai 2005. http://dx.doi.org/10.4271/2005-08-0331.
Der volle Inhalt der QuelleCulick, F. E. Modeling and Active Control of Nonlinear Unsteady Motions in Combustion Chambers. Fort Belvoir, VA: Defense Technical Information Center, Juni 1996. http://dx.doi.org/10.21236/ada310960.
Der volle Inhalt der QuelleFontanesi, Stefano, Vincenzo Gagliardi, Simone Malaguti und Enrico Mattarelli. CFD parametric analysis of the combustion chamber shape in a small HSDI Diesel engine. Warrendale, PA: SAE International, Oktober 2005. http://dx.doi.org/10.4271/2005-32-0094.
Der volle Inhalt der QuelleLuke, Gary, Mark Eagar, Michael Sears, Scott Felt und Bob Prozan. Status of Advanced Two-Phase Flow Model Development for SRM Chamber Flow Field and Combustion Modeling. Fort Belvoir, VA: Defense Technical Information Center, Januar 2004. http://dx.doi.org/10.21236/ada427829.
Der volle Inhalt der QuelleLaudal, Dennis L. INVESTIGATION OF THE FATE OF MERCURY IN A COAL COMBUSTION PLUME USING A STATIC PLUME DILUTION CHAMBER. Office of Scientific and Technical Information (OSTI), November 2001. http://dx.doi.org/10.2172/791725.
Der volle Inhalt der QuelleNakashima, Kenro, Munemasa Hashimoto, Shigeo Sekiyama und Hiroshi Sasaki. Combustion and Performance of Heat-Insulated Natural Gas Engine With a Control Valve at a Pre-Chamber. Warrendale, PA: SAE International, September 2005. http://dx.doi.org/10.4271/2005-08-0545.
Der volle Inhalt der Quelle