Dissertationen zum Thema „Combustibles nucléaires – Effets de la température“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-36 Dissertationen für die Forschung zum Thema "Combustibles nucléaires – Effets de la température" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Castellano, Aloïs. „Étude des effets de la température sur les combustibles nucléaires par une approche ab initio“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS062.
Der volle Inhalt der QuelleTo ensure the security of nuclear electricity production, an understanding of the behavior of nuclear fuel materials is necessary. This work aims at making a contribution to the study of the effects of temperature on nuclear fuels, by using an ab initio approach through density functional theory and ab initio molecular dynamics (AIMD). To explicity take account of the temperature, a non-perturbative lattice dynamics method is formalised, allowing to study the evolution of phonons and thermodynamic properties with temperature. In order to reduce the important computational cost of AIMD, a machine-learning based sampling method is developped, which allows to accelerate the simulation of materials at finite temperature. Those different methods are applied to describe the stabilisation of uranium-molybdenum alloy at high temperature, as well as the lattice dynamics of uranium and plutonium dioxides
Brunel, Alan. „Propriétés thermodynamiques et thermophysiques des liquides à haute température : applications aux combustibles nucléaires“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS426.
Der volle Inhalt der QuelleDuring a severe accident involving the meltdown of the core of a pressurized water nuclear reactor, the nuclear fuel will react with the zircalloy cladding around it and the structural materials of the core to make a high temperature magma called corium. Depending on its composition and its temperature, the corium can stratify because of two non-miscible metallic and oxidic liquids. For some stratification configurations, the heat flow can focus on the vessel’s wall, threatening its integrity with a corium flowing outside of it. The aim of this thesis is to collect thermodynamic and thermophysic data on a prototypical corium, the U-Zr-Fe-O system. The thermodynamic data collected in this thesis are related to the definition of the liquid miscibility gap and the compositions of the liquids in the U-Zr-Fe-O system and its sub-systems, depending on the composition and the temperature. Compositions of interest were selected after performing thermodynamic calculation by the CALPHAD method with the TAF-ID V13 database. The corresponding samples underwent heat treatments and post-treatment analyses to measure the compositions of the liquids and to compare them to thermodynamic calculations. An iron rich liquid miscibility gap and a zirconium rich one were highlighted in the Fe-Zr-O system. Although calculations were in agreement with data from the first miscibility gap at 1990 °C, measurements in the zirconium rich miscibility gap at 2420 °C and 2650 °C reveal an underestimation of the zirconium quantity in the metallic liquid and its overestimation in the oxidic liquid by the model. Studies on the UO2-Zr-Fe system at 2423 °C show that the liquid miscibility gap definition and the compositions of the liquids depend on the quantity of iron in the system, the U/Zr ratio and corium oxidation degree. Furthermore, the zirconium molar fraction is underestimated by the model in the metallic liquid to the benefit of iron, and is overestimated in the oxidic liquid. Finally, the oxygen solubility in the metallic liquid is underestimated by the model. Thermophysic data were collected thanks to the improvement of the ATTILHA experimental setup, allowing the study of oxygen sensitive or radioactive liquids at high temperature by using a laser heating. Experimental values on liquidus and eutectic transformation temperatures of the oxygen-rich domain of the Zr-O system were acquired with this setup. Furthermore, the development of the aerodynamic levitation allows us the investigation liquids’densities for the Zr-Fe2O3 and the Zr-UO2 systems between 1884 °C and 2268 °C for different zirconium molar fractions. Densities of liquids from the Zr-Fe2O3 system were used to refine surface tension values acquired on the VITI-MBP setup at CEA Cadarache. These values confirmed the surfacting properties of the oxygen on these liquids. The experimental data collected during this thesis will be used to feed the databases and to improve the forecast of the corium’s behavior during a severe accident
Vitart, Anne-Lise. „Influence de paramètres physico-chimiques sur la cristallisation d’oxalates de lanthanides et d’actinides, précurseurs d’oxydes : orientation des microstructures“. Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10103.
Der volle Inhalt der QuelleThis work is in line with studies concerning actinides conversion by oxalic precipitation. This process leads to the precipitation of actinide oxalate compounds used as oxides precursors. As oxalate compounds keep their morphology through a pseudomorphic transformation when calcined into oxides, having control over their morphology is a key aspect for the control of some oxides properties. The thesis deals with the influence of physical-chemical parameters of oxalic precipitation and concerns, at first, surrogate systems of actinides. Neodymium(III) oxalate crystallization is firstly studied, and enables the identification of several Nd(III) oxalate hydrates with various morphologies, which depend on their crystalline structure. This preliminary study is used to guide the next part of the work dedicated to the study of neodymium(III) oxalate precipitation, this phenomenon being even more difficult to control than crystallization. Parameters such as temperature and influence of “structuring” and “non structuring” additives are studied. The study is then extended to thorium(IV) oxalate and mixed thorium(IV)-neodymium(III) oxalate before its application to plutonium(III) oxalate system. The experiments concerning this last system result in the obtention of plutonium oxalates with different structure and/or morphology, which, consequently, leads to plutonium oxides with different morphology
Pflieger, Rachel. „Mass spectrometric study of the laser vaporisations of graphite and uranium dioxide up to 4000k“. Université Louis Pasteur (Strasbourg) (1971-2008), 2006. https://publication-theses.unistra.fr/restreint/theses_doctorat/2006/PFLIEGER_Rachel_2006.pdf.
Der volle Inhalt der QuelleA new method of high-temperature mass spectrometry (TOF MS) was developed, where the specimen surface is heated by a laser pulse of approx. 20 ms. During it, time-resolved measurements of mass spectra and of the temperature are performed. Each experiment covers an entire temperature interval. The method was applied to pyrolytic graphite and uranium dioxide. In graphite study, it was clearly shown that the sublimation occurs in a Langmuir-like mode (free surface vaporisation), despite the very high temperatures and thus pressures. Relative partial pressures of C1, C2, C3, C4 and C5 were measured up to 4100 K. Obtained sublimation enthalpies of the main three vapour species are in a good agreement with literature values. Relative vaporisation coefficients of C1-C5 were estimated by comparison of the present partial pressures at 4000 K with equilibrium ones given in the literature. The vapour pressure curve of UO2 over stoichiometric uranium dioxide was measured between 2800 and 3400 K. Obtained sublimation and vaporisation enthalpies are in agreement with the literature. The vaporisation enthalpy of UO3 was measured for the first time. Relative partial pressure ratios p(UO2)/p(UO), p(UO2)/p(UO3) and p(UO2+)/p(UO+) were measured at around 3300 K and indicate that the vaporisation occurs in a regime close to thermodynamic equilibrium. This method is suitable for the fast and time-resolved mass spectrometric measurements of refractory materials up to very high temperatures, and could now be applied to the study of chemically unstable materials such as hyperstoichiometric urania and some carbides and nitrides. Key words: pyrolytic graphite, HOPG, uranium dioxide, laser vaporisation, TOF MS, vaporisation coefficients, Langmuir evaporation
Vaudey, Claire-Émilie. „Effets de la température et de la corrosion radiolytique sur le comportement du chlore dans le graphite nucléaire : conséquences pour le stockage des graphites irradiés des réacteurs UNGG“. Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00528691.
Der volle Inhalt der QuelleBruycker, Franck De. „High temperature phase transitions in nuclear fuels of the fourth generation“. Thesis, Orléans, 2010. http://www.theses.fr/2010ORLE2060/document.
Der volle Inhalt der QuelleUnderstanding the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents, relevant to the general objectives of nuclear safety research. The main purpose of this thesis is the study of high temperature phase transitions in nuclear materials, with special attention to the candidate fuel materials for the reactors of the 4th Generation. In this framework, material properties need to be investigated at temperatures higher than 2500K, where equilibrium conditions are difficult to obtain. Laser heating combined with fast pyrometer is the method used at the European Institute for Transuranium Elements (JRC – ITU). It is associated to a novel process used to determine phase transitions, based on the detection, via a suited low-power (mW) probe laser, of changes in surface reflectivity that may accompany solid/liquid phase transitions. Fast thermal cycles, from a few ms up to the second, under almost container-free conditions and control atmosphere narrow the problem of vaporisation and sample interactions usually meet with traditional method. This new experimental approach has led to very interesting results. It confirmed earlier research for material systems known to be stable at high temperature (such as U-C) and allowed a refinement of the corresponding phase diagrams. But it was also feasible to apply this method to materials highly reactive, thus original results are presented on PuO2, NpO2, UO2-PuO2 and Pu-C systems
Pantera, Laurent. „Application d'une méthodologie statistique à la compréhension du phénomène de corrosion du surgénérateur Phénix“. Compiègne, 1992. http://www.theses.fr/1992COMPD509.
Der volle Inhalt der QuelleSalvo, Maxime. „Etude expérimentale et modélisation du comportement mécanique du combustible UO2 en compression à haute température et forte vitesse de sollicitation“. Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4771/document.
Der volle Inhalt der QuelleThe aim of this work is to characterize and model the mechanical behavior of uranium dioxide (UO2) during a Reactivity Initiated Accident (RIA). The fuel loading during a RIA is characterized by high strain rates (up to 1 /s) and high temperatures (1000°C - 2500°C). Two types of UO2 pellets (commercial and high density) were therefore tested in compression with prescribed displacement rates (0.1 to 100 mm / min corresponding to strain rates of 10-4 - 10-1 /s) and temperatures (1100°C - 1350°C - 1550°C et 1700°C). Experimental results (geometry, yield stress and microstructure) allowed us to define a hyperbolic sine creep law and a Drucker-Prager criterion with associated plasticity, in order to model grain boundaries fragmentation at the macroscopic scale. Finite Element Simulations of these tests and of more than 200 creep tests were used to assess the model response to a wide range of temperatures (1100°C - 1700°C) and strain rates (10-9 /s - 10-1 /s). Finally, a constitutive law called L3F was developed for UO2 by adding to the previous model irradiation creep and tensile macroscopic cracking. The L3F law was then introduced in the 1.5D scheme of the fuel performance code ALCYONE-RIA to simulate the REP-Na tests performed in the experimental reactor CABRI. Simulation results are in good agreement with post tests examinations
Mekki, Soufiane. „Speciation de l’europium trivalent dans un liquide ionique basse température“. Paris 11, 2006. http://www.theses.fr/2006PA112353.
Der volle Inhalt der QuelleSince the nuclear industry is playing an important role in the power production field, a relevant number of problems have been revealed. Indeed, high-level radioactive long-lived nuclear wastes present a real difficulty for nuclear wastes management. Mino actinides, which compose of these wastes, will be radioactive for several thousands of years. For eventual disposal deep underground, their reprocessing needs to be optimized. The extraction process used industrially to separate actinides and lanthanides from metal species characterizing the spent nuclear fuel produce, nevertheless, enormous quantities of contaminated liquid wastes directly issued from the liquid/liquid extraction step. During the last decade, some room-temperature ionic liquid have been studied and integrated into process. The interest on this class of solvent came out from their “green” properties (non volatile, non flammable, recyclable, etc…), but also from the variability of their physico-chemical properties (stability, hydrophobicity, viscosity) as a function of the RTIL chemical composition. Indeed, it has been shown that classical chemical industrial process could be transferred into those media, even more improved, while a certain number of difficulies arising from using traditional solvent can be avoided. In this respect, it could promising to investigate the ability to use room-temperature ionic liquid into the spent special nuclear fuel reprocessing field. The aim of this thesis is to test the ability of the specific ionic liquid bumim Tf₂N to allow trivalent europium extraction. The choice of this metal is based on the chemical analogy with trivalent minor actinides Curium and Americium which are contributing the greatest part of the long-lived high-level radioactive wastes. Handling these elements needs to be very cautious for the safety and radioprotection aspect. Moreover, europium is a very sensitive luminescent probe to its environment even at the microscopic scale. The manuscript is structured with four parts. In a first chapter, we present the main physico-chemical properties of an imidazolium-based ionic liquid family, and then we choose the ionic liquid bumim Tf₂N for the whole thesis and start with the electrochemical study. In the second chapter, we present the study of europium solvation in the ionic liquid media. In the third part, we expose the results concerning TTA solvation ans its complexation with europium in bumim Tf₂N under different conditions. Finally in the last chapter, we present the results obtained for the europium extraction in a three-stage extraction system : water/ bumim Tf₂N /supercritical CO2. This work highlights the potential use of ionic liquids and particularly bunim Tf₂N in the spent nuclear fuel reprocessing. The ability to extract quantitatively a trivalent lanthanide has been demonstrated. This fundamental study can be regarded as a feasibility demonstration to build an ionic liquid-containing extraction system, in the aim of possible large-scale application
Pauvert, Olivier. „Etude structurale de sels fondus d'intérêts nucléaires par RMN et EXAFS haute température“. Phd thesis, Université d'Orléans, 2009. http://tel.archives-ouvertes.fr/tel-00517360.
Der volle Inhalt der QuelleLepeytre, Célia. „Etude de la réduction de UO2F2. Influence de la température, de la vapeur d'eau, du dihydrogène et du fluorure d'hydrogène“. Montpellier 2, 2002. http://www.theses.fr/2002MON20060.
Der volle Inhalt der QuelleLozano, Nathalie. „La subdivision d'un solide induite par l'évolution de sa composition chimique : intérêt pour la céramique nucléaire a fort taux d'irradiation“. Dijon, 1998. http://www.theses.fr/1998DIJOS067.
Der volle Inhalt der QuelleJulien, Jérôme. „Modélisation multi-échelles du couplage physico-chimie mécanique du comportement du combustible à haute température des réacteurs à eau sous pression“. Aix-Marseille 1, 2008. http://theses.univ-amu.fr.lama.univ-amu.fr/2008AIX11077.pdf.
Der volle Inhalt der QuelleIn the Pellet-Cladding Interaction (PCI) problems of a fuel rod, it is necessary to adopt a good description of the thermomecanical behaviour of the fuel. When the fuel is subject to fluctuations in power, one of the main strains is due to the phenomenon of gaseous swelling induced by irradiation. Indeed, fuel is a porous ceramic of U02 containing several types of cavities and the accumulation of fission products in gaseous form in these cavities causes swelling of the pellet. However, this gaseous swelling has an influence on the mechanical behaviour of the pellet and particularly the viscoplastic behaviour. To improve the description of this behavior, it was necessary to develop a micromechanical model capable of coupling two phenomena modelled independently : the transfer of gas between the various cavities and the estimation of mechanical viscoplastic strains of the fuel. This thesis is to link these two disciplines from the cavities present in the fuel: mechanics calculates changes in the volume fraction of cavities according to their pressure and physical reflects the evolution of the volume fraction of cavities to calculate an internally consistent pressure. In order to describe a microstructure much richer, a new micromechanics model was developed using a multi-scale to describe the viscoplastic behavior of nuclear fuel
Farcy, Emilie. „Étude de l'impact des radionucléides rejetés par les installations nucléaires du Nord Cotentin sur l'huître creuse Crassostrea gigas : analyse de l'expression de marqueurs moléculaires de stress“. Caen, 2006. http://www.theses.fr/2006CAEN2056.
Der volle Inhalt der QuelleThis thesis explores the potential radiological impact of radionuclide discharges from the nuclear industry on the Pacific oyster, Crassostrea gigas. One of the major goals of this research was to identify markers that could be used to monitor the effects of low-level chronic irradiation. We decided to focalize on the expression of stress-induced genes involved in the regulation of cellular stress, focusing on transcription. First, homology cloning was used to identify four new cDNAs encoding stress markers. Then data collected at various sites enabled to evidence that mRNA levels for each of the genes of interest naturally vary to a significant degree, based on individual differences and seasonal factors. Comparing oysters from exposed sites with those from a reference site located on the Atlantic coast did not suggest any relationship between mRNA levels changes and the oysters’ exposure to liquid radioactive waste from the AREVA reprocessing plant. In the environment, we found that those radionuclide releases resulted in a very small increase in radioactivity in oysters, especially compared with their natural radioactivity. In the laboratory, by exposing the oysters to higher radionuclide concentrations than those found in the environment, we were able to identify two genes as potential candidates for studying the effects of chronic exposure to low doses of ionizing radiations in the oyster: genes encoding MT and MXR. We confirmed that transcriptional induction of these two genes occurs in response to high doses of acute irradiation
L'Haridon--Quaireau, Sarah. „Etude des mécanismes de corrosion et des effets d'irradiation sur la corrosion d'un alliage d'aluminium utilisé dans les réacteurs nucléaires expérimentaux“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASS047.
Der volle Inhalt der QuelleMaterials Testing Reactors (MTR) are experimental nuclear reactors used to irradiate materials. Aluminium alloys, in particular the 6061-T6, are used in MTR of the core components and for the fuel cladding. In the aqueous media of the core, these alloys are corroded and an aluminium hydroxide film covers their surface. Because of a low thermal conductivity, this film degrades the thermal exchange between the core components and the aqueous media; this can lead to an overheating of the reactor. As a result, it is important to determinate the hydroxide thicknesses on the surface of the aluminium alloys. In the literature, empirical models have been developed to predict these thicknesses depending on the operational conditions of the reactors. Tests in corrosion loop have been performed at a temperature superior to 100°C. The data resulting of these tests is used to extrapolated the empirical models. However, in the French reactors, the maximal temperature of the core components is between 70 and 100°C. Thus, in order to use the empirical models in the French reactors, their application range should be extended to a temperature inferior to 100°C. With this goal, parametric studies are performed with different temperatures (70-100°C), pressures (0.5-12 bar) and pH (5-7.5). These studies indicate that the temperature and the pH have an important impact on the aluminium corrosion and on the hydroxide growth. The hydroxide thicknesses are more important at 70°C than at 100°C. This observation is due to a change in the crystalline phase of aluminium hydroxide: the hydroxide formed at 70°C is less protective for the aluminium oxidation than the one at 100°C. The pH influences the hydroxide solubility and thus the hydroxide thicknesses, a pH of 5 allows to reduce these thicknesses compared to 7.5. However, the data collected during these parametric studies does not allow to adapt the empirical models to a temperature inferior to 100°C, this is due to variations of pH during corrosion tests and to a too low evolution of the hydroxide thicknesses. As a result, more tests with corrosion loop are needed.In addition, in the reactor, the 6061-T6 alloy is exposed to neutron irradiation. According to the literature, this irradiation increases the aluminium corrosion. Ion irradiations have been performed in order to evaluate if it is possible to use ion irradiations to approach the conditions found in nuclear core. The first irradiation with Al ions is performed on the non-corroded metal with at most 14 dpa; this causes an amorphisation of the dispersoïdes and increases the dislocation density. These types of damage seem to increase the hydroxide growth and the aluminium corrosion. The second irradiation with Al ions is performed on aluminium hydroxide with at most 4.5 dpa. This causes a change in the microstructure of the hydroxide crystals (from parallelepiped, they become globular), the formation of cavity and the dehydration of the hydroxide resulting in the formation of nanocrystallites of oxide η-Al₂O₃. These types of damage seem to increase the hydroxide growth. The effects of the ionic irradiations are compared to the results of a neutron irradiation performed in the reactor Osiris at the CEA of Saclay. The both types of irradiation are similar effects on the aluminium corrosion. As a result, tests in a corrosion loop coupled with ion irradiations would be used to enrich the database used to extrapolate the empirical models to temperature inferior to 100°C
Colbert, Mehdi. „Etude du comportement de gaz rares dans une matrice céramique à haute température : Modélisation par approches semi-empiriques“. Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4066/document.
Der volle Inhalt der QuelleIssaoui, Amal. „Comportement sous irradiation des aciers ODS (Oxide Dispersion Strengthened) pour le gainage combustible des réacteurs de 4ème génération“. Thesis, Lille 1, 2020. http://www.theses.fr/2020LIL1R008.
Der volle Inhalt der QuelleThe extreme operating conditions envisaged for the fuel cladding of generation IV reactors (high temperature: 400°C-700°C, and high dose of irradiation: up to 150 dpa) require the development of new materials. Ferritic/martensitic steels reinforced by a dispersion of nanometric oxides (ODS: Oxide Dispersion Strengthened) are now one of the options for fissile cladding materials dedicated to the high combustion rates of a SFR. In fact, these steels exhibit a good resistance to swelling for high doses, up to 150 dpa, and a good resistance to creep deformation at high temperature thanks to the presence of nanometric oxides. However, neutron irradiation induces microchemical changes in the structure of these materials such as the separation of α-α ’phases and Cr depletion at the grain boundaries. These microstructural modifications can considerably affect the mechanical properties of these steels and could notably degrade the resistance to creep deformation and the resistance to swelling. These phenomena have been relatively little studied in ODS steels, in particular the precipitation of the ’ phase and its impact on the hardening of materials. Thus, the objective of the thesis work is to study the phenomenon of separation of the α-α ’phases as well as the behavior of grain boundaries under thermal aging, under ion irradiation and also under neutron irradiation. Excluding irradiation, the results obtained show that the precipitate ’ is formed by a non classical mechanism in ODS steels after thermal aging. It has been found that the oxide nanoreinforcements serve as a heterogeneous germination site for ’phases, thus accelerating the latter’s growth kinetics. If these phases initially harden the material significantly, their hardening effect is dependent on their kinetics of precipitation. In addition to the formation of these Cr-rich phases, Cr segregation at the grain boundaries has been demonstrated. It has been shown that enrichment in Cr is strongly dependent on the disorientation of the grain boundary and could, in the case of highly disoriented joints, cause a spinodal decomposition localized at the grain boundary. Under ion irradiation, it has been shown that the defects generate an induced Cr segregation depleting the grain boundaries, in particular in the case of an ODS Fe-14Cr alloy. ’-isolated droplets are 6 observed in the case of Fe-18Cr ODS while a mechanism of spinodal decomposition induced under irradiation has been observed in the case of Fe-14Cr ODS. The mechanisms highlighted in thermal ageing and under ion irradiation made it possible to understand the microstructures observed after neutron irradiation
Fras, François. „Étude de la dynamique de spin du trou dans les boîtes quantiques d'InAs/GaAs : pompage optique, relaxation, effets nucléaires“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00839368.
Der volle Inhalt der QuelleClement, Simon. „Mise en oeuvre expérimentale et analyse vibratoire non-linéaire d'un dispositif à quatre maquettes d'assemblages combustibles sous écoulement axial“. Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4757/document.
Der volle Inhalt der QuelleThe present study is in the scope of pressurized water reactors (PWR) core response to earthquakes. The goal of this thesis is to measure the coupling between fuel assemblies caused an axial water flow. The design, production and installation a new test facility named ICARE EXPERIMENTAL are presented. ICARE EXPERIMENTAL was built in order to measure simultaneously the vibrations of four fuel assemblies (2x2) under an axial flow. A new data analysis method combining time-frequency analysis and orthogonal mode decomposition (POD) is described. This method, named Sliding Window POD (SWPOD), allows analysing multicomponent data, of which spatial repartition of energy and frequency content are time dependent. In the case of mechanical systems (linear and nonlinear), the link between the proper orthogonal modes obtained through SWPOD and the normal modes (linear and nonlinear) is studied. The measures acquired with the ICARE EXPERIMENTAL installation are analysed using the SWPOD. The first results show characteristic behavior of the free fuel assemblies at their resonances. The coupling between fuel assemblies, induced by the fluid, is reproduced by simulations performed using the COEUR3D code. This code is based on a porous media model in order to simulate a fuel assemblies network under axial flow
Nkou, Bouala Galy Ingrid. „Premier stade du frittage des dioxydes de lanthanides et d’actinides : une étude in situ par MEBE à haute température“. Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT220/document.
Der volle Inhalt der QuelleSintering is a key step in the elaboration of UOx and MOx (U/Pu mixed oxide) nuclear fuels pellets used in the pressurized water reactors. The first step of this process, which consists in the elaboration of a neck between the grains and led to the consolidation of the material, is generally described through numerical simulation. The models used for the theoretical description of this step are generally constituted by two spherical grains in contact. In order to perform the first experimental observations of the initial stage of sintering of ceramics materials of interest for electronuclear fuel cycle and to complement the numerical approaches, samples of lanthanide (CeO2) and actinides (ThO2 and UO2) dioxides with controlled morphology were examined by environmental scanning electron microscopy during heat treatment at high temperature (HT-ESEM).First, the protocols leading to the synthesis of lanthanides and actinides oxides microspheres were developed, and the powders obtained characterized. It was thus possible to obtain, for all the compounds studied, systems similar to those generally modeled. HT-ESEM was then used as the main investigation tool for the in situ study of the first stage of sintering of these compounds. The study of the morphological modifications occurring in isolated microspheres first confirmed their polycristalline character. Indeed, heat treatment led to a progressive decrease of the crystallites number included inside the grains through different mechanisms (oriented attachment, diffusion), whose activation energy was evaluated. For the systems constituted by two CeO2 or ThO2 microspheres in contact, the ESEM micrographs allowed to observe the evolution of several parameters during heat treatment, such as neck size and grain size as well as distance between the grains center. Images processing methods using custom software were then applied in order to determine the quantitative kinetic data. The mechanisms involved, such as the rearrangement of crystalline planes and the matter diffusion, and the corresponding activation energies, were also identified. Furthermore, the law of neck growth, which allows one to describe the evolution of sintering degree, was used to determine the prevailing diffusion mechanism during heat treatment. The influence of various parameters on the sintering degree was also highlighted. For example, the influence of grains polycristallinity on sintering mechanisms and kinetics was particularly investigated study by working in parallel with polycristalline and single crystal grains, then by comparing the experimental results with data coming from modeling. Finally, the methodology developed for the study of CeO2 and ThO2 was transposed to the compound of interest UO2. In this case, the data previously described were complemented by a first approach of the influence of atmosphere used during the heat treatment
Le, Hong Thai. „Effets de l’oxygène et de l’hydrogène sur la microstructure et le comportement mécanique d’alliages de zirconium après incursion à haute température“. Thesis, Université Paris sciences et lettres, 2020. https://pastel.archives-ouvertes.fr/tel-02887252.
Der volle Inhalt der QuelleDuring hypothetical LOss-of-Coolant-Accident (LOCA) scenarios in pressurized water reactors, zirconium-based fuel claddings can be exposed to high temperatures (up to 1200°C) and, under certain conditions, absorb locally a significant amount of hydrogen (up to 3000 wppm) and of oxygen (up to 1 wt.%). This work aims to study the isolated and combined effects, which have been little investigated hitherto, of oxygen and hydrogen in high contents, on the metallurgical evolutions and the mechanical behavior of two industrial zirconium alloys (Zircaloy-4 and M5Framatome) during and after cooling/quenching from the βZr temperature domain (> 700°C). The first part of this work consisted of producing “model” materials, from cladding tube sections and plates, homogenously charged with oxygen, up to 1 wt.%, and with hydrogen, up to 7000 wppm. The phase transformations occurring on cooling from the βZr domain in the materials charged with hydrogen and the changes in chemical composition and lattice parameters of the phases were then quantified using several techniques such as calorimetry, in situ neutron diffraction during cooling from 700°C, neutron and X-ray diffraction at room temperature, electron microprobe, μ-ERDA and EBSD. The experimental results were compared with thermodynamic predictions, taking into account all of the chemical elements in the materials. In addition to the stable phases expected at equilibrium, the presence of metastable phases such as γZrH hydrides, and βZr phase enriched in H and Nb in the case of M5Framatome, as well as of a significant amount of hydrogen remaining in solid solution within the αZr, was pointed out at room temperature at the end of cooling. The mechanical properties of the (prior-)βZr phase were characterized by performing uniaxial tensile tests at temperature between 700 and 30°C on cooling from the βZr domain, on materials charged with hydrogen and/or oxygen. The results showed that the mechanical behavior and the failure mode strongly depend on the testing temperature and on the hydrogen and oxygen contents. Empirical correlations and a phenomenological model have been proposed to describe the macroscopic ductile-brittle transition temperature, the evolutions of the mechanical characteristics and the plastic behavior of the material (in the case of ductile macroscopic failure), as a function of temperature and contents of oxygen and hydrogen. Observation of the fracture surfaces, μ-ERDA and electron microprobe analyses and a tensile test performed in situ under SEM highlighted the heterogeneity of the deformation and the failure mode at the local scale, due to the effects of the partitioning of chemical elements, especially of hydrogen and oxygen, during the phase transformations
Bonev, Plamen. „Thermal conductivity of mixed oxide fuel (MOX) : effect of temperature, elementary chemical composition, microstructure and burn-up in reactor“. Electronic Thesis or Diss., Université de Lorraine, 2023. http://www.theses.fr/2023LORR0367.
Der volle Inhalt der QuelleMixed oxide fuel (MOX) is the nuclear fuel, used in fourth generation reactors, also called fast neutron reactors (FNR). Those reactors operate at very high temperatures (between 1500 and 2500 K). Thermal conductivity is therefore an essential material property to reactor safety. In fast reactor operating conditions, MOX is not only subject to high temperatures, but also to local changes in chemical composition and microstructure, which can have great impact on thermal conductivity. The effect of plutonium content is of particular interest for FNR applications, not only due to its local changes during irradiation, but also because fast reactors can be used to recycle plutonium. Thermal conductivity models should therefore be predictive in a wide range of plutonium contents. Most modeling approaches are semi-empirical in their temperature-dependency description of thermal conductivity, and are purely empirical in terms of plutonium and oxygen content-dependency. Those approaches are therefore limited by the number of available experimental data, especially concerning high temperatures (above 2000 K) and high plutonium contents (above 30 at. % ). The extrapolation of those models beyond their experimental range of validity can therefore lead to high modeling uncertainties. To address this problem, we propose in this work a model built on physical foundations. This model is based on a theoretical assessment of the contribution to thermal conductivity of each of the three (quasi)particles responsible for heat transport in oxide fuels: phonons, polarons and photons. The effect of temperature, plutonium and oxygen content on thermal conductivity is therefore clearly identified. Plutonium-oxygen content correlated effects were in particular observed, which do not appear in empirical approaches. This work also allowed to improve the understanding of irradiation-induced effects on thermal conductivity in FNR irradiation conditions. The model, proposed in this work was compared to the most up-to-date experimental data on thermal conductivity of MOX fuels, counting a total of 6619 experimental points, originated from different institutions: CEA, European projects, IAEA, OECD. Experimental data confirmed the effect of plutonium content, predicted in this work and in particular provided an experimental evidence for the plutonium-oxygen content correlated effects. The model was implemented into the CEA fuel performance code GERMINAL, from the simulation software platform PLEAIDES, to simulate the fuel behavior during the INTA-2 irradiation experiment. The predicted fuel temperature was compared to thermocouple measurements and showed good consistency, highlighting the adequate use of our model in fuel performance codes
Matignon, Christophe. „Etude de la détonation de deux mélanges stoechiométriques (CH4/H2/O2/N2 et CH4/C2H6/O2/N2). Influence de la proportion relative des deux combustibles et de la température initiale élevée“. Poitiers, 2000. http://www.theses.fr/2000POIT2311.
Der volle Inhalt der QuelleSchäffler, Isabelle. „Modélisation du comportement elasto-viscoplastique anisotrope des tubes de gaine du crayon combustible entre zéro et quatre cycles de fonctionnement en réacteur à eau pressurisée“. Besançon, 1997. http://www.theses.fr/1997BESA2076.
Der volle Inhalt der QuelleGracia, Jérémy. „Étude du comportement du stéarate du zinc en température et sous irradiation - impact sur les propriétés de lubrification“. Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0028/document.
Der volle Inhalt der QuelleThe manufacturing of nuclear fuels UO2-30%PuO2 for the Gen IV nuclear reactors is based on the use of plutonium coming from MOX (Mixed OXides) fuel recycling from actual reactor. This plutonium would contain a few quantities of fissionable isotopes and a significant amount (x30) of 238Pu compared to initial Pu. This isotope possesses a strong alpha activity and a great thermal power. The manufacturing process which consists in powders pressing will use zinc stearate, an additive used as lubricant. The aim of this PhD is to study the behaviour in temperature and under irradiation of this compound. An effect of temperature increasing and thermal ageing has been observed on crystallographic properties with a material amorphisation and a deterioration of lubricant properties from 110°C. Radiolytic degradation of zinc stearate has been studied through the analysis of gases produced by alpha radiation at the contact of PuO2 powders or by external radiation by helions, with the support of chemical analysis of irradiated solid. Gaz production yields are calculated and enable establishment of a radiolysis mechanism. It has been showed that impact of radiolysis on lubricant properties is less important than temperature effect. The coupling of degradations has a synergic effect, with a deterioration of lubricant properties observed at lower temperature compared to non-irradiated material. From these results, recommendations for use of zinc stearate have been proposed
Truphemus, Thibaut. „Etude des équilibres de phases en fonction de la température dans le système UO2-PuO2-Pu2O3 pour les céramiques nucléaires aux fortes teneurs en plutonium“. Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4303/document.
Der volle Inhalt der QuelleIn the UO2-PuO2-Pu2O3 section, a monophasic (U1-y,Puy)O2-x domain is stable for y<0,20 at 25°C and up to solid-liquid equilibrium. At higher Pu content, phase equilibria are more unclear with a phase separation process. The main objective of this work consisted in upgrading the representation of this system for 0,15≤y≤0,65 and 25≤T(°C)≤1500.At 25°C, a miscibility gap composed by two different (U1-y,Puy)O2-X phases has been observed for y<0,45, with one very closed to stoichiometric state (Oxygen/Metal=2) and one other very reduced. For the first time, a triphasic domain has been characterized at higher Pu contents, with two (U1-y,Puy)O2-X phases near y=0,45 and one (U1-y,Puy)2O3 phase with a low U content inside. Concerning the study in function of temperature, we have demonstrated that phase separation temperature increase when Pu content grows. Several representations have been established. At 200°C, the representation is closed to that at 25°C. At 400°C, the phase separation have been specified at a lower Pu content than that of literature : y=0,35. At 600°C, our results have clarified the section, until then very unclear, with a phase separation appearing at y=0,60.The microstructural analysis has clearly demonstrated the significant impact of the phase separation on the material. Indeed many cracks have been observed in our samples, and quantity of these defects increases when Pu content grows
Silbermann, Gwennaelle. „Effets de la température et de l'irradiation sur le comportement du 14C et de son précurseur 14N dans le graphite nucléaire. Étude de la décontamination thermique du graphite en présence de vapeur d'eau“. Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10168.
Der volle Inhalt der QuelleThe dismantling of UNGG reactors in France will generate about 23 000 tons of radioactive graphite wastes. To manage these wastes, the radiological inventory and data on radionuclides (RN) location and speciation should be determined. 14C was identified as an important RN for disposal due to its high initial activity and the risk of release of a mobile organic fraction in environment, after water ingress into the disposal. Hence, the objective of this thesis, carried out in partnership with EDF, is to implement experimental studies to simulate and evaluate the impact of temperature, irradiation and graphite radiolytic corrosion on the in reactor behavior of 14C and its precursor, 14N. The obtained data are then used to study the thermal decontamination of graphite in presence of water vapor. The experimental approach aims at simulating the presence of 14C and 14N by the respective ion implantation of 13C and 14N or 15N in virgin graphite. This study shows that, in the temperature range reached during reactor operation, (100-500°C) and without radiolytic corrosion, 13C is thermally stable whatever the initial graphite structure. Moreover, irradiation experiments were performed on heated graphite (500°C) put in contact with a gas representative of the radiolysed coolant gas. They show the synergistic role played by the oxidative species and the graphite structure disorder on the enhancement of 13C mobility resulting in the gasification of the graphite surface and/or the selective oxidation of 13C more weakly bound than 12C. Concerning the pristine nitrogen, we showed first that the surface concentration reaches several hundred ppm (<500 ppm at) and decreases at deeper depths to about 160 ppm at.. Unlike implanted 13C, implanted nitrogen migrates at 500 ° C when the graphite is highly disordered (about 8 dpa) while remaining stable for a lower disorder rate (0.14 dpa). Experiments also show the synergistic role by electronic excitations and temperature that accelerate the transport of nitrogen to the surface of the graphite. Nitrogen seems to migrate in the form of molecular species (CN, C = N or C N). After eight hours of irradiation these species are, however, little or not released and blocked at the surface. The study of the thermal decontamination of graphite in presence of water vapor was performed with a thermogravimetric device coupled to a steam water generator device. The influence of temperature (700 ° C and 900 ° C) and of the relative humidity (50% RH and 90% RH) was tested with a wet gas fixed flow rate of 50 ml/min. Under these conditions, the selective oxidation of implanted carbon was confirmed
Silbermann, Gwennaëlle. „Effets de la température et de l'irradiation sur le comportement du 14C et de son précurseur 14N dans le graphite nucléaire. Etude de la décontamination thermique du graphite en présence de vapeur d'eau“. Phd thesis, Université Claude Bernard - Lyon I, 2013. http://tel.archives-ouvertes.fr/tel-00954466.
Der volle Inhalt der QuelleRouxel, Baptiste. „Développement d’aciers austénitiques avancés résistant au gonflement sous irradiation“. Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10187/document.
Der volle Inhalt der QuelleIn the framework of studies about Sodium Fast Reactors (SFR) of generation IV, the CEA is developing new austenitic steel grades for the fuel cladding. These steels demonstrate very good mechanical properties but their use is limited because of the void swelling under irradiation. Beyond a high irradiation dose, cavities appear in the alloys and weaken the material. The reference material in France is a 15Cr/15Ni steel, named AIM1, stabilized with titanium. This study try to understand the role played by various chemical elements and microstructural parameters on the formation of the cavities under irradiation, and contribute to the development of a new grade AIM2 more resistant to swelling. In an analytical approach, model materials were elaborated with various chemical compositions and microstructures. Ten grades were casted with chemical variations in Ti, Nb, Ni and P. Four specific microstructures for each alloy highlighted the effect of dislocations, solutes or nano-precipitates on the void swelling. These materials were characterized using TEM and SANS, before irradiation with Fe2+ (2 MeV) ions in the order to simulate the damages caused by neutrons. Comparing the irradiated microstructures, it is demonstrated that the solutes have a dominating effect on the formation of cavities. Specifically titanium in solid solution reduces the swelling whereas niobium does not show this effect. Finally, a matrix enriched by 15% to 25% of nickel is still favorable to limit swelling in these advanced austenitic stainless steels
Ndiaye, Abibatou. „Combustible nucléaire UO2 à microstructures pilotées : compréhension des mécanismes d'élaboration et du comportement mécanique en température“. Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00848094.
Der volle Inhalt der QuelleSchlutig, Sandrine. „Contribution à l'étude de la pulvérisation et de l'endommagement du dioxyde d'uranium par les ions lourds rapides“. Phd thesis, Université de Caen, 2001. http://tel.archives-ouvertes.fr/tel-00002110.
Der volle Inhalt der QuellePerrin, Lionel. „Étude expérimentale de l’évaporation à haute température de gouttes de combustible en régime de fortes interactions à l'aide de méthodes optiques“. Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0307/document.
Der volle Inhalt der QuelleThe study of heat and mass transfers during the evaporation of moving and interacting droplets remain a complex field because of the various mechanisms in action. The main parameters influencing the evaporation of droplets have been studied separately thanks to non intrusive optical diagnostics that have been used on a monodisperse droplet stream. A technique based on two colors laser induced fluorescence (LIF) was developed to measure the temperature of mono and multicomponent evaporating fuel droplets. The liquid fuel is seeded by a non-fluorescent absorber to eliminate the effect of morphological dependant resonances. The size evolution was obtained thanks to shadow imaging which allowed precise measurements of evaporation rates. A hot chamber was conceived to create controlled ambient conditions around the droplets. Thereby, the Nusselt and Sherwood numbers, characterizing the heat and mass transfers, were deduced from the experimental data for various experimental conditions. The studies allowed confirming the influence of the volatility of the fuel regarding heat and mass transfers. The results also exhibit an influence of the Reynolds number. Finally, the study of multicomponent droplets had shown different heating and evaporating phases during the droplet transit time. Effects of various compositions have also been investigated
Vaugoude, Adrien. „Contribution au développement d’aciers austénitiques avancés résistants au gonflement sous irradiation“. Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1R054.
Der volle Inhalt der QuelleIn the framework on 4th generation reactors, the CEA is developing new grades of austenitic steels that will be usable, for example, for the cladding of fuels for sodium-cooling fast neutron reactors (RNR-Na). Thanks to their excellent mechanical properties and good corrosion resistance, they can be used up to 100 dpa, although their service life may be limited by the phenomenon of swelling under irradiation. Swelling is due to the formation of cavities in the material following irradiation and can cause geometric deformations and weaken the fuel claddings. The reference alloy, developed thanks to previous R&D on French RNRs, is an austenitic 15Cr/15Ni titanium stabilized steel called AIM1. This work focuses on studying and understanding the mechanisms leading to the formation of cavities under irradiation to contribute to the development of a more swell-resistant AIM2 grade. Different chemical and microstructural optimizations were investigated using an analytical approach. Three model alloys were used to study the double stabilization of titanium and niobium and several model microstructures were defined to highlight the role of microstructural parameters influencing swelling (dislocations, solutes, nanoprecipitates). Characterizations by SEM, DRX and DNPA have allowed a better understanding of the microstructural evolutions of the three grades, model microstructures and also to study their ability to form a fine network of nanoprecipitates. Very high-dose irradiations with Fe3+ ions (2MeV and 10MeV) to induce the formation of cavities have highlighted the major role of microstructure on swelling resistance. A new methodology for the study of swelling induced by ion irradiation has been proposed. It allows a statistical study of cavity formation and is based on the use of scanning microscopy. Indeed, the new detectors can acquire high definition images that can contain several thousand cavities on the same micrograph. These images are then analyzed using a supervised learning artificial intelligence algorithm to automatically recognize the cavities but as well as different objects present in the microstructure (precipitates, grain joints, etc.). An example of a study of the effect on the swelling of the irradiation damage gradient, characteristic of heavy ion irradiation, is presented as an illustration of this methodology called MEBIA. Cluster dynamic calculations simulated the impact of nanoprecipitates and the initial density of dislocations on swelling. These results inspired the creation of new microstructures that were irradiated and began to be characterized. This work will have to be continued to validate the relevance of optimized microstructures. Results presented in this manuscript illustrate the difficulties encountered in studying the microstructures of austenitic steels irradiated at very high doses, but it shows that new approaches can also be put in place to facilitate this work
Nguyen, Tien Hien. „Channelling investigation of the behaviour of urania under low-energy ion irradiation“. Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00966967.
Der volle Inhalt der QuelleMorati, Nicolas. „Système de détection ultra-sensible et sélectif pour le suivi de la qualité de l'air intérieur et extérieur“. Electronic Thesis or Diss., Aix-Marseille, 2021. http://www.theses.fr/2021AIXM0200.
Der volle Inhalt der QuelleToday the air is polluted by many chemicals, which are in the form of a complex mixture that is difficult to identify. These marker gases include carbon monoxide (CO), ozone (O3) and nitrogen dioxide (NO2). It has therefore become imperative to design detection systems that are inexpensive, but at the same time highly sensitive and selective, in order to monitor air quality in real time. Metal Oxide gas sensors (MOX) can meet these requirements. They are used in portable and low cost gas detection devices. Very sensitive, stable and with a long lifespan, MOX sensors suffer from an inherent lack of selectivity, which can be overcome by integrating artificial intelligence. This thesis is concerned with the implementation of gas identification methods based on the analysis of experimental data. The objective is to discriminate three pollution marker gases: CO, O3, and NO2, with a single sensor, under real conditions of use, i.e. in the permanent presence of a concentration of these gases in the humid ambient air. For this, we use a tungsten oxide (WO3) gas sensor patented by IM2NP laboratory and operated under a worldwide license by the company NANOZ.A complete experimental database was created from a protocol based on temperature modulation of the sensitive layer. From this database, we implemented two different feature extraction methods: the computation of temporal attributes and the wavelet transform. These two methods were evaluated on their gas discrimination capacity thanks to the use of several families of classification algorithms, such as support vector machines (SVM), decision trees, K nearest neighbours, neural networks, etc
Vautrot, Valentin. „Recherche des mécanismes impliqués dans les dérégulations de l'épissage alternatif à l'origine de la progéria et étude du rôle de l'étape d'épissage dans les changements globaux d'expression des gènes en réaction au choc thermique“. Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0321/document.
Der volle Inhalt der QuelleThe Hutchinson-Gilford syndrome, also called progeria, is a rare genetic disease, characterized by symptoms that can be assimilated to accelerated natural ageing. Mutations that cause progeria affect the LMNA gene, which codes the lamin A that plays a major role in the shaping, maintenance and resistance of the nucleus. These mutations lead to the activation of alternative or cryptic 5' splice sites located within the exon 11 of LMNA pre-mRNA upstream from the normal 5' splice site. Our work revealed an effect of the mutations on the 2D RNA structure of the splice sites, which contributes to the increased use of the mutant sites. On top of it, we showed the impact of several SR proteins, (SRSF1, SRSF5 and SRSF6) on the regulation of the use of the exon 11 5' splice sites. On the other hand, it was previously observed that cells from progeria patients contain nuclear stress bodies (nSB), located in chromosomal pericentromeric regions and containing satellite III RNAs and several splicing regulatory proteins. Similar bodies are formed in healthy cells submitted to various stresses such as heat shock. A work hypothesis is that those nSBs sequester splicing factors in order to regulate the global alternative splicing profile in cells during the recovery period after stress. We purified proteins associated with satellite III RNAs in vitro, to find new components of the nSBs, and analyzed the transcriptome of cells subjected to heat shock using exon junction microarrays, in order to eventually understand how nSB formation can affect alternative splicing