Zeitschriftenartikel zum Thema „Combined exergy and pinch analysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Combined exergy and pinch analysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Sorin, M. „Combined Exergy and Pinch Approach to Process Analysis“. Computers & Chemical Engineering 21, Nr. 1-2 (1997): S23—S28. http://dx.doi.org/10.1016/s0098-1354(97)00020-3.
Der volle Inhalt der QuelleSorin, M., und J. Paris. „Combined exergy and pinch approach to process analysis“. Computers & Chemical Engineering 21 (Mai 1997): S23—S28. http://dx.doi.org/10.1016/s0098-1354(97)87473-x.
Der volle Inhalt der QuelleDhole, V. R., und J. P. Zheng. „Applying Combined Pinch and Exergy Analysis to Closed-Cycle Gas Turbine System Design“. Journal of Engineering for Gas Turbines and Power 117, Nr. 1 (01.01.1995): 47–52. http://dx.doi.org/10.1115/1.2812780.
Der volle Inhalt der QuelleRiadi, Indra, Johnner Sitompul und Hyung Woo Lee. „Pinch-Exergy Approach to Enhance Sulphitation Process Efficiency in Sugar Manufacturing“. CHEESA: Chemical Engineering Research Articles 7, Nr. 1 (22.04.2024): 1. http://dx.doi.org/10.25273/cheesa.v7i1.17831.1-14.
Der volle Inhalt der QuelleSharew, Shumet Sendek, Alessandro Di Pretoro, Abubeker Yimam, Stéphane Negny und Ludovic Montastruc. „Combining Exergy and Pinch Analysis for the Operating Mode Optimization of a Steam Turbine Cogeneration Plant in Wonji-Shoa, Ethiopia“. Entropy 26, Nr. 6 (27.05.2024): 453. http://dx.doi.org/10.3390/e26060453.
Der volle Inhalt der QuelleYushkova, E. A., und V. A. Lebedev. „Exergy analysis of the boiler using the pinch method“. Power engineering: research, equipment, technology 21, Nr. 4 (09.12.2019): 58–65. http://dx.doi.org/10.30724/1998-9903-2019-21-4-58-65.
Der volle Inhalt der QuelleArriola-Medellín, Alejandro, Emilio Manzanares-Papayanopoulos und César Romo-Millares. „Diagnosis and redesign of power plants using combined Pinch and Exergy Analysis“. Energy 72 (August 2014): 643–51. http://dx.doi.org/10.1016/j.energy.2014.05.090.
Der volle Inhalt der QuelleHamsani, Muhammad Nurheilmi, Timothy Gordon Walmsley, Peng Yen Liew und Sharifah Rafidah Wan Alwi. „Combined Pinch and exergy numerical analysis for low temperature heat exchanger network“. Energy 153 (Juni 2018): 100–112. http://dx.doi.org/10.1016/j.energy.2018.04.023.
Der volle Inhalt der QuelleOchoa, Guillermo Valencia, Carlos Acevedo Peñaloza und Jhan Piero Rojas. „Thermoeconomic Modelling and Parametric Study of a Simple ORC for the Recovery of Waste Heat in a 2 MW Gas Engine under Different Working Fluids“. Applied Sciences 9, Nr. 21 (25.10.2019): 4526. http://dx.doi.org/10.3390/app9214526.
Der volle Inhalt der QuelleRiady, M. I., D. Santoso und M. D. Bustan. „Thermodynamics Performance Evaluation in Combined Cycle Power Plant by Using Combined Pinch and Exergy Analysis“. Journal of Physics: Conference Series 1198, Nr. 4 (April 2019): 042006. http://dx.doi.org/10.1088/1742-6596/1198/4/042006.
Der volle Inhalt der QuelleGonçalves, L. P., und F. R. P. Arrieta. „AN EXERGY COST ANALYSIS OF A COGENERATION PLANT“. Revista de Engenharia Térmica 9, Nr. 1-2 (31.12.2010): 28. http://dx.doi.org/10.5380/reterm.v9i1-2.61927.
Der volle Inhalt der QuelleKhoshgoftar Manesh, M. H., und M. A. Rosen. „Combined Cycle and Steam Gas-Fired Power Plant Analysis through Exergoeconomic and Extended Combined Pinch and Exergy Methods“. Journal of Energy Engineering 144, Nr. 2 (April 2018): 04018010. http://dx.doi.org/10.1061/(asce)ey.1943-7897.0000506.
Der volle Inhalt der QuelleBett, Alvin Kiprono, und Saeid Jalilinasrabady. „Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis“. Energies 14, Nr. 20 (13.10.2021): 6579. http://dx.doi.org/10.3390/en14206579.
Der volle Inhalt der QuelleBett, Alvin Kiprono, und Saeid Jalilinasrabady. „Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis“. Energies 14, Nr. 20 (13.10.2021): 6579. http://dx.doi.org/10.3390/en14206579.
Der volle Inhalt der QuelleJavanshir, Nima, S. M. Seyed Mahmoudi und Marc A. Rosen. „Thermodynamic and Exergoeconomic Analyses of a Novel Combined Cycle Comprised of Vapor-Compression Refrigeration and Organic Rankine Cycles“. Sustainability 11, Nr. 12 (18.06.2019): 3374. http://dx.doi.org/10.3390/su11123374.
Der volle Inhalt der QuelleRen, Jie, Chen Xu, Zuoqin Qian, Weilong Huang und Baolin Wang. „Exergoeconomic Analysis and Optimization of a Biomass Integrated Gasification Combined Cycle Based on Externally Fired Gas Turbine, Steam Rankine Cycle, Organic Rankine Cycle, and Absorption Refrigeration Cycle“. Entropy 26, Nr. 6 (12.06.2024): 511. http://dx.doi.org/10.3390/e26060511.
Der volle Inhalt der QuelleGhannadzadeh, Ali, und Majid Sadeqzadeh. „Combined pinch and exergy analysis of an ethylene oxide production process to boost energy efficiency toward environmental sustainability“. Clean Technologies and Environmental Policy 19, Nr. 8 (31.07.2017): 2145–60. http://dx.doi.org/10.1007/s10098-017-1402-5.
Der volle Inhalt der QuelleMehdizadeh-Fard, Mohsen, Fathollah Pourfayaz, Mehdi Mehrpooya und Alibakhsh Kasaeian. „Improving energy efficiency in a complex natural gas refinery using combined pinch and advanced exergy analyses“. Applied Thermal Engineering 137 (Juni 2018): 341–55. http://dx.doi.org/10.1016/j.applthermaleng.2018.03.054.
Der volle Inhalt der QuelleEl Haj Assad, Mamdouh, Yashar Aryanfar, Amirreza Javaherian, Ali Khosravi, Karim Aghaei, Siamak Hosseinzadeh, Juan Pabon und SMS Mahmoudi. „Energy, exergy, economic and exergoenvironmental analyses of transcritical CO2 cycle powered by single flash geothermal power plant“. International Journal of Low-Carbon Technologies 16, Nr. 4 (01.11.2021): 1504–18. http://dx.doi.org/10.1093/ijlct/ctab076.
Der volle Inhalt der QuelleSilva Ortiz, Maciel Filho und Posada. „Mass and Heat Integration in Ethanol Production Mills for Enhanced Process Efficiency and Exergy-Based Renewability Performance“. Processes 7, Nr. 10 (27.09.2019): 670. http://dx.doi.org/10.3390/pr7100670.
Der volle Inhalt der QuelleSenoussaoui, Noha-Lys, Raphaële Thery Hetreux und Gilles Hetreux. „Method combining exergy and pinch analysis for the optimisation of a methanol production process based on natural gas and recovered CO2“. MATEC Web of Conferences 379 (2023): 01004. http://dx.doi.org/10.1051/matecconf/202337901004.
Der volle Inhalt der QuelleHan, Bing-Chuan, Yong-Dong Chen, Gai-Ge Yu, Xiao-Hong Wu und Tao-Tao Zhou. „Completely Recuperative Supercritical CO2 Recompression Brayton/Absorption Combined Power/Cooling Cycle: Performance Assessment and Optimization“. International Journal of Photoenergy 2022 (20.05.2022): 1–22. http://dx.doi.org/10.1155/2022/3869867.
Der volle Inhalt der QuelleZhao, Ying-jie, Yu-ke Zhang, Yang Cui, Yuan-yuan Duan, Yi Huang, Guo-qiang Wei, Usama Mohamed, Li-juan Shi, Qun Yi und William Nimmo. „Pinch combined with exergy analysis for heat exchange network and techno-economic evaluation of coal chemical looping combustion power plant with CO2 capture“. Energy 238 (Januar 2022): 121720. http://dx.doi.org/10.1016/j.energy.2021.121720.
Der volle Inhalt der QuelleLebedev, Vladimir Aleksandrovich, und Ekaterina Aleksandrovn Yushkova. „Mathematical Model for Optimization of Heat Exchange Systems of a Refinery“. E3S Web of Conferences 161 (2020): 01001. http://dx.doi.org/10.1051/e3sconf/202016101001.
Der volle Inhalt der QuelleLebedev, Vladimir, und Ekaterina Yushkova. „Mathematical model for optimization of heat exchange systems“. E3S Web of Conferences 164 (2020): 02011. http://dx.doi.org/10.1051/e3sconf/202016402011.
Der volle Inhalt der QuelleLebedev, Vladimir, Ekaterina Yushkova und Ivan Churkin. „Exergy pinch analysis of a furnace in a primary oil refining unit“. E3S Web of Conferences 124 (2019): 05088. http://dx.doi.org/10.1051/e3sconf/201912405088.
Der volle Inhalt der QuelleYushkova, Ekaterina, Vladimir Lebedev, Pavel Yakovlev und Maria Akmanova. „Exergy pinch analysis structural optimization“. Energy Safety and Energy Economy 5 (November 2020): 37–41. http://dx.doi.org/10.18635/2071-2219-2020-5-37-41.
Der volle Inhalt der QuelleBou Malham, Zoughaib, Tinoco und Schuhler. „Hybrid Optimization Methodology (Exergy/Pinch) and Application on a Simple Process“. Energies 12, Nr. 17 (28.08.2019): 3324. http://dx.doi.org/10.3390/en12173324.
Der volle Inhalt der QuelleЛебедев, Владимир Александрович, und Екатерина Александровна Юшкова. „ЭКСЕРГЕТИЧЕСКИЙ ПИНЧ-АНАЛИЗ ВСЕХ ЭЛЕМЕНТОВ КОТЕЛЬНОГО АГРЕГАТА И КОТЕЛЬНОГО АГРЕГАТА В ЦЕЛОМ“. Izvestiya Tomskogo Politekhnicheskogo Universiteta Inziniring Georesursov 331, Nr. 8 (24.08.2020): 92–98. http://dx.doi.org/10.18799/24131830/2020/8/2771.
Der volle Inhalt der QuelleSorin, M., und J. Paris. „Integrated exergy load distribution method and pinch analysis“. Computers & Chemical Engineering 23, Nr. 4-5 (Mai 1999): 497–507. http://dx.doi.org/10.1016/s0098-1354(98)00288-9.
Der volle Inhalt der QuelleFeng, X., und X. X. Zhu. „Combining pinch and exergy analysis for process modifications“. Applied Thermal Engineering 17, Nr. 3 (März 1997): 249–61. http://dx.doi.org/10.1016/s1359-4311(96)00035-x.
Der volle Inhalt der QuelleWalmsley, Timothy Gordon, Benjamin James Lincoln, Roger Padullés und Donald John Cleland. „Advancing Industrial Process Electrification and Heat Pump Integration with New Exergy Pinch Analysis Targeting Techniques“. Energies 17, Nr. 12 (08.06.2024): 2838. http://dx.doi.org/10.3390/en17122838.
Der volle Inhalt der QuelleRadgen, Peter, und Klaus Lucas. „Energy system analysis is fertilizer complex - pinch analysis vs. Exergy analysis“. Chemical Engineering & Technology 19, Nr. 2 (April 1996): 192–95. http://dx.doi.org/10.1002/ceat.270190213.
Der volle Inhalt der QuellePaudel, Ekaraj, Ruud G. M. Van der Sman, Nieke Westerik, Ashutosh Ashutosh, Belinda P. C. Dewi und Remko M. Boom. „More efficient mushroom canning through pinch and exergy analysis“. Journal of Food Engineering 195 (Februar 2017): 105–13. http://dx.doi.org/10.1016/j.jfoodeng.2016.09.021.
Der volle Inhalt der QuelleYushkova, E. A., und V. A. Lebedev. „Exergy pinch analysis of the primary oil distillation unit“. Journal of Physics: Conference Series 1399 (Dezember 2019): 044072. http://dx.doi.org/10.1088/1742-6596/1399/4/044072.
Der volle Inhalt der QuelleGoodarzvand-Chegini, Fatemeh, und Esmaeil GhasemiKafrudi. „Application of exergy analysis to improve the heat integration efficiency in a hydrocracking process“. Energy & Environment 28, Nr. 5-6 (29.06.2017): 564–79. http://dx.doi.org/10.1177/0958305x17715767.
Der volle Inhalt der QuelleZheng, Yong. „Optimization of Chenzhuang Combined Station through Pinch Analysis“. Journal of Physics: Conference Series 2442, Nr. 1 (01.02.2023): 012036. http://dx.doi.org/10.1088/1742-6596/2442/1/012036.
Der volle Inhalt der QuelleMa, Wenjiao, Shuguang Xiang und Li Xia. „Energy-Saving Analysis of Epichlorohydrin Plant Based on Entransy“. Processes 11, Nr. 3 (20.03.2023): 954. http://dx.doi.org/10.3390/pr11030954.
Der volle Inhalt der QuelleAli, Emad, und Mohamed Hadj-Kali. „Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration“. Polish Journal of Chemical Technology 20, Nr. 1 (01.03.2018): 35–46. http://dx.doi.org/10.2478/pjct-2018-0006.
Der volle Inhalt der QuelleMoharamian, Anahita, Saeed Soltani, Faramarz Ranjbar, Mortaza Yari und Marc A. Rosen. „Thermodynamic analysis of a wall mounted gas boiler with an organic Rankine cycle and hydrogen production unit“. Energy & Environment 28, Nr. 7 (04.08.2017): 725–43. http://dx.doi.org/10.1177/0958305x17724211.
Der volle Inhalt der QuelleSun, Wenxu, und Zhan Liu. „Parametric Assessment on the Advanced Exergy Performance of a CO2 Energy Storage Based Trigeneration System“. Applied Sciences 10, Nr. 23 (24.11.2020): 8341. http://dx.doi.org/10.3390/app10238341.
Der volle Inhalt der QuelleSun, Enhui, Han Hu, Hangning Li, Chao Liu und Jinliang Xu. „How to Construct a Combined S-CO2 Cycle for Coal Fired Power Plant?“ Entropy 21, Nr. 1 (27.12.2018): 19. http://dx.doi.org/10.3390/e21010019.
Der volle Inhalt der QuelleWANG, C., C. GUANG, Z. S. ZHANG und J. GAO. „DESIGN AND OPTIMIZATION OF HEAT EXCHANGE NETWORK AND EXERGY ANALYSIS FOR METHANATION PROCESS OF COAL-GAS“. Latin American Applied Research - An international journal 49, Nr. 1 (31.01.2019): 47–54. http://dx.doi.org/10.52292/j.laar.2019.284.
Der volle Inhalt der QuelleLinnhoff, B. „Pinch Technology for the Synthesis of Optimal Heat and Power Systems“. Journal of Energy Resources Technology 111, Nr. 3 (01.09.1989): 137–47. http://dx.doi.org/10.1115/1.3231415.
Der volle Inhalt der QuelleBarari, Bamdad, Abbasian Shirazi, Mohsen Keshavarzi und Iman Rostamsowlat. „Numerical analysis and field study of time dependent exergy-energy of a gas-steam combined cycle“. Journal of the Serbian Chemical Society 77, Nr. 7 (2012): 945–57. http://dx.doi.org/10.2298/jsc110708014b.
Der volle Inhalt der QuelleAbutorabi, Hossein, und Ehsan Kianpour. „Modeling, exergy analysis and optimization of cement plant industry“. Journal of Mechanical and Energy Engineering 6, Nr. 1 (01.07.2022): 55–66. http://dx.doi.org/10.30464/jmee.2022.6.1.55.
Der volle Inhalt der QuelleFacchini, Bruno, Daniele Fiaschi und Giampaolo Manfrida. „Exergy Analysis of Combined Cycles Using Latest Generation Gas Turbines“. Journal of Engineering for Gas Turbines and Power 122, Nr. 2 (03.01.2000): 233–38. http://dx.doi.org/10.1115/1.483200.
Der volle Inhalt der QuelleBandyopadhyay, Rajarshi, Ole Frej Alkilde und Sreedevi Upadhyayula. „Applying pinch and exergy analysis for energy efficient design of diesel hydrotreating unit“. Journal of Cleaner Production 232 (September 2019): 337–49. http://dx.doi.org/10.1016/j.jclepro.2019.05.277.
Der volle Inhalt der QuelleXia, Xiao Xia, Nai Jun Zhou und Zhi Qi Wang. „Exergy Analysis of Energy Consumption for Central Air Conditioning System“. Applied Mechanics and Materials 628 (September 2014): 332–37. http://dx.doi.org/10.4028/www.scientific.net/amm.628.332.
Der volle Inhalt der QuelleGalimova, L. V., und D. Z. Bairamov. „Thermodynamic analysis of combined cycle plant operation as part of an energy-saving system based on an absorption bromide-lithium refrigerating machine“. Omsk Scientific Bulletin. Series Aviation-Rocket and Power Engineering 4, Nr. 4 (2020): 57–65. http://dx.doi.org/10.25206/2588-0373-2020-4-4-57-65.
Der volle Inhalt der Quelle