Auswahl der wissenschaftlichen Literatur zum Thema „Combined exergy and pinch analysis“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Combined exergy and pinch analysis" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Combined exergy and pinch analysis"

1

Sorin, M. „Combined Exergy and Pinch Approach to Process Analysis“. Computers & Chemical Engineering 21, Nr. 1-2 (1997): S23—S28. http://dx.doi.org/10.1016/s0098-1354(97)00020-3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sorin, M., und J. Paris. „Combined exergy and pinch approach to process analysis“. Computers & Chemical Engineering 21 (Mai 1997): S23—S28. http://dx.doi.org/10.1016/s0098-1354(97)87473-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dhole, V. R., und J. P. Zheng. „Applying Combined Pinch and Exergy Analysis to Closed-Cycle Gas Turbine System Design“. Journal of Engineering for Gas Turbines and Power 117, Nr. 1 (01.01.1995): 47–52. http://dx.doi.org/10.1115/1.2812780.

Der volle Inhalt der Quelle
Annotation:
Pinch technology has developed into a powerful tool for thermodynamic analysis of chemical processes and associated utilities, resulting in significant energy savings. Conventional pinch analysis identifies the most economical energy consumption in terms of heat loads and provides practical design guidelines to achieve this. However, in analyzing systems involving heat and power, for example, steam and gas turbines, etc., pure heat load analysis is insufficient. Exergy analysis, on the other hand, provides a tool for heat and power analysis, although at times it does not provide clear practical design guidelines. An appropriate combination of pinch and exergy analysis can provide practical methodology for the analysis of heat and power systems. The methodology has been successfully applied to refrigeration systems. This paper introduces the application of a combined pinch and exergy approach to commercial power plants with a demonstration example of a closed-cycle gas turbine (CCGT) system. Efficiency improvement of about 0.82 percent (50.2 to 51.02 percent) can be obtained by application of the new approach. More importantly, the approach can be used as an analysis and screening tool for the various design improvements and is generally applicable to any commercial power generation facility.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Riadi, Indra, Johnner Sitompul und Hyung Woo Lee. „Pinch-Exergy Approach to Enhance Sulphitation Process Efficiency in Sugar Manufacturing“. CHEESA: Chemical Engineering Research Articles 7, Nr. 1 (22.04.2024): 1. http://dx.doi.org/10.25273/cheesa.v7i1.17831.1-14.

Der volle Inhalt der Quelle
Annotation:
<p class="StyleE-JOURNALAbstrakKeywordsBold">This study aimed to enhance the thermal efficiency of the sulphitation process in the boiling house of sugar plants using a combined approach of pinch and exergy analyses. Pinch analysis is a reliable method for optimizing the design of energy recovery systems. However, the primary limitations arise from its exclusive focus on heat transfer processes. On the other hand, exergy balance provides valuable insight into the consumption of supplied exergy by individual process units, serving as a quantitative measure of inefficiency. The boiling house was evaluated and modified using pinch-exergy analysis with Sulphitation Process capacity production of 8000 TCD. The results showed a potential reduction in exergy destruction by approximately 10.25 MW. The optimization effort led to reductions of 18.18 and 14.70% in the use of hot and cold external utility, respectively.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Sharew, Shumet Sendek, Alessandro Di Pretoro, Abubeker Yimam, Stéphane Negny und Ludovic Montastruc. „Combining Exergy and Pinch Analysis for the Operating Mode Optimization of a Steam Turbine Cogeneration Plant in Wonji-Shoa, Ethiopia“. Entropy 26, Nr. 6 (27.05.2024): 453. http://dx.doi.org/10.3390/e26060453.

Der volle Inhalt der Quelle
Annotation:
In this research, the simulation of an existing 31.5 MW steam power plant, providing both electricity for the national grid and hot utility for the related sugar factory, was performed by means of ProSimPlus® v. 3.7.6. The purpose of this study is to analyze the steam turbine operating parameters by means of the exergy concept with a pinch-based technique in order to assess the overall energy performance and losses that occur in the power plant. The combined pinch and exergy analysis (CPEA) initially focuses on the depiction of the hot and cold composite curves (HCCCs) of the steam cycle to evaluate the energy and exergy requirements. Based on the minimal approach temperature difference (∆Tlm) required for effective heat transfer, the exergy loss that raises the heat demand (heat duty) for power generation can be quantitatively assessed. The exergy composite curves focus on the potential for fuel saving throughout the cycle with respect to three possible operating modes and evaluates opportunities for heat pumping in the process. Well-established tools, such as balanced exergy composite curves, are used to visualize exergy losses in each process unit and utility heat exchangers. The outcome of the combined exergy–pinch analysis reveals that energy savings of up to 83.44 MW may be realized by lowering exergy destruction in the cogeneration plant according to the operating scenario.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Yushkova, E. A., und V. A. Lebedev. „Exergy analysis of the boiler using the pinch method“. Power engineering: research, equipment, technology 21, Nr. 4 (09.12.2019): 58–65. http://dx.doi.org/10.30724/1998-9903-2019-21-4-58-65.

Der volle Inhalt der Quelle
Annotation:
This article will help to consider the problem of thermodynamic optimization of heat power equipment. Solving this issue will allow to increase the energy efficiency of thermal systems by reducing the cost of energy resources. There is a large number of methods for studying power plants, and we will combine two of them: the exergy method and the pinch method. Exergy analysis of thermal systems shows quantitative and qualitative characteristics of efficiency. The pinch method allows us to solve specific design problems to optimize the parameters of heat power facilities. The pinch analysis is based on enthalpy, which does not take into account the heat potential. We propose to conduct a pinch analysis of thermal energy sources using exergy, which can better assess the potential of heat fluxes and show the dependence of the energy of heat fluxes on the ambient temperature. The article provides an exergy analysis of a direct-flow boiler PP2650-255 GM using the pinch method. The results of our work show that in order to increase the energy efficiency of the boiler, it is possible to change the area of the heating surfaces of the economizer and air heater. Thus, exergy pinch analysis is an effective method for increasing the energy efficiency of heat power equipment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Arriola-Medellín, Alejandro, Emilio Manzanares-Papayanopoulos und César Romo-Millares. „Diagnosis and redesign of power plants using combined Pinch and Exergy Analysis“. Energy 72 (August 2014): 643–51. http://dx.doi.org/10.1016/j.energy.2014.05.090.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Hamsani, Muhammad Nurheilmi, Timothy Gordon Walmsley, Peng Yen Liew und Sharifah Rafidah Wan Alwi. „Combined Pinch and exergy numerical analysis for low temperature heat exchanger network“. Energy 153 (Juni 2018): 100–112. http://dx.doi.org/10.1016/j.energy.2018.04.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ochoa, Guillermo Valencia, Carlos Acevedo Peñaloza und Jhan Piero Rojas. „Thermoeconomic Modelling and Parametric Study of a Simple ORC for the Recovery of Waste Heat in a 2 MW Gas Engine under Different Working Fluids“. Applied Sciences 9, Nr. 21 (25.10.2019): 4526. http://dx.doi.org/10.3390/app9214526.

Der volle Inhalt der Quelle
Annotation:
This paper presents a thermo-economic analysis of a simple organic Rankine cycle (SORC) as a waste heat recovery (WHR) systems of a 2 MW stationary gas engine evaluating different working fluids. Initially, a systematic methodology was implemented to select three organic fluids according to environmental and safety criteria, as well as critical system operational conditions. Then, thermodynamic, exergy, and exergo-economic models of the system were developed under certain defined considerations, and a set of parametric studies are presented considering key variables of the system such as pump efficiency, turbine efficiency, pinch point condenser, and evaporator. The results show the influence of these variables on the combined power of the system (gas engine plus ORC), ORC exergetic efficiency, specific fuel consumption (∆BSFC), and exergo indicators such as the payback period (PBP), levelized cost of energy (LCOE), and the specific investment cost (SIC). The results revealed that heat transfer equipment had the highest exergy destruction cost rates representing 81.25% of the total system cost. On the other hand, sensitivity analyses showed that acetone presented better energetic and exergetic performance when the efficiency of the turbine, evaporator, and condenser pinch point was increased. However, toluene was the fluid with the best results when pump efficiency was increased. In terms of the cost of exergy destroyed by equipment, the results revealed that acetone was the working fluid that positively impacted cost reduction when pump efficiency was improved; and toluene, when turbine efficiency was increased. Finally, the evaporator and condenser pinch point increased all the economic indicators of the system. In this sense, the working fluid with the best performance in economic terms was acetone, when the efficiency of the turbine, pinch condenser, and pinch evaporator was enhanced.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Riady, M. I., D. Santoso und M. D. Bustan. „Thermodynamics Performance Evaluation in Combined Cycle Power Plant by Using Combined Pinch and Exergy Analysis“. Journal of Physics: Conference Series 1198, Nr. 4 (April 2019): 042006. http://dx.doi.org/10.1088/1742-6596/1198/4/042006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Combined exergy and pinch analysis"

1

Zheng, J. „Combined pinch and exergy analysis for commercial power plant design“. Thesis, University of Manchester, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.532908.

Der volle Inhalt der Quelle
Annotation:
This thesis addressesth e analysisa nd design of commercial power plants by using the Combined Pinch and Exergy Approach. Current practice in design for commercial power plants heavily relies on experience and computer simulation and lacks systematic design methodologies. On the contrary, Pinch Technology allows systematic and generic approaches to chemical process design in which targets are set prior to design. These approaches can address issues related to process integration and optimisation. This thesis exploits the analogy between power plant design and chemical process design and applies the philosophy of Pinch Technology to the field of power plant design. In this thesis, the "onion" model used to represent the hierarchy of chemical process design is applied to power plant design. This model decomposes the whole design problem into three relatively simple tasks, including turbine system selection, heat exchanger network (HEN) design and fuel supply determination. Complex interactions exist between these individual components. To describe the complex interactions between the different components, a qualitative tool called the Combined Pinch and Exergy Representation (CPER) has been developed. The CPER allows engineers to visualise the overall performance of a power plant and the interactions between components. This diagram can also help engineers to screen design options. A quantitative tool, called the shaftwork targeting approach, has been developed in this thesis to evaluate each possible design option and identify the most promising one ahead of detailed simulation and designA tool called the Exergy Remaining Problem Analysis (ERPA) has been developed to guide HEN design. This allows the design to achieve the shaftwork targets. By evaluating the impact of individual matches on the remaining problem, the ERPA can determine the influence of individual matches on shaftwork generation. By detecting inappropriate matches, the ERPA can ensure that the HEN design meets the shaftwork targets. Based on the "onion" model of power plant, a systematic and generic approach to power plant design has been developed. In this approach, power plant design starts with the turbine system, then moves to the heat exchanger network and the fuel supply. This approach is entirely general which can be applied for design of different power plants. The significance of the new approach is that it enables engineers to screen possible design options with physical understanding and identify the most promising design option ahead of detailed simulation and design. This speeds up the overall design process and ensures that an optimal solution is obtained. vi
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sharew, Shumet. „Conception optimale d'une intégration d'énergie efficace, économique et durable par l'analyse d'exergie dans une usine de cogénération et le potentiel de conversion de la biomasse en biocarburant pour une deamnde d'énergie durable. Une étude de cas dans la sucreuse de Wonji-Shoa en Ethiopie“. Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP076.

Der volle Inhalt der Quelle
Annotation:
La question de l'énergie prend de plus en plus d'importance pour le secteur industriel, qui consomme beaucoup d'énergie. Pour remédier à cette difficulté, l'analyse exergétique et l'analyse exergoéconomique semblent être des techniques très efficaces puisqu'elles permettent aux opérations industrielles d'être plus efficaces tout en réduisant leur impact environnemental et en maximisant les bénéfices économiques. Dans ce contexte, l'objectif principal de l'étude présentée dans cette thèse est d'améliorer l'efficacité énergétique de la centrale de cogénération existante via différentes possibilités d'amélioration de la production d'électricité afin d'alimenter le réseau national à partir de bagasse excédentaire et ainsi de démontrer la valeur de cette approche pour l'analyse de l'efficacité énergétique des processus et des utilités. De plus, promouvoir une technologie intégrée de pointe pour la conversion des sous-produits de la canne à sucre disponibles en indicateurs énergétiques alternatifs bio fuel pour un avantage économique et pour alléger la charge environnementale a été réalisée.Cette thèse présente une méthodologie générique de la gestion énergétique des procédés thermiques couplés avec le simulateur de procédé ProSimPlus® qui est bien adaptée aux études d'efficacité énergétique dans une centrale de cogénération. Cette étude automatise entièrement l'analyse exergétique en présentant l'ensemble du bilan exergétique dans un seul logiciel, en plus d'utiliser des expressions génériques pour le travail et les flux de chaleur.Trois scénarios d'exploitation (cas I - le « réseau » et l'"usine » fonctionnant simultanément, le cas II - le réseau fonctionne et l'usine « OFF », et le cas III - le réseau « OFF » et l'usine « ON ») ont été utilisés pour examiner les analyses exergétiques et exergoéconomiques d'une installation de cogénération.En raison de l'imprévisibilité du marché de l'énergie en termes de disponibilité et de prix, le choix du mode de fonctionnement approprié pour équilibrer la faisabilité et la rentabilité des procédés chimiques est devenu un sujet important dans le domaine industriel. Le choix de la configuration d'exploitation optimale est crucial pour la stabilité d'une installation de traitement, en particulier lorsque l'alimentation du réseau n'est pas constante. Le simulateur de procédé ProSim Plus® a été utilisé pour créer un jumeau numérique de la section de cogénération à turbine à vapeur du côté des services publics de la sucrerie de Wonji-Shoa en Éthiopie, à partir de données réelles.De plus, L'analyse combinée du pincement et de l'exergie (CPEA) analyse initialement la représentation des courbes composites chaudes et froides (HCCC) du cycle de la vapeur et spécifie les besoins en énergie et en exergie. Les courbes composites d'exergie équilibrées générées sont utilisées pour visualiser les pertes d'exergie dans chaque composant des échanges thermiques de procédé et de service. Par conséquent, l'analyse combinée de l'exergie et du pincement révèle que davantage d'économies d'énergie peuvent être réalisées en réduisant la destruction de l'exergie dans la centrale de cogénération (∆Tlm).Enfin, un concept de conception prenant en compte les critères permettant d'identifier les limites supérieures théoriques de l'approche potentielle de conversion de la biomasse des sous-produits de la canne à sucre en indicateurs énergétiques a été présenté. Pour analyser le potentiel de captage du carbone de la biomasse, l'évaluation du modèle de conversion de masse stœchiométrique et des indicateurs d'efficacité énergétique a été formulée. Cela montre que la diversification multiproduit, des matières premières aux biocarburants, dans le cadre de systèmes de processus intégrés, pourrait potentiellement réduire le déficit énergétique et gérer le fardeau environnemental
The energy issue is becoming increasingly important for the industrial sector, which consumes a considerable amount of energy. In spite of the fact that the scientific community should continue to seek alternative energy sources, a short-term option would be to rely on more reasonable energy consumption. To address this difficulty, exergy and exergoeconomic analysis looks to be very effective techniques since it allows industrial operations to be more efficient while also reducing their environmental impact and maximize the economic benefits. In this context, the major objective of the study presented in this dissertation is to improve the energy efficiency of the existing cogeneration plant for further possibilities of electricity generation improvement to supply to the national grid system from surplus bagasse and also to demonstrate the value of this approach for analysis of energy efficiency of processes and utilities. Moreover, promoting advanced integrated technology for the conversion of available sugarcane byproducts (bagasse, molasses, and filter cake) to alternative energy indicators (bioethanol, alkane, and syn-gas or synthesis gases) for economic benefit and to alleviate the environmental load from the depilation of wastes especially in the downstream area.This dissertation presents a generic technique for energy balancing in thermal processes coupling with ProSimPlus® process simulator proved to be well-suited for energy efficiency studies in a cogeneration plant. This study fully automates exergy analysis by presenting the entire exergy balance within a single piece of software in addition to employing general expressions for work and heat streams. Furthermore, three operating scenarios (case I - both the “Grid” and the “Factory” operating simultaneously, Case II – the grid operates and the factory “OFF”, and Case III – the grid “OFF” and the factory “ON” scenarios) have been used to examine the exergy and exergoeconomic analyses of a cogeneration facility.Because of the unpredictability of the energy market in terms of availability and pricing, selecting the appropriate operating mode to balance feasibility and profitability of chemical processes has become a hot subject in the industrial arena. Choosing the optimal operating setup is crucial for the stability of a process plant, especially when the grid supply is not constant. The ProSim Plus® process simulator was used to create a digital twin of the steam turbine cogeneration section on the utility side of the Wonji-Shoa sugar mill in Ethiopia, using actual data. Moreover, a steam power plant was simulated in a ProSimPlus ® simulator, and operating parameters of the steam turbine were analyzed utilizing the exergy concept with a pinch-based technique. The Combined Pinch and Exergy Analysis (CPEA) initially analyses the depiction of the Hot and Cold Composite Curves (HCCCs) of the steam cycle and specifies the energy and exergy requirements. The fundamental assumption of the minimal approach temperature difference (〖∆T〗_lm) necessary for the pinch analysis is represented as a unique exergy loss that raises the heat demand (heat duty) for power generation. On the other hand, the exergy composite curves focus on the potential for fuel saving throughout the cycle having opportunities for heat pumping in the process. Finally, a conceptual design that considers the criteria to identify the upper theoretical limits of biomass conversion to enhance the potential approach to the conversion of sugarcane byproducts into energy indicators forwarded. In order to analyze the biomass carbon-capturing potential, the model assessment of stoichiometric mass conversion and energy efficiency indicators were formulated. Modeling plays up the importance of stoichiometric efficiency of biomass conversion into multi-product diversification of feedstock within integrated process schemes could have the potential to fill the energy gap and to manage environmental load
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Colpan, Can Ozgur. „Exergy Analysis Of Combined Cycle Cogeneration Systems“. Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/12605993/index.pdf.

Der volle Inhalt der Quelle
Annotation:
In this thesis, several configurations of combined cycle cogeneration systems proposed by the author and an existing system, the Bilkent Combined Cycle Cogeneration Plant, are investigated by energy, exergy and thermoeconomic analyses. In each of these configurations, varying steam demand is considered rather than fixed steam demand. Basic thermodynamic properties of the systems are determined by energy analysis utilizing main operation conditions. Exergy destructions within the system and exergy losses to environment are investigated to determine thermodynamic inefficiencies in the system and to assist in guiding future improvements in the plant. Among the different approaches for thermoeconomic analysis in literature, SPECO method is applied. Since the systems have more than one product (process steam and electrical power), systems are divided into several subsystems and cost balances are applied together with the auxiliary equations. Hence, cost of each product is calculated. Comparison of the configurations in terms of performance assessment parameters and costs per unit of exergy are also given in this thesis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Bou, Malham Christelle. „Méthodologie d’optimisation hybride (Exergie/Pinch) et application aux procédés industriels“. Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEM082.

Der volle Inhalt der Quelle
Annotation:
Dans la perspective du présent scénario énergétique, ce travail de thèse propose une méthodologie qui associe la méthode du pincement à l’analyse exergétique de manière à dépasser leurs limitations individuelles aboutissant à une conception améliorée aux deux niveaux : paramètres opératoires et topologie. Une méthodologie globale, consistant à hybrider les deux méthodes thermodynamiques dans une approche entrelacée avec des règles heuristiques et une optimisation numérique, est donc évoquée. À l'aide de nouveaux critères d'optimisation basés sur l’exergie, l'analyse exergétique est utilisée non seulement pour évaluer les pertes d’exergie mais également pour guider les améliorations potentielles des conditions de fonctionnement et de structure des procédés industriels. En plus, au lieu de considérer uniquement l’intégration de la chaleur pour satisfaire des besoins existants, la méthodologie proposée étend la méthode de pincement pour inclure d’autres formes d’exergie récupérables et exploiter de nouvelles voies de synergie via des systèmes de conversion. Après avoir présenté les lignes directrices de la méthodologie proposée, l’approche est démontrée sur deux systèmes industriels, un procédé d’hydrotraitement de gasoil sous vide et un procédé de liquéfaction de gaz naturel. L’application du cadre méthodologique à des processus réalistes a montré comment ajuster les conditions opératoires de chaque procédé et comment mettre en œuvre des systèmes de conversion générant des économies d’énergie substantielles
In the perspective of the prevailing and alarming energy scene, this doctoral work puts forward a methodology that couples pinch and exergy analysis in a way to surpass their individual limitations in the aim of generating optimal operating conditions and topology for industrial processes. A global methodology, a hybrid of the two thermodynamic methods in an intertwined approach with heuristic rules and numerical optimization, is therefore evoked. Using new optimizing exergy-based criteria, exergy analysis is used not only to assess the exergy losses but also to guide the potential improvements in industrial processes structure and operating conditions. And while pinch analysis considers only heat integration to satisfy existent needs, the proposed methodology allows including other forms of recoverable exergy and explores new synergy pathways through conversion systems. After exhibiting the guidelines of the proposed methodology, the entire approach is demonstrated on two industrial systems, a vacuum gasoil hydrotreating process and a natural gas liquefaction process. The application of the methodological framework on realistic processes demonstrated how to adjust each process operating conditions and how to implement conversion systems ensuing substantial energy savings
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Misevičiūtė, Violeta. „Evaluation of possibilities for processes integration in ventilation equipment“. Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120206_165420-50396.

Der volle Inhalt der Quelle
Annotation:
The dissertation investigates the issues of efficient energy use in building engineering systems possibilities by applying processes integration. Indoor climate formation systems are indicated as signally energy use building engineering systems. Traditional methods for evaluation of heat transfer in heat exchangers tender limited solutions for efficiency use of energy in them. The main object of dissertation is to evaluate processes integration method application possibilities for determination and improving of public buildings engineering systems. The dissertation also focuses on combine the possibilities of processes integration in building engineering systems with minimizing exergy streams in the systems. The paper approaches a few major tasks: determination of problematic building engineering systems, equipment and processes by viewpoint of energy efficiency, analysis of ventilation design solutions, creation of algorithm for exergy input minimizing in building engineering systems processes by combination of thermodynamical and Pinch analysis methods. The dissertation consists of four parts including Introduction, 4 chapters, Conclusions and References. The introduction reveals the investigated problem, importance of the thesis and the object of research and describes the purpose and tasks of the paper, research methodology, scientific novelty, the practical significance of results examined in the paper and defended statements. The introduction ends in presenting the... [to full text]
Disertacijoje nagrinėjamos procesų integracijos metodo taikymo galimybės sprendžiant efektyvaus energijos vartojimo pastatų inžinerinėse sistemose problemas. Tarp pastato inžinerinių sistemų darbe išskiriamos ženkliau energiją naudojančios, mikroklimatą pastatuose formuojančios sistemos. Klasikiniai tyrimo metodai, skirti šilumos mainams šilumokaičiuose, kurie atlieka šilumos perdavimo funkciją, nagrinėti pateikia gana ribotus sprendinius, kaip efektyviai naudoti energiją juose. Pagrindinis disertacijos tikslas – įvertinti procesų integravimo metodo taikymo galimybes viešųjų pastatų inžinerinių sistemų termodinaminiam efektyvumui nustatyti ir gerinti. Disertacijoje taip pat siekiama derinti procesų integracijos galimybes inžinerinėse sistemose siekiant minimizuoti eksergijos srautus jose. Darbe sprendžiami keli pagrindiniai uždaviniai: probleminių, energinio efektyvumo požiūriu, pastato inžinerinių sistemų, įrenginių ir procesų jose nustatymas, vėdinimo sistemų projektinių sprendimų ypatybių nustatymas, algoritmo, skirto procesų eksergijos sąnaudoms mažinti pastato inžinerinėse sistemose sudarymas derinant termodinaminės ir Pinch analizės metodus. Disertaciją sudaro įvadas, keturi skyriai, rezultatų apibendrinimas, naudotos literatūros ir autorės publikacijų disertacijos tema sąrašai. Įvadiniame skyriuje aptariama tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas... [toliau žr. visą tekstą]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Misevičiūtė, Violeta. „Procesų integravimo vėdinimo įrenginiuose galimybių vertinimas“. Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120206_165431-00116.

Der volle Inhalt der Quelle
Annotation:
Disertacijoje nagrinėjamos procesų integracijos metodo taikymo galimybės sprendžiant efektyvaus energijos vartojimo pastatų inžinerinėse sistemose problemas. Tarp pastato inžinerinių sistemų darbe išskiriamos ženkliau energiją naudojančios, mikroklimatą pastatuose formuojančios sistemos. Klasikiniai tyrimo metodai, skirti šilumos mainams šilumokaičiuose, kurie atlieka šilumos perdavimo funkciją, nagrinėti pateikia gana ribotus sprendinius, kaip efektyviai naudoti energiją juose. Pagrindinis disertacijos tikslas – įvertinti procesų integravimo metodo taikymo galimybes viešųjų pastatų inžinerinių sistemų termodinaminiam efektyvumui nustatyti ir gerinti. Disertacijoje taip pat siekiama derinti procesų integracijos galimybes inžinerinėse sistemose siekiant minimizuoti eksergijos srautus jose. Darbe sprendžiami keli pagrindiniai uždaviniai: probleminių, energinio efektyvumo požiūriu, pastato inžinerinių sistemų, įrenginių ir procesų jose nustatymas, vėdinimo sistemų projektinių sprendimų ypatybių nustatymas, algoritmo, skirto procesų eksergijos sąnaudoms mažinti pastato inžinerinėse sistemose sudarymas derinant termodinaminės ir Pinch analizės metodus. Disertaciją sudaro įvadas, keturi skyriai, rezultatų apibendrinimas, naudotos literatūros ir autorės publikacijų disertacijos tema sąrašai. Įvadiniame skyriuje aptariama tiriamoji problema, darbo aktualumas, aprašomas tyrimų objektas, formuluojamas darbo tikslas bei uždaviniai, aprašoma tyrimų metodika, darbo mokslinis naujumas... [toliau žr. visą tekstą]
The dissertation investigates the issues of efficient energy use in building engineering systems possibilities by applying processes integration. Indoor climate formation systems are indicated as signally energy use building engineering systems. Traditional methods for evaluation of heat transfer in heat exchangers tender limited solutions for efficiency use of energy in them. The main object of dissertation is to evaluate processes integration method application possibilities for determination and improving of public buildings engineering systems. The dissertation also focuses on combine the possibilities of processes integration in building engineering systems with minimizing exergy streams in the systems. The paper approaches a few major tasks: determination of problematic building engineering systems, equipment and processes by viewpoint of energy efficiency, analysis of ventilation design solutions, creation of algorithm for exergy input minimizing in building engineering systems processes by combination of thermodynamical and Pinch analysis methods. The dissertation consists of four parts including Introduction, 4 chapters, Conclusions and References. The introduction reveals the investigated problem, importance of the thesis and the object of research and describes the purpose and tasks of the paper, research methodology, scientific novelty, the practical significance of results examined in the paper and defended statements. The introduction ends in presenting the... [to full text]
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gourmelon, Stéphane. „Méthodologie d'analyse et de rétro-conception pour l'amélioration énergétique des procédés industriels“. Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/14492/1/Gourmelon.pdf.

Der volle Inhalt der Quelle
Annotation:
A la veille d’une nouvelle conférence sur le climat, les questions environnementales demeurent plus que jamais au premier plan de la vie publique. La lutte contre le réchauffement climatique, et les émissions de gaz à effet de serre, dont l’attribution à l’activité humaine fait globalement l’objet d’un consensus scientifique, constituent l’un des plus grands défis de l’humanité pour les prochaines années. Dans ce contexte, l’amélioration de l’efficacité énergétique des sites de production est une des préoccupations des industriels. Les réglementations environnementales, et les fluctuations des cours de l’énergie les forcent à continuellement améliorer leurs procédés pour en maintenir la compétitivité. Ceux-ci doivent ainsi pouvoir disposer d’outils leur permettant d’effectuer des diagnostics énergétiques sur les installations, leur facilitant la prise de décision et leur permettant d’élaborer des solutions d’efficacité énergétique sur leurs sites industriels. Les travaux présentés dans ce document visent à introduire une méthodologie d’analyse et de rétro-conception pour l’amélioration énergétique des procédés industriels. Cette méthodologie, qui s’appuie sur une utilisation combinée de la méthode du pincement et de l’analyse exergétique, se décompose en trois grandes étapes : la première comprend le recueil des données, la modélisation et la simulation du procédé. La deuxième étape, dédiée à l’analyse du procédé, est elle-même divisée en deux phases. La première, qui s’appuie pour l’essentiel sur l’utilisation de la méthodologie du pincement, s’intéresse uniquement à l’analyse du système de fourniture et de récupération de l’énergie thermique. Si cela s’avère nécessaire, le procédé complet est étudié dans une deuxième phase. L’analyse pincement se limitant à l’étude des procédés thermiques, une méthodologie d’analyse exergétique est mise en œuvre. Cette méthodologie s’appuie sur l’implémentation de l’analyse exergétique dans l’environnement ProSimPlus, entreprise par Ali Ghannadzadeh, et poursuivie pendant cette thèse. Les formules d'exergie ont été affinées pour s’ajuster aux différents modèles thermodynamiques. L’approche d’analyse proposée dans ce manuscrit est basée sur l’utilisation d’une nouvelle représentation graphique des bilans exergétiques : le ternaire exergétique. Ce dernier permet d’illustrer tous les aspects des bilans exergétiques et ainsi d'assister l’ingénieur dans l’analyse du procédé. La troisième étape s’intéresse à la conception pour l’amélioration énergétique. Alors que l’analyse du pincement propose des solutions d’amélioration, l’analyse exergétique ne le permet pas. Elle nécessite l’apport d’une certaine expertise pour aboutir au développement de solutions d’améliorations. Pour pallier ce problème, l’expertise est en partie capitalisée dans un système de raisonnement à partir de cas. Ce système permet de proposer des solutions à des problèmes nouveaux en analysant les similarités avec des problèmes anciens. Cet outil se révèle utile pour définir des solutions locales d’améliorations énergétiques. L’analyse du pincement associée à des outils numériques est ensuite utilisée pour concevoir des propositions complètes d’améliorations. La seconde partie de ce manuscrit présente cette étape.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Thibault, Fabien. „Méthode d’optimisation de procédés hybride associant une analyse thermodynamique et des méthodes algorithmiques“. Thesis, Paris, ENMP, 2014. http://www.theses.fr/2014ENMP0088.

Der volle Inhalt der Quelle
Annotation:
La méthode du Pincement a été développée et utilisée dans le secteur de la pétrochimie. Le nombre de flux y est important et la consommation énergétique est un critère décisionnel fort. D'autres secteurs énergivores tels la métallurgie, la production de papier et de pâte à papier ou l'industrie agroalimentaire peuvent bénéficier de cette approche structurée. Par ailleurs, l'intégration d'utilités thermodynamiques complexes comme les pompes à chaleur ou les unités de cogénération peut réduire significativement la consommation d'énergie d'un procédé, sans avoir à en modifier la technologie.Un algorithme de conception d'un réseau d'échangeurs à partir de flux thermiques à été choisi dans la littérature, puis deux fonctionnalités lui ont été ajoutées : la différenciation des technologies d'échangeur et la prise en compte de flux "disponibilités" à température de sortie variable. Un module de présélection a été développé pour proposer et dimensionner des utilités thermodynamiques à partir de la grande courbe composite et d'un critère exergétique. Il est utilisé en amont de la conception du réseau d'échangeurs.Ces deux algorithmes ont été intégrés dans un logiciel dédié à l'intégration énergétique de procédés à partir des flux thermiques des opérations unitaires. Plusieurs validations ont été faites sur des cas théoriques de référence issus de la littérature ainsi que sur des cas industriels réels nécessitant la modélisation des procédés. L'enchainement des deux algorithmes débouche sur l'obtention de résultats concrets et technologiquement réalistes. L'amélioration apportée par les solutions est calculable à chaque étape
The pinch analysis has been developed and exploited in the petrochemical sector. There are numerous heat fluxes and energy consumption is a strong decision criterion. Other energy-intensive sectors such as metallurgy, pulp and paper and food & drink industry can benefit from this systemic approach. Moreover, integration of complex thermodynamic utilities such heat pumps or Combined Heat and Power units can significantly reduce the energy consumption of a process, without having to interfere with the process technology.An algorithm for heat exchangers network design from heat fluxes was chosen in the literature and two features were added to it: Ability to pick different heat exchanger technology and creation of "availabilities" heat fluxes whose outlet temperature is variable. Preselection tool has been developed from grand composite curve and exergetic criterion to propose and pre-size thermodynamics utilities. It is used upstream of the heat exchangers network design step.These two algorithms have been integrated into a software for energy integration of process unit operations heat fluxes. Several validations were made on study cases from the literature as well as on industrial cases which require process modelling. The both algorithms sequence allows achieving practical and technologically feasible results. Improvement on energy consumption provided by the solutions can be calculated at each step
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

WONGCHANAPAI, Suranat. „Development of Direct Internal Reforming Solid Oxide Fuel Cell Model and its Applications for Biomass Power Generation“. 京都大学 (Kyoto University), 2013. http://hdl.handle.net/2433/174926.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Attonaty, Kévin. „Stockage d'électricité associant un cycle thermodynamique à haut rendement avec un stockage thermique à haute température“. Thesis, Pau, 2018. http://www.theses.fr/2018PAUU3014/document.

Der volle Inhalt der Quelle
Annotation:
Cette étude concerne un système de stockage d’électricité basé sur le stockage thermique. Le principe est de convertir de l’électricité issue d’énergies renouvelables en chaleur lorsque la production est supérieure à la demande, de conserver cette chaleur puis de la reconvertir en électricité lorsqu’un besoin se présente. Le système proposé s’appuie sur une technologie de stockage sensible à haute température : le stockage régénératif gaz/solide. Ce stockage est associé à une boucle de charge et à un cycle thermodynamique de restitution électrique. Dans cette étude, deux architectures sont étudiées pour ce dernier : la première est basée sur un cycle gaz, la seconde sur un cycle combiné Joule/Rankine. Un modèle global du système est développé sur la base d’une modélisation de chaque composant à un niveau de détail approprié. Sur la base de ce modèle, une analyse thermodynamique est menée. Celle-ci identifie le rendement exergétique global du procédé, proche de celui d’un cycle à combustion. Une analyse exergétique détaillée du stockage identifie les principaux postes d’irréversibilités dans ce composant. Elle montre qu’il est possible d’optimiser de manière relativement simple ses performances en jouant sur son dimensionnement. Par la suite, une analyse économique montre qu’en dépit de ses performances inférieures, le cycle gaz est associé à des coûts d’investissement limités qui rendent son utilisation pertinente. En termes de coût du stockage, le système étudié est compétitif avec des solutions comme les batteries
This study concerns an electricity storage system based on thermal energy storage. Its overall purpose is to convert electricity produced by renewable energies into heat when the supply exceeds the demand. This heat is stored for a few hours and converted back to electricity when there is a need for it. The proposed system relies on a high temperature sensible thermal energy storage technology known as the gas/solid packed bed thermal storage. This storage comes with a charging loop and a thermodynamic cycle to carry out the heat to electricity conversion. In this study, two main architectures are considered for this cycle: a simple gas cycle and a Joule/Rankine combined cycle. Each component is modeled with an appropriate level of detail in order to create a global model of the system. This model is used to carry out a thermodynamic analysis. This study calculates the global exergy efficiency of the whole process, which is close to exergy efficiency of a combustion cycle. A detailed exergy analysis of the storage allows to identify the main phenomena behind the availability losses of this component. It shows that it is possible to increase the efficiency of the storage by modifying its sizing. Apart from this study, an economic analysis shows that regardless of its low energy and exergy efficiencies, the gas cycle comes with limited investment costs which insure an interesting profitability. In terms of storage cost, the proposed system is close to other electricity storage solutions like batteries
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Combined exergy and pinch analysis"

1

Zheng, J. Combined pinch and exergy analysis for commercial power plant design. Manchester: UMIST, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pilz, S. A. H. Optimisation of advanced gas-turbine-based cycles for power generation, using pinch technology and exergy analysis. Manchester: UMIST, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Combined exergy and pinch analysis"

1

de Oliveira, Silvio. „Exergy Analysis and Parametric Improvement of the Combined Production of Sugar, Ethanol, and Electricity“. In Exergy, 185–214. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4165-5_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Jain, Vaibhav, Ashu Singhal und Harsh Joshi. „Exergy Analysis of Novel Combined Absorption Refrigeration System“. In Lecture Notes in Mechanical Engineering, 47–59. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5463-6_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Guo, Mengmeng, Yaowen Chen, Yanfeng Liu und Mengchen Quan. „Energy and Exergy Analysis of Centralized Solar and Biogas Combined Heating System“. In Proceedings of the 5th International Conference on Building Energy and Environment, 1129–38. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9822-5_119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Anjum, Aftab, Radhe Shyam Mishra und Samsher. „Energy and Exergy Analysis of Combined Ejector Refrigeration Cycle Using Eco-Friendly Refrigerants“. In Lecture Notes in Mechanical Engineering, 131–42. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-7709-1_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Khani, L., S. M. S. Mahmoudi und A. Chitsaz. „Energy and Exergy Analysis of a Novel Combined Power/Cooling Production Cycle Based on Solid Oxide Fuel Cell“. In Exergy for A Better Environment and Improved Sustainability 1, 1293–309. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-62572-0_83.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ghata, Debanjan, Anirban Majumder, Mirza Adnan Beig, Madasu Anjali und Bijan Kumar Mandal. „Thermodynamic Analysis of a Combined Vapor Compression Refrigeration Cycle and Organic Rankine Cycle via a Sharing Heat Exchanger“. In Energy and Exergy for Sustainable and Clean Environment, Volume 2, 497–508. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8274-2_33.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Khankari, Goutam, und Sujit Karmakar. „4-E Analysis and Optimization of a 660 MW Supercritical Combined Rankine-Kalina Cycle Coal-Fired Thermal Power Plant for Condenser Waste Heat Recovery“. In The Role of Exergy in Energy and the Environment, 245–66. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89845-2_18.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yohana, Eflita, Farel Akbar Aulia, Rafi Aldiansyah, Mohamad Endy Yulianto, M. Farkhan H. Dwinanda und Indah Hartati. „In-Situ Exergy Efficiency Analysis of Steam Turbine in Combined Cycle Power Plant Pt. X Using Cycle-Tempo Simulation Result as Validation“. In Lecture Notes in Mechanical Engineering, 231–37. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0106-3_39.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zoughaib, Assaad. „Energy Integration of Continuous Processes: From Pinch Analysis to Hybrid Exergy/Pinch Analysis“. In From Pinch Methodology to Energy Integration of Flexible Systems, 1–53. Elsevier, 2017. http://dx.doi.org/10.1016/b978-1-78548-194-9.50001-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gourmelon, Stéphane, Raphaële Hetreux, Pascal Floquet, Philippe Baudet und Olivier Baudouin. „Premises for a combined Exergy and Pinch Optimization within ProSimPlus® simulator“. In Computer Aided Chemical Engineering, 1507–12. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-444-63455-9.50086-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Combined exergy and pinch analysis"

1

Khoshgoftar Manesh, Mohammad Hasan, Majid Amidpour und Hasan Khodaei Jalal Abadi. „Comparison of Combined Cycle and Conventional Steam Power Plant Through Energy Level and Thermoeconomic Analysis“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66640.

Der volle Inhalt der Quelle
Annotation:
Exergy, exergoeconomic and combined pinch and exergy analysis are beneficial methods that can be applied for design or performance evaluation of process systems or thermal power plants; however, these methods are usually applied individually. In this paper, these methods have been applied for 423 MW NEKA combined cycle power plant located in NEKA at north of Iran and 315-MW RAMIN steam power plant located in Ahvaz at south of Iran as real cases to evaluation and comparison of performance of each component in different load conditions simultaneously. To perform these analysis for both plants, a computer program is developed from thermodynamic modeling of the plant as simulator. With the thermodynamic properties of the most significant mass and energy flow stream being obtained from the plant, the simulator can reproduce the cycle behavior for different operating conditions with relative errors less than 4.2%. The models of computer program are refined using data from designed performance test in these plants. After thermodynamic simulation, this program can calculate exergy of the flows. In addition, it can perform exergoeconomic analysis using thermoeconomic model of both plants that are defined based on the functionally of each component by the fuel-product definition. The costs of all flows in production structure can be calculated by solving a set equation including thermoeconomic modeling of each plant. Furthermore, it is helpful to display the system information graphically for one to visualize the performance of system in different conditions by applying combined pinch-exergy analysis. Meanwhile, due to importance of exergy destruction cost and better understanding plant performance, the new variables have been defined as Exergy Destruction Level (EDL) and Exergy Cost Destruction Level (ECDL). In this respect, new graphical representation has been developed for showing performance of each component based on exergoeconomic analysis. In this regard, this computer program can generate improved combined pinch-exergy and EDL/ ECDL representation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

McIlvried, Howard G., Massood Ramezan, Robert M. Enick und Srikanth Venkatasubramanian. „Exergy and Pinch Analysis of an Advanced Ammonia-Water Coal-Fired Power Cycle“. In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0844.

Der volle Inhalt der Quelle
Annotation:
Abstract An exergy analysis of a power system identifies the location, type, and magnitude of losses of the potential to do work, while a pinch analysis examines a heat exchange network efficiency. A complete exergetic analysis of Kalina cycle System 19, an advanced binary fluid (ammonia-water working fluid) power cycle, is presented along with a combined pinch/exergy analysis of the Kalina cycle heat exchanger/furnace/cooling utility network. The Kalina cycle System 19 has a net thermal efficiency (net work/furnace duty) of 43% (HHV), a furnace exergetic efficiency of 77.4%, and an exergetic plant efficiency (net work/exergy of flue gas) of 61.6%. Most of the exergy losses (21.5%) occur in the furnace; 9.6% of the exergy is lost in pumps, turbines, throttles, mixers, and the stack gas; and 7.3% of the exergy loss occurs in heat exchanger/cooling utility network. The System 19 total exergy loss in all heat exchange equipment is only 7.2% greater than its minimum value. Thus, the analysis indicates that the Kalina cycle System 19 is efficiently designed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Khoshgoftar Manesh, Mohammad Hasan, und Majid Amidpour. „Analysis of Pressurized Water Reactor With Pinch, Exergy and Thermoeconomic Methods“. In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48429.

Der volle Inhalt der Quelle
Annotation:
Exergetic, pinch and thermoeconomic analyses were performed for a 1000 MW PWR power plant similar to BUSHEHR power plant. In these analyses, mass and energy conservation laws were applied to each component of the system. Quantitative balances of the exergy and exergetic cost for each component, and for the whole system was carefully considered. The exergoeconomic model, which represented the productive structure of the system considered, was used to visualize the cost formation process and the productive interaction between components. Simulation of power plant is performed in STEAM PRO 13.0. The computer program developed in this study can determine the production costs of each component of PWR power plant such as electricity production in steam turbines. In addition, this code can provide combined exergy and pinch representation for each component of system. This graphical representation helps us to show energy integration in the nuclear power plant. The code can be also be used to study plant characteristics, namely, thermodynamic performance and sensitivity to changes in process and/or component design variables.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sefidi, Adel, und Ardeshir Arash. „Optimization of Steam Extractions Mass Flowrate in Advanced Steam Power Plant With Using Combined Pinch and Exergy Analysis (CPEA)“. In ASME 2006 Power Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/power2006-88069.

Der volle Inhalt der Quelle
Annotation:
Pinch technology has developed for thermodynamic analysis of chemical processes. This technology targets the most possible modification prior to detailed design. Pinch technology it is not sufficient in analyzing systems involving beat and power such as power plants. Exergy analysis, on the other hand, provides a powerful tool for heat and power analysis, although at times it does not provide clear practical design guideline. To prevailing over the weaknesses of both analysis, in obtaining a practical design guideline for the analysis of heat and power systems, combined pinch and exergy analysis (CPEA) is developed. This paper introduces the application of CPEA to advanced steam power plant. The paper presents a new methodology in optimization of steam extractions mass flowrate from multiple pressure levels of steam turbine with using CPEA. Efficiency improvement about 0.34% can be obtained by application of new approach and likewise, hot and cold utilities of cycle can be decreased.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Khoshgoftar Manesh, Mohammad Hasan, Majid Amidpour, Ali Farhadi und Gholam Reza Salehi. „Evaluation of Coupling Desalination With PWR Nuclear Power Plant With Pinch, Exergy and Thermoeconomic Analysis“. In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48441.

Der volle Inhalt der Quelle
Annotation:
Exergy concept combined with pinch based approach is used for studying the optimal integration of energy conversion systems. The analysis first considers the representation of the hot and cold composite curves of the process and defines the energy and the exergy requirements. Strength of pinch analysis is that system information can be represented using simple diagrams and thus targets for the system under consideration can be readily obtained prior to design. In contrast, the power of exergy analysis is that it can identify the major causes of thermodynamic imperfection of thermal and chemical processes and thus promising modifications can be determined effectively. By combining the strengths of both methods, the proposed method can represent a whole system, including individual units on one diagram, which helps to screen the promising modifications quickly for improving a base case design. This method is Energy Level Analysis. We have developed energy level analysis to energy destruction level as a strategy for energy integration that uses power plant simulation tools to define the interaction between the various subsystems in the plant and a graphical technique to help the engineer interpret the results of the simulation with physical insights that point towards exploring possible integration schemes to increase energy efficiency. In this paper, 1000 MW PWR nuclear steam power plant is considered. Simulation of power plant is performed in STEAM PRO software. Computer code is developed to exergy calculation and generation of exergy destruction level representation. In addition, thermoeconomic analysis is performed to generation of other new graphical representation related to exergy destruction that helps us to consider cost rate of destruction in each component.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Khoshgoftar Manesh, Mohammad Hasan, Majid Amidpour und Mohammad Hosein Hamedi. „Multi-Objective Thermoeconomic Optimization of Coupling MSF Desalination With PWR Nuclear Power Plant“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66635.

Der volle Inhalt der Quelle
Annotation:
Thermodynamic simulation programs are widely used for designing complex thermal systems but most of them don’t incorporate second law optimization techniques. In this study, an efficient optimization strategy is presented, which integrates a well-known Evolutionary Algorithms optimization technique with a professional power plant and cogeneration simulator, so as perform exergoeconomic optimization of complex thermal systems and generating combined pinch and exergy representations. This paper deals with the application of an evolutionary algorithm to multi-objective thermoeconomic optimization of coupling desalination plant with pressurized water reactor. The thermodynamic simulation of this plant has been performed in THERMOFLEX simulator. An Excel Add-in called THERMOFLEX Link has been developed to calculate the exergy of each stream from a THERMOFLEX simulation results. In addition, computer code has been developed for thermoeconomic and improved combined pinch-exergy analysis in MATLAB environment. Both design configuration and the process variables are optimized simultaneously. The optimization algorithm can choose among several design options included in a superstructure of the feed water heaters and MSF desalination in dual purpose plant. For the assumptions and simplifications made in this study, a 3000 MWth PWR power plant similar to Bushehr power plant has been considered.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sanaye, Sepehr, Omid Hamidkhani, Mostafa Shabanian, Rohollah Espanani und Abdolreza Hoshyar. „Thermoeconomic Optimization of Heat Recovery Steam Generators“. In ASME Turbo Expo 2007: Power for Land, Sea, and Air. ASMEDC, 2007. http://dx.doi.org/10.1115/gt2007-28297.

Der volle Inhalt der Quelle
Annotation:
The combined cycle power plant (CCPP) is one of the efficient power producing technologies which includes both Brayton (topping) and Rankine (bottoming) cycles. The optimal design of heat recovery steam generator (HRSG) as an important part of a CCPP is a subject of interest. In this paper a thermoeconomic analysis has been applied to optimally design HRSGs in a combined cycle power plant. Two arrangements of heating elements are studied here. The method consists of both developing a simulation program and applying the Genetic Algorithm optimization scheme. The total cost per unit produced steam exergy was introduced as the objective function which included, capital or investment cost, operational cost, and the corresponding cost of the exergy destruction. The objective function per unit of produced steam exergy was minimized while satisfying a group of constraints. The decision variables (or design parameters as well as pinch point temperatures, pressure levels and, mass flow rates) are obtained. The variations of design parameters as well as the exergy efficiency and the total cost with the inlet hot gas enthalpy are shown.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Khoshgoftar Manesh, Mohammad Hasan, und Majid Amidpour. „New Graphical Methodology for Energy Integration in Nuclear Steam Power Plant“. In 16th International Conference on Nuclear Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/icone16-48432.

Der volle Inhalt der Quelle
Annotation:
Exergy concept combined with pinch based approach is used for studying the optimal integration of energy conversion systems. The analysis first considers the representation of the hot and cold composite curves of the process and defines the energy and the exergy requirements. Strength of pinch analysis is that system information can be represented using simple diagrams and thus targets for the system under consideration can be readily obtained prior to design. In contrast, the power of exergy analysis is that it can identify the major causes of thermodynamic imperfection of thermal and chemical processes and thus promising modifications can be determined effectively. By combining the strengths of both methods, the proposed method can represent a whole system, including individual units on one diagram, which helps to screen the promising modifications quickly for improving a base case design. This method is Energy Level Analysis. We have developed energy level analysis to energy destruction level as a strategy for energy integration that uses power plant simulation tools to define the interaction between the various subsystems in the plant and a graphical technique to help the engineer interpret the results of the simulation with physical insights that point towards exploring possible integration schemes to increase energy efficiency. In this paper, 1000 MW nuclear steam power plant similar to Bushehr is considered. Simulation of power plant is performed in STEAM PRO software. Computer code is developed to exergy calculation and generation of exergy destruction level representation. In addition, thermoeconomic analysis is performed to generation of other new graphical representation related to exergy destruction that helps us to consider cost rate of destruction in each component.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

LEE, CHEE HONG, und ZAINUDDIN ABD MANAN. „APPLICATION OF EXERGY AND PINCH ANALYSIS ON OLEOCHEMICAL FRACTIONATION PROCESSES“. In Proceedings of the Third Asia-Pacific Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812791924_0089.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wahyuni, Fitri, Arya D. Yunanto, Daffa Febriansyah, M. Wiweko Alfaraby, Rifat S. Diraharja, Rizky V. Ragaskha, Fayza Yulia, Reda Rizal und James Julian. „Exergy analysis on micro-turbine combined cycle“. In ETLTC2024 INTERNATIONAL CONFERENCE SERIES ON ICT, ENTERTAINMENT TECHNOLOGIES, AND INTELLIGENT INFORMATION MANAGEMENT IN EDUCATION AND INDUSTRY, 090003. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0228680.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie