Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Combinatorial representation theory“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Combinatorial representation theory" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Combinatorial representation theory"
Ibarra, Andoni, und Thomas Mormann. „Una teoría combinatoria de las representaciones científicas“. Crítica (México D. F. En línea) 32, Nr. 95 (07.01.2000): 3–46. http://dx.doi.org/10.22201/iifs.18704905e.2000.874.
Der volle Inhalt der QuelleMalinin, Dmitry. „One combinatorial construction in representation theory“. European Journal of Combinatorics 80 (August 2019): 287–95. http://dx.doi.org/10.1016/j.ejc.2018.02.007.
Der volle Inhalt der QuelleHSIEH, CHUN-CHUNG. „FIRST NON-VANISHING SELF-LINKING OF KNOTS (I) COMBINATORIC AND DIAGRAMMATIC STUDY“. Journal of Knot Theory and Its Ramifications 20, Nr. 12 (Dezember 2011): 1637–48. http://dx.doi.org/10.1142/s0218216511009510.
Der volle Inhalt der QuelleBremner, Murray R., Mikelis G. Bickis und Mohsen Soltanifar. „Cayley’s hyperdeterminant: A combinatorial approach via representation theory“. Linear Algebra and its Applications 437, Nr. 1 (Juli 2012): 94–112. http://dx.doi.org/10.1016/j.laa.2012.01.037.
Der volle Inhalt der QuelleSHAI, OFFER. „The multidisciplinary combinatorial approach (MCA) and its applications in engineering“. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15, Nr. 2 (April 2001): 109–44. http://dx.doi.org/10.1017/s0890060401152030.
Der volle Inhalt der QuelleArmenta, Marco, und Pierre-Marc Jodoin. „The Representation Theory of Neural Networks“. Mathematics 9, Nr. 24 (13.12.2021): 3216. http://dx.doi.org/10.3390/math9243216.
Der volle Inhalt der QuelleGriffeth, Stephen. „Towards a combinatorial representation theory for the rational Cherednik algebra of type G(r, p, n)“. Proceedings of the Edinburgh Mathematical Society 53, Nr. 2 (30.04.2010): 419–45. http://dx.doi.org/10.1017/s0013091508000904.
Der volle Inhalt der QuelleCapparelli, Stefano, Arne Meurman, Andrej Primc und Mirko Primc. „New partition identities from \(C^{(1)}_\ell\)-modules“. Glasnik Matematicki 57, Nr. 2 (30.12.2022): 161–84. http://dx.doi.org/10.3336/gm.57.2.01.
Der volle Inhalt der QuelleVershik, A. M., und N. V. Tsilevich. „On the relationship between combinatorial functions and representation theory“. Functional Analysis and Its Applications 51, Nr. 1 (Januar 2017): 22–31. http://dx.doi.org/10.1007/s10688-017-0165-4.
Der volle Inhalt der QuelleProctor, Robert A. „A Schensted Algorithm Which Models Tensor Representations of the Orthogonal Group“. Canadian Journal of Mathematics 42, Nr. 1 (01.02.1990): 28–49. http://dx.doi.org/10.4153/cjm-1990-002-1.
Der volle Inhalt der QuelleDissertationen zum Thema "Combinatorial representation theory"
Kreighbaum, Kevin M. „Combinatorial Problems Related to the Representation Theory of the Symmetric Group“. University of Akron / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=akron1270830566.
Der volle Inhalt der QuelleLiu, Xudong. „MODELING, LEARNING AND REASONING ABOUT PREFERENCE TREES OVER COMBINATORIAL DOMAINS“. UKnowledge, 2016. http://uknowledge.uky.edu/cs_etds/43.
Der volle Inhalt der QuelleFaitg, Matthieu. „Mapping class groups, skein algebras and combinatorial quantization“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS023/document.
Der volle Inhalt der QuelleThe algebras L(g,n,H) have been introduced by Alekseev-Grosse-Schomerus and Buffenoir-Roche in the middle of the 1990's, in the program of combinatorial quantization of the moduli space of flat G-connections over the surface S(g,n) of genus g with n open disks removed. The Hopf algebra H, called gauge algebra, was originally the quantum group U_q(g), with g = Lie(G). In this thesis we apply these algebras L(g,n,H) to low-dimensional topology (mapping class groups and skein algebras of surfaces), under the assumption that H is a finite dimensional factorizable ribbon Hopf algebra which is not necessarily semisimple, the guiding example of such a Hopf algebra being the restricted quantum group associated to sl(2) (at a 2p-th root of unity).First, we construct from L(g,n,H) a projective representation of the mapping class groups of S(g,0)D and of S(g,0) (D being an open disk). We provide formulas for the representations of Dehn twists generating the mapping class group; in particular these formulas allow us to show that our representation is equivalent to the one constructed by Lyubashenko-Majid and Lyubashenko via categorical methods. For the torus S(1,0) with the restricted quantum group associated to sl(2) for the gauge algebra, we compute explicitly the representation of SL(2,Z) using a suitable basis of the representation space and we determine the structure of this representation.Second, we introduce a diagrammatic description of L(g,n,H) which enables us to define in a very natural way the Wilson loop map W. This maps associates an element of L(g,n,H) to any link in (S(g,n)D) x [0,1] which is framed, oriented and colored by H-modules. When the gauge algebra is the restricted quantum group associated to sl(2), we use W and the representations of L(g,n,H) to construct representations of the skein algebras S_q(S(g,n)). For the torus S(1,0) we explicitly study this representation
Newhouse, Jack. „Explorations of the Aldous Order on Representations of the Symmetric Group“. Scholarship @ Claremont, 2012. https://scholarship.claremont.edu/hmc_theses/35.
Der volle Inhalt der QuelleAssunção, Guilherme Puglia. „Representações retangulares de grafos planares“. Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/45/45134/tde-07052012-164622/.
Der volle Inhalt der QuelleA rectangular representation of a plane graph G is a representation of G, where each vertex is drawn as a rectangle, such as two rectangles have to share some boundary if and only if exist an edge in G between the corresponding vertices. Also, the representation of G must form a rectangle and does not contain any holes, in other words, every point inside the formed rectangle must correspond to some vertex of G. A rectangular drawing of a plane graph H is a drawing of H, where all edges are drawn either in vertical or in horizontal. Also, every internal face is a rectangle and the edges which are incident in the external face define a rectangle. In this dissertation, we present the main studies in the literature for problems associated with the rectangular representation. We also present results for problems associated with rectangular drawing. Finally, we present the algorithm we developed to determine the coordinates of the vertices of a rectangular drawing when the orientation of the edges have been determined.
Teff, Nicholas James. „The Hessenberg Representation“. Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4919.
Der volle Inhalt der QuelleWolfgang, Harry Lewis. „Two interactions between combinatorics and representation theory : monomial immanants and Hochschild cohomology“. Thesis, Massachusetts Institute of Technology, 1997. http://hdl.handle.net/1721.1/43461.
Der volle Inhalt der QuelleMeinel, Joanna [Verfasser]. „Affine nilTemperley-Lieb algebras and generalized Weyl algebras: Combinatorics and representation theory / Joanna Meinel“. Bonn : Universitäts- und Landesbibliothek Bonn, 2016. http://d-nb.info/1122193874/34.
Der volle Inhalt der QuelleTarrago, Pierre. „Non-commutative generalization of some probabilistic results from representation theory“. Thesis, Paris Est, 2015. http://www.theses.fr/2015PESC1123/document.
Der volle Inhalt der QuelleThe subject of this thesis is the non-commutative generalization of some probabilistic results that occur in representation theory. The results of the thesis are divided into three different parts. In the first part of the thesis, we classify all unitary easy quantum groups whose intertwiner spaces are described by non-crossing partitions, and develop the Weingarten calculus on these quantum groups. As an application of the previous work, we recover the results of Diaconis and Shahshahani on the unitary group and extend those results to the free unitary group. In the second part of the thesis, we study the free wreath product. First, we study the free wreath product with the free symmetric group by giving a description of the intertwiner spaces: several probabilistic results are deduced from this description. Then, we relate the intertwiner spaces of a free wreath product with the free product of planar algebras, an object which has been defined by Bisch and Jones. This relation allows us to prove the conjecture of Banica and Bichon. In the last part of the thesis, we prove that the minimal and the Martin boundaries of a graph introduced by Gnedin and Olshanski are the same. In order to prove this, we give some precise estimates on the uniform standard filling of a large ribbon Young diagram. This yields several asymptotic results on the filling of large ribbon Young diagrams
Charles, Balthazar. „Combinatorics and computations : Cartan matrices of monoids & minimal elements of Shi arrangements“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG063.
Der volle Inhalt der QuelleThis thesis presents an investigation into two distinct combinatorial subjects: the effective computation of Cartan matrices in monoid representation theory and the exploration of properties of minimal elements in Shi arrangements of Coxeter groups. Although disparate, both of these research focuses share a commonality in the utilization of combinatorial methods and computer exploration either as an end in itself for the former or as a help to research for the latter. In the first part of the dissertation, we develop methods for the effective computation of character tables and Cartan matrices in monoid representation theory. To this end, we present an algorithm based on our results for the efficient computations of fixed points under a conjugacy-like action, with the goal to implement Thiéry's formula for the Cartan matrix from [Thiéry '12]. After a largely self-contained introduction to the necessary background, we present our results for fixed-point counting, as well as a new formula for the character table of finite monoids. We evaluate the performance of the resulting algorithms in terms of execution time and memory usage and find that they are more efficient than algorithms not specialized for monoids by orders of magnitude. We hope that the resulting (public) implementation will contribute to the monoid representation community by allowing previously impractical computations. The second part of the thesis focuses on the properties of minimal elements in Shi arrangements. The Shi arrangements were introduced in [Shi '87] and are the object of Conjecture 2 from [Dyer, Hohlweg '14]. Originally motivated by this conjecture, we present two results. Firstly, a direct proof in the case of rank 3 groups. Secondly, in the special case of Weyl groups, we give a description of the minimal elements of the Shi regions by extending a bijection from [Athanasiadis, Linusson '99] and [Armstrong, Reiner, Rhoades '15] between parking functions and Shi regions. This allows for the effective computation of the minimal elements. From the properties of this computation, we provide a type-free proof of the conjecture in Weyl groups as an application. These results reveal an intriguing interplay between the non-nesting and non-crossing worlds in the case of classical Weyl groups
Bücher zum Thema "Combinatorial representation theory"
Kang, Seok-Jin, und Kyu-Hwan Lee, Hrsg. Combinatorial and Geometric Representation Theory. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/conm/325.
Der volle Inhalt der QuelleKazuhiko, Koike, und Nihon Sūgakkai, Hrsg. Combinatorial methods in representation theory. Tokyo: Published for the Mathematical Society of Japan by Kinokuniya, 2000.
Den vollen Inhalt der Quelle findenJapan) Conference "Expansion of Combinatorial Representation Theory" (2007 Kyoto. New trends in combinatorial representation theory. Kyoto: Research Institute for Mathematical Sciences, Kyoto University, 2009.
Den vollen Inhalt der Quelle findenConference "Combinatorial Representation Theory and Related Topics" (2006 Kyoto, Japan). Combinatorial representation theory and related topics. Kyoto: Research Institute for Mathematical Sciences, Kyoto University, 2008.
Den vollen Inhalt der Quelle findenKyōto Daigaku. Sūri Kaiseki Kenkyūjo. Kenkyū Shūkai. Topics in combinatorial representation theory: October 11-14, 2011. Kyoto, Japan: Kyōto Daigaku Sūri Kaiseki Kenkyūjo, 2012.
Den vollen Inhalt der Quelle findenA, Kaimanovich Vadim, und Lodkin A. 1945-, Hrsg. Representation theory, dynamical systems, and asymptotic combinatorics. Providence, R.I: American Mathematical Society, 2006.
Den vollen Inhalt der Quelle findenSeok-Jin, Kang, und Lee Kyu-Hwan 1970-, Hrsg. Combinatorial and geometric representation theory: An international conference on combinatorial and geometric representation theory, October 22-26, 2001, Seoul National University, Seoul, Korea. Providence, R.I: American Mathematical Society, 2003.
Den vollen Inhalt der Quelle findenChari, Vyjayanthi, Jacob Greenstein, Kailash Misra, K. Raghavan und Sankaran Viswanath, Hrsg. Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory. Providence, Rhode Island: American Mathematical Society, 2013. http://dx.doi.org/10.1090/conm/602.
Der volle Inhalt der QuelleIndia) International Congress of Mathematicians Satellite Conference on Algebraic and Combinatorial Approaches to Representation Theory (2010 Bangalore. Recent developments in algebraic and combinatorial aspects of representation theory: International Congress of Mathematicians Satellite Conference on Algebraic and Combinatorial Approaches to Representation Theory, August 12-16, 2010, National Institute of Advanced Studies, Bangalore, India : Conference on Algebraic and Combinatorial Approaches to Representation Theory, May 18-20, 2012, University of California, Riverside, CA. Herausgegeben von Chari, Vyjayanthi, editor of compilation und Conference on Algebraic and Combinatorial Approaches to Representation Theory (2012 : Riverside, Calif.). Providence, Rhode Island: American Mathematical Society, 2013.
Den vollen Inhalt der Quelle finden1959-, Ariki Susumu, Hrsg. Algebraic groups and quantum groups: International Conference on Representation Theory of Algebraic Groups and Quantum Groups, August 2-6, 2010, Nagoya University, Nagoya, Japan. Providence, R.I: American Mathematical Society, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Combinatorial representation theory"
Barot, Michael. „Combinatorial Invariants“. In Introduction to the Representation Theory of Algebras, 129–45. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11475-0_8.
Der volle Inhalt der QuelleKang, Seok-Jin. „Combinatorial Representation Theory and Crystal Bases“. In Proceedings of the Third International Algebra Conference, 39–51. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0337-6_4.
Der volle Inhalt der QuelleBrenner, Sheila. „A combinatorial characterisation of finite Auslander-Reiten quivers“. In Representation Theory I Finite Dimensional Algebras, 13–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0075256.
Der volle Inhalt der QuelleBaumslag, Gilbert. „Affine algebraic sets and the representation theory of finitely generated groups“. In Topics in Combinatorial Group Theory, 75–102. Basel: Birkhäuser Basel, 1993. http://dx.doi.org/10.1007/978-3-0348-8587-4_5.
Der volle Inhalt der QuelleLenart, Cristian. „Combinatorial representation theory of Lie algebras. Richard Stanley’s work and the way it was continued“. In The Mathematical Legacy of Richard P. Stanley, 263–77. Providence, Rhode Island: American Mathematical Society, 2016. http://dx.doi.org/10.1090//mbk/100/15.
Der volle Inhalt der QuelleChen, Yu-Fang, Philipp Rümmer und Wei-Lun Tsai. „A Theory of Cartesian Arrays (with Applications in Quantum Circuit Verification)“. In Automated Deduction – CADE 29, 170–89. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-38499-8_10.
Der volle Inhalt der QuelleRota, Gian-Carlo. „Combinatorics, Representation Theory and Invariant Theory“. In Indiscrete Thoughts, 39–54. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-0-8176-4781-0_3.
Der volle Inhalt der QuellePalmér, Hanna, und Jorryt van Bommel. „Young Students’ Choice of Representation When Solving a Problem-Solving Task on Combinatorics“. In Teaching Mathematics as to be Meaningful – Foregrounding Play and Children’s Perspectives, 119–29. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-37663-4_9.
Der volle Inhalt der QuelleMéliot, Pierre-Loïc. „Combinatorics of partitions and tableaux“. In Representation Theory of Symmetric Groups, 99–145. Boca Raton : CRC Press, 2017.: Chapman and Hall/CRC, 2017. http://dx.doi.org/10.1201/9781315371016-4.
Der volle Inhalt der QuelleSchnabel, R. „Representation of Graphs by Integers“. In Topics in Combinatorics and Graph Theory, 635–40. Heidelberg: Physica-Verlag HD, 1990. http://dx.doi.org/10.1007/978-3-642-46908-4_73.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Combinatorial representation theory"
Wu, Kaisheng, Liangda Fang, Liping Xiong, Zhao-Rong Lai, Yong Qiao, Kaidong Chen und Fei Rong. „Automatic Synthesis of Generalized Winning Strategies of Impartial Combinatorial Games Using SMT Solvers“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/236.
Der volle Inhalt der QuelleHLINĚNÝ, PETR. „COMBINATORIAL GENERATION OF MATROID REPRESENTATIONS: THEORY AND PRACTICE“. In Proceedings of the 3rd Asian Applied Computing Conference. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2007. http://dx.doi.org/10.1142/9781860948534_0001.
Der volle Inhalt der QuelleRumynin, Dmitriy. „Kac-Moody Groups and Their Representations“. In 3rd International Congress in Algebras and Combinatorics (ICAC2017). WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811215476_0020.
Der volle Inhalt der QuelleSullivan, Eric, Scott Ferguson und Joseph Donndelinger. „Exploring Differences in Preference Heterogeneity Representation and Their Influence in Product Family Design“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48596.
Der volle Inhalt der QuelleAhmed, Faez, Yaxin Cui, Yan Fu und Wei Chen. „A Graph Neural Network Approach for Product Relationship Prediction“. In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-69462.
Der volle Inhalt der QuelleKlisura, Ðorže. „Embedding Non-planar Graphs: Storage and Representation“. In 7th Student Computer Science Research Conference. University of Maribor Press, 2021. http://dx.doi.org/10.18690/978-961-286-516-0.13.
Der volle Inhalt der QuelleXu, Jieping, und William T. Rhodes. „State-space representation for multifrequency acoustooptic interactions“. In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.mp1.
Der volle Inhalt der QuelleMenguy, Grégoire, Sébastien Bardin, Nadjib Lazaar und Arnaud Gotlieb. „Active Disjunctive Constraint Acquisition“. In 20th International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/kr.2023/50.
Der volle Inhalt der QuelleLuo, Kailun, und Yongmei Liu. „Automatic Verification of FSA Strategies via Counterexample-Guided Local Search for Invariants“. In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/251.
Der volle Inhalt der QuelleCohen, Jaime, Luiz A. Rodrigues und Elias P. Duarte Jr. „Improved Parallel Implementations of Gusfield’s Cut Tree Algorithm“. In Simpósio em Sistemas Computacionais de Alto Desempenho. Sociedade Brasileira de Computação, 2011. http://dx.doi.org/10.5753/wscad.2011.17275.
Der volle Inhalt der Quelle