Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Colloidal hydrogel“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Colloidal hydrogel" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Colloidal hydrogel"
Serpe, M. J., J. Kim und L. A. Lyon. „Colloidal Hydrogel Microlenses“. Advanced Materials 16, Nr. 2 (16.01.2004): 184–87. http://dx.doi.org/10.1002/adma.200305675.
Der volle Inhalt der QuelleMaikovych, O. V., I. A. Dron, N. M. Bukartyk, O. Yu Bordeniuk und N. G. Nosova. „Іnvestigation of gel formation peculiarities and properties of hydrogels obtained by the structuring of acrylamide prepolymers“. Chemistry, Technology and Application of Substances 4, Nr. 1 (01.06.2021): 179–85. http://dx.doi.org/10.23939/ctas2021.01.179.
Der volle Inhalt der QuelleSahiner, Nurettin. „Colloidal nanocomposite hydrogel particles“. Colloid and Polymer Science 285, Nr. 4 (03.11.2006): 413–21. http://dx.doi.org/10.1007/s00396-006-1583-7.
Der volle Inhalt der QuelleSun, Bo, Wenxin Zhang, Yangyang Liu, Min Xue, Lili Qiu und Zihui Meng. „A Biomass Based Photonic Crystal Hydrogel Made of Bletilla striata Polysaccharide“. Biosensors 12, Nr. 10 (08.10.2022): 841. http://dx.doi.org/10.3390/bios12100841.
Der volle Inhalt der QuelleTang, Wenwei, und Cheng Chen. „Hydrogel-Based Colloidal Photonic Crystal Devices for Glucose Sensing“. Polymers 12, Nr. 3 (09.03.2020): 625. http://dx.doi.org/10.3390/polym12030625.
Der volle Inhalt der QuelleWeiler, M., und C. Pacholski. „Soft colloidal lithography“. RSC Advances 7, Nr. 18 (2017): 10688–91. http://dx.doi.org/10.1039/c7ra00338b.
Der volle Inhalt der QuelleXu, Jia-Yu, Chun-Xiao Yan, Xiao-Chun Hu, Chao Liu, Hua-Min Tang, Chao-Hua Zhou und Fei Xue. „Study on a Photonic Crystal Hydrogel Material for Chemical Sensing“. International Journal of Nanoscience 14, Nr. 01n02 (Februar 2015): 1460025. http://dx.doi.org/10.1142/s0219581x14600254.
Der volle Inhalt der QuelleKlučáková, Martina. „Effect of Chitosan as Active Bio-colloidal Constituent on the Diffusion of Dyes in Agarose Hydrogel“. Gels 9, Nr. 5 (09.05.2023): 395. http://dx.doi.org/10.3390/gels9050395.
Der volle Inhalt der QuelleHu, Xiaohong, Lingyun Hao, Huaiqing Wang, Xiaoli Yang, Guojun Zhang, Guoyu Wang und Xiao Zhang. „Hydrogel Contact Lens for Extended Delivery of Ophthalmic Drugs“. International Journal of Polymer Science 2011 (2011): 1–9. http://dx.doi.org/10.1155/2011/814163.
Der volle Inhalt der QuelleXue, Fei, Zihui Meng, Fengyan Wang, Qiuhong Wang, Min Xue und Zhibin Xu. „A 2-D photonic crystal hydrogel for selective sensing of glucose“. J. Mater. Chem. A 2, Nr. 25 (2014): 9559–65. http://dx.doi.org/10.1039/c4ta01031k.
Der volle Inhalt der QuelleDissertationen zum Thema "Colloidal hydrogel"
McGrath, Jonathan G. „Synthesis and Characterization of Core/Shell Hydrogel Nanoparticles and Their Application to Colloidal Crystal Optical Materials“. Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/14537.
Der volle Inhalt der QuelleJohnson, Elizabeth Edna. „Colloidal gas aphron foams : a novel approach to a hydrogel based tissue engineered myocardial patch /“. Thesis, Connect to this title online; UW restricted, 2006. http://hdl.handle.net/1773/10579.
Der volle Inhalt der QuelleCho, Jae Kyu. „The dynamics and phase behavior of suspensions of stimuli-responsive colloids“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31682.
Der volle Inhalt der QuelleCommittee Chair: Victor Breedveld; Committee Member: Eric W. Weeks; Committee Member: Hang Lu; Committee Member: J. Carson Meredith; Committee Member: L. Andrew Lyon. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Duret, Bérénice. „Mise au point de dispersiοns aqueuses de particules d’huiles gélifiées et applications à la prοtectiοn de la peau“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH39.
Der volle Inhalt der QuelleThis thesis aims to develop eco-responsible cosmetic formulas with a low number of ingredients, in line with the current context of “Clean-label” in this sector. We focused on dispersions of gelled oil particles, called “gelosome dispersions”, which have not yet been explored for cosmetic use. Known to be stable and capable of encapsulating hydrophobic active ingredients, the question of their texture and their application onto the surface of the skin remains unanswered to date. They are prepared by hot emulsification of an organogel, composed of oil and a lipophilic gelator (12-hydroxystearic acid), in the presence of a stabilizing agent (80% hydrolyzed polyvinyl alcohol). Upon cooling, the emulsion leads to a dispersion of organogel particles. We first demonstrated the possibility of making gelosome dispersions with cosmetic oils and a preservative. A wide variety of textures was obtained, ranging from fluid liquids to firm and brittle gels. Physicochemical analysis and microscopic observation of these new formulas made it possible to identify their microstructures: under certain conditions, connections are formed between the gelosomes, and a colloidal hydrogel is obtained. The factors and mechanisms leading to individualized or connected gelosomes were determined by the study of interactions at the interface. Gelosome dispersions, even the most fluid, showed great stability. Finally, new dispersions of gelosomes were formulated using stabilizers of various types and stabilization modes. The methodology used during this work enabled the establishment of a link between the stabilizer and the properties of the dispersions. Different mechanisms could be identified, inducing interesting and varied microstructures and application properties. For the first time, the texture properties of the dispersions, characteristic of a topical application, were collected across all systems using a combined approach of in vitro rheological analyzes and in vivo sensory analyses; the perceptions were described and explained according to the influence of the nature of the oil, the stabilizer and the type of microstructure
Mohammadi, Aliasghar. „Dynamics of colloidal inclusions in hydrogels“. Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104772.
Der volle Inhalt der QuelleLe champ electrique induit par la reponse de particules colloidales dans des hydrogels est utilise comme une methode de diagnostic pour sonder interfaces colloide-hydrogel, ou l'on mesure le potentiel electrocinetique des particules de polystyrene dans des hydrogels de polyacrylamide en utilisant une configuration de pinces optiques par interferometrie arriere-plan focal et controle de feed-back pour compenser la derive a basse frequence. Une generalisation de relations pertinentes dans le modele standard electrocinetique est utilise pour interpreter les experiences, en montrant comment le potentiel electrocintique depend de la force ionique, la chimie de surface, et la teneur en polymere du milieu de suspension. Un comportement similaire de l'inuence de la force ionique et de la chimie de surface sur le potentiel de surface des particules de polystyrene dans les deux hydrogels et de l'eau demineralisee est observee. Alors que le taux de reticulation, defini comme le rapport molaire de reticulation unites et le nombre total de monomeres, a un faible effet sur le potentiel de surface collodale inclusion, l'influence de la concentration en monomeres est importante. En outre, nous presentons des calculs theoriques de la dynamique des inclusions non charges spherique chargee, squelettes polymere compressible pour faciliter l'interpretation exacte de classique et electrique micro-rheologie, et l'electroacoustique. En outre, nous nous engageons l'analyse thorique de la reponse dynamique des hydrogels dans un canal a plaques paralleles a des stimuli externes, comme un gradient de pression et/ ou d'un champ electrique.
Chen, Yunhua. „Multiple hydrogen bond arrays reinforced polymer colloidal materials“. Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/54479/.
Der volle Inhalt der QuelleMa, Manlung. „Exploration of peptide-based hydrogels /“. View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?CHEM%202008%20MA.
Der volle Inhalt der QuelleDebord, Justin. „Synthesis, characterization and properties of bioconjugated hydrogel nanoparticles“. Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-06072004-131123/unrestricted/debord%5Fjustin%5F200405%5Fphd.pdf.
Der volle Inhalt der QuelleZainuddin. „Synthesis and calcification of hydrogel biomaterials /“. [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe18693.pdf.
Der volle Inhalt der QuelleAufderhorst-Roberts, Anders. „Microrheological characterisation of Fmoc derivative hydrogels“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608155.
Der volle Inhalt der QuelleBücher zum Thema "Colloidal hydrogel"
Rimmer, Steve. Biomedical hydrogels: Biochemistry, manufacture and medical applications. Oxford: Woodhead, 2011.
Den vollen Inhalt der Quelle findenLi, Hua. Smart hydrogel modelling. Heidelberg: New York, 2009.
Den vollen Inhalt der Quelle findenCâmara, Fabricio Vitor, und Leandro J. Ferreira. Hydrogels: Synthesis, characterization and applications. New York: Nova Biomedical, 2012.
Den vollen Inhalt der Quelle finden1961-, Stein David B., Hrsg. Handbook of hydrogels: Properties, preparation & applications. Hauppauge, NY: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle finden1961-, Stein David B., Hrsg. Handbook of hydrogels: Properties, preparation & applications. Hauppauge, NY: Nova Science Publishers, 2009.
Den vollen Inhalt der Quelle findenGerlach, Gerald, und Karl-Friedrich Arndt. Hydrogel sensors and actuators. Heidelberg: Springer, 2009.
Den vollen Inhalt der Quelle findenM, Ottenbrite Raphael, Huang Samuel J. 1937-, Park Kinam, American Chemical Society Meeting und American Chemical Society. Division of Polymer Chemistry. (Washington, D.C.), Hrsg. Hydrogels and biodegradable polymers for bioapplications. Washington, D.C: American Chemical Society, 1996.
Den vollen Inhalt der Quelle findenBarbucci, Rolando. Hydrogels: Biological Properties and Applications. Milano: Springer-Verlag Milan, 2009.
Den vollen Inhalt der Quelle findenOkano, Teruo, Raphael M. Ottenbrite und Kinam Park. Biomedical applications of hydrogels handbook. New York: Springer, 2010.
Den vollen Inhalt der Quelle findenNair, Lakshmi S. Injectable hydrogels for regenerative engineering. Hackensack, NJ: Imperial College Press, 2016.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Colloidal hydrogel"
Prokop, Ales, Evgenii Kozlov, Gianluca Carlesso und Jeffrey M. Davidson. „Hydrogel-Based Colloidal Polymeric System for Protein and Drug Delivery: Physical and Chemical Characterization, Permeability Control and Applications“. In Filled Elastomers Drug Delivery Systems, 119–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45362-8_3.
Der volle Inhalt der QuelleKanai, Toshimitsu. „CHAPTER 6. Tunable Colloidal Crystals Immobilized in Soft Hydrogels“. In Responsive Photonic Nanostructures, 119–49. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737760-00119.
Der volle Inhalt der QuelleRoy, Niladri, Nabanita Saha, Takeshi Kitano, Eva Vitkova und Petr Saha. „Effectiveness of Polymer Sheet Layer to Protect Hydrogel Dressings“. In Trends in Colloid and Interface Science XXIV, 127–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19038-4_22.
Der volle Inhalt der QuelleMcMurrough, I., R. Kelly und D. Madigan. „Colloidal stabilization of lager beer“. In European Brewery Convention, 663–72. Oxford University PressOxford, 1993. http://dx.doi.org/10.1093/oso/9780199634668.003.0073.
Der volle Inhalt der QuelleRivera-Llabres, V., K. Gentry und C. M. Rinaldi-Ramos. „Application of Magnetic Colloids in Hydrogels for Tissue Engineering“. In Magnetic Soft Matter, 410–45. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839169755-00410.
Der volle Inhalt der QuelleJuo, Anthony S. R., und Kathrin Franzluebbers. „Soil Chemistry“. In Tropical Soils. Oxford University Press, 2003. http://dx.doi.org/10.1093/oso/9780195115987.003.0006.
Der volle Inhalt der QuelleNazir, Roshan, Abhay Prasad, Ashish Parihar, Mohammed S. Alqahtani und Rabbani Syed. „Colloidal Nanocrystal-Based Electrocatalysts for Combating Environmental Problems and Energy Crisis“. In Colloids - Types, Preparation and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.95338.
Der volle Inhalt der QuelleSAIEVAR-IRANIZAD, E. „Colloidal Semiconductors in Solar Hydrogen Production“. In Energy and the Environment, 320–24. Elsevier, 1990. http://dx.doi.org/10.1016/b978-0-08-037539-7.50053-3.
Der volle Inhalt der QuelleZheltonozhskaya, Tatyana, Nataliya Permyakova und Boris Eremenko. „INTER- AND INTRAMOLECULAR POLYCOMPLEXES IN POLYDISPERSED COLLOIDAL SYSTEMS“. In Hydrogen-Bonded Interpolymer Complexes, 201–34. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812709776_0008.
Der volle Inhalt der QuelleSposito, Garrison. „Soil Colloids“. In The Chemistry of Soils. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190630881.003.0014.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Colloidal hydrogel"
Susilowati, Endang, Sulistyo Saputro, Lina Mahardiani, Budi Hastuti, Nanik Dwi Nurhayati, Wirawan Ciptonugroho und Nur Azizah Febriani. „Synthesis and Characterization of Silver Nanoparticles/Kappa Carrageenan-Chitosan Hydrogel Films as Antibacterial Material“. In 8th International Conference on Advanced Material for Better Future, 51–61. Switzerland: Trans Tech Publications Ltd, 2025. https://doi.org/10.4028/p-di9ayq.
Der volle Inhalt der QuelleDesphande, Deepti S., und A. K. Bajpai. „Green synthesis of colloidal silver nanoparticles reinforced PVA-corn starch hydrogel films“. In PROF. DINESH VARSHNEY MEMORIAL NATIONAL CONFERENCE ON PHYSICS AND CHEMISTRY OF MATERIALS: NCPCM 2018. Author(s), 2019. http://dx.doi.org/10.1063/1.5098714.
Der volle Inhalt der QuelleMell, Sarah, Haley W. Jones, Yuriy Bandera und Stephen H. Foulger. „Hydrogel Films Encapsulating Fully Organic Scintillating Crystalline Colloidal Arrays with Tunable Emission“. In Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/iprsn.2021.jtu1a.34.
Der volle Inhalt der QuelleCho, Jae Kyu, Zhiyong Meng, L. Andrew Lyon, Victor Breedveld, Albert Co, Gary L. Leal, Ralph H. Colby und A. Jeffrey Giacomin. „Direct Observation of Phase Transition Dynamics in Suspensions of Soft Colloidal Hydrogel Particles“. In THE XV INTERNATIONAL CONGRESS ON RHEOLOGY: The Society of Rheology 80th Annual Meeting. AIP, 2008. http://dx.doi.org/10.1063/1.2964500.
Der volle Inhalt der QuelleRutirawut, T., A. Sinsarp, K. Tivakornsasithorn, T. Srikhirin und T. Osotchan. „Phase shift on reflection from polystyrene colloidal photonic crystal film on hydrogel surface“. In International Conference on Photonics Solutions 2015, herausgegeben von Surasak Chiangga und Sarun Sumriddetchkajorn. SPIE, 2015. http://dx.doi.org/10.1117/12.2195879.
Der volle Inhalt der QuelleYoshida, Koki, Shota Yamawaki und Hiroaki Onoe. „Ethanol Driven Micro-Robots with Photonic Colloidal Crystal Hydrogel for Exploring and Sensing Stimuli“. In 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2021. http://dx.doi.org/10.1109/mems51782.2021.9375420.
Der volle Inhalt der QuelleMell, Sarah, Haley W. Jones, Yuriy Bandera und Stephen H. Foulger. „Organic X-Ray Radioluminescent Crystalline Colloidal Arrays Encapsulated in Poly(Ethylene Glycol) Methacrylate Based Hydrogel Films“. In Bio-Optics: Design and Application. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/boda.2021.jw1a.12.
Der volle Inhalt der QuelleNutter, Julia, Nuria Acevedo und Xiaolei Shi. „Development and characterization of a novel, edible oleocolloid made of rice bran wax oleogel and sodium alginate-kappa-carrageenan hydrogel“. In 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/ikew5118.
Der volle Inhalt der QuelleEloi, Jean-Charles, Myles P. Worsley, Paul A. Sermon, William Healy und Christine Dimech. „Design of nanoengineered hybrid PVA/PNIPAm/CaCl2/SiO2-Polystyrene (PSt) colloidal crystal hydrogel coatings that sweat/rehydrate H2O from the atmosphere to give sustainable cooling and self-indicate their state“. In SPIE Nanoscience + Engineering, herausgegeben von Stefano Cabrini, Gilles Lérondel, Adam M. Schwartzberg und Taleb Mokari. SPIE, 2016. http://dx.doi.org/10.1117/12.2237561.
Der volle Inhalt der QuelleMuradov, Nazim Z., und Ali T-Raissi. „Solar Production of Hydrogen Using “Self-Assembled’’ Polyoxometalate Photocatalysts“. In ASME 2005 International Solar Energy Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/isec2005-76071.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Colloidal hydrogel"
Asher, Sanford A. Novel Approaches to Glucose Sensing Based on Polymerized Crystalline Colloidal Array Hydrogel Sensors. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2006. http://dx.doi.org/10.21236/ada631491.
Der volle Inhalt der QuelleAsenath-Smith, Emily, Emma Ambrogi, Eftihia Barnes und Jonathon Brame. CuO enhances the photocatalytic activity of Fe₂O₃ through synergistic reactive oxygen species interactions. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42131.
Der volle Inhalt der Quelle