Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Colloidal agglomeration“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Colloidal agglomeration" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Colloidal agglomeration"
Osaci, Mihaela, und Matteo Cacciola. „Influence of the magnetic nanoparticle coating on the magnetic relaxation time“. Beilstein Journal of Nanotechnology 11 (12.08.2020): 1207–16. http://dx.doi.org/10.3762/bjnano.11.105.
Der volle Inhalt der QuelleMaillette, Sébastien, Caroline Peyrot, Tapas Purkait, Muhammad Iqbal, Jonathan G. C. Veinot und Kevin J. Wilkinson. „Heteroagglomeration of nanosilver with colloidal SiO2 and clay“. Environmental Chemistry 14, Nr. 1 (2017): 1. http://dx.doi.org/10.1071/en16070.
Der volle Inhalt der QuelleMarć, Maciej, Andrzej Drzewiński, Wiktor W. Wolak, Lidia Najder-Kozdrowska und Mirosław R. Dudek. „Filtration of Nanoparticle Agglomerates in Aqueous Colloidal Suspensions Exposed to an External Radio-Frequency Magnetic Field“. Nanomaterials 11, Nr. 7 (01.07.2021): 1737. http://dx.doi.org/10.3390/nano11071737.
Der volle Inhalt der QuelleSolodova O.V., Sokolov A.E., Ivanova O.S., Volochaev M.N., Lapin I.N., Goncharova D.A. und Svetlichnyi V.A. „Magneto-optical properties of nanoparticle dispersions based on Fe-=SUB=-3-=/SUB=-O-=SUB=-4-=/SUB=-, obtained by pulse laser ablation in a liquid“. Physics of the Solid State 64, Nr. 14 (2022): 2334. http://dx.doi.org/10.21883/pss.2022.14.54331.147.
Der volle Inhalt der QuelleBernad, Sandor I., Vlad Socoliuc, Izabell Craciunescu, Rodica Turcu und Elena S. Bernad. „Field-Induced Agglomerations of Polyethylene-Glycol-Functionalized Nanoclusters: Rheological Behaviour and Optical Microscopy“. Pharmaceutics 15, Nr. 11 (10.11.2023): 2612. http://dx.doi.org/10.3390/pharmaceutics15112612.
Der volle Inhalt der QuelleJia, Jun, und Fengyuan Sun. „Application of Polymer Nanocolloid Preparation in Stability Analysis of Motion Mechanics“. Advances in Materials Science and Engineering 2022 (31.08.2022): 1–11. http://dx.doi.org/10.1155/2022/7260515.
Der volle Inhalt der QuelleCecil, Adam J., John E. Payne, Luke T. Hawtrey, Ben King, Gerold A. Willing und Stuart J. Williams. „Nonlinear Agglomeration of Bimodal Colloids under Microgravity“. Gravitational and Space Research 10, Nr. 1 (01.01.2022): 1–9. http://dx.doi.org/10.2478/gsr-2022-0001.
Der volle Inhalt der QuelleIp, Alexander H., Amirreza Kiani, Illan J. Kramer, Oleksandr Voznyy, Hamidreza F. Movahed, Larissa Levina, Michael M. Adachi, Sjoerd Hoogland und Edward H. Sargent. „Infrared Colloidal Quantum Dot PhotovoltaicsviaCoupling Enhancement and Agglomeration Suppression“. ACS Nano 9, Nr. 9 (19.08.2015): 8833–42. http://dx.doi.org/10.1021/acsnano.5b02164.
Der volle Inhalt der QuelleSolaimany-Nazar, Ali Reza, und Hassan Rahimi. „Investigation on Agglomeration−Fragmentation Processes in Colloidal Asphaltene Suspensions“. Energy & Fuels 23, Nr. 2 (19.02.2009): 967–74. http://dx.doi.org/10.1021/ef800728h.
Der volle Inhalt der QuelleKim, Jin-Wook, und Timothy A. Kramer. „Improved models for fractal colloidal agglomeration: computationally efficient algorithms“. Colloids and Surfaces A: Physicochemical and Engineering Aspects 253, Nr. 1-3 (Februar 2005): 33–49. http://dx.doi.org/10.1016/j.colsurfa.2004.10.101.
Der volle Inhalt der QuelleDissertationen zum Thema "Colloidal agglomeration"
Chaumeil, Florian. „Using DEM-CFD method at colloidal scale“. Thesis, University of Edinburgh, 2013. http://hdl.handle.net/1842/8066.
Der volle Inhalt der QuelleO'Brien, Colleen S. „A Mathematical Model for Colloidal Aggregation“. [Tampa, Fla.] : University of South Florida, 2003. http://purl.fcla.edu/fcla/etd/SFE0000161.
Der volle Inhalt der QuelleYang, Zhengtao. „CHARACTERIZATION AND AQUEOUS COLLOIDAL PROCESSING OF TUNGSTEN NANO-POWDERS“. Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2693.
Der volle Inhalt der QuelleM.S.
Department of Mechanical, Materials and Aerospace Engineering
Engineering and Computer Science
Materials Science & Engr MSMSE
Venkataraman, Manoj. „THE EFFECT OF COLLOIDAL STABILITY ON THE HEAT TRANSFER CHARACTERISTICS OF NANOSILICA DISPERSED FLUIDS“. Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3656.
Der volle Inhalt der QuelleM.S.M.S.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science and Engineering
Ferri, Giulia. „Identification and study of relevant descriptors of the solid during the synthesis of boehmite“. Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG064.
Der volle Inhalt der QuelleAn alumina catalyst carrier must have adequate mechanical and thermal properties, and promote an appropriate mass and heat transfer. These properties depend on the carrier texture, which is the result of its manufacturing process. Our study focuses on the peptization and kneading process, which involves the dispersion of boehmite powder in an acid solution. A base is then added to induce the agglomeration of dispersed boehmite particles. This process, performed under mixing, enables to tune the size and structure of the boehmite agglomerates that will build the solid catalyst carrier. This work aims at modeling the alumina solid structure depending on the physical-chemical parameters that drive the colloidal agglomeration when no hydrodynamic forces are present. In order to study the impact of pH, ionic strength and concentration on the coagulation kinetics, three experimental techniques are used: Dynamic Light Scattering (DLS), Small Angle X-Ray Scattering (SAXS) and Scanning Transmission Electron Microscopy (STEM). The results of the experimental data are interpreted in terms of the population-balance equation, where the size-structure relationship is given by a Brownian dynamics model. The results of the population-balance model are then used as inputs for a morphological agglomeration model, to simulate large volumes of the porous structure of the real alumina solid. Such a model is one of the new contributions of this work, and enables to compute textural properties of a boehmite grain
Jarray, Ahmed. „Mesoscopic modeling, experimental and thermodynamic approach for the prediction of agglomerates structures in granulation processes“. Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/15112/1/jarray.pdf.
Der volle Inhalt der QuelleOberman, Glen James. „Mathematical modelling of the drying of sol gel microspheres“. Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/49386/1/Glen_Oberman_Thesis.pdf.
Der volle Inhalt der QuellePorkert, Sebastian. „Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA)“. Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-219620.
Der volle Inhalt der QuelleMovassaghi, Jorshari Razzi. „Simulation and network analysis of nanoparticles agglomeration and structure formation with application to fuel cell catalyst inks“. Thesis, 2019. http://hdl.handle.net/1828/10897.
Der volle Inhalt der QuelleGraduate
Porkert, Sebastian. „Physico-Chemical Processes during Reactive Paper Sizing with Alkenyl Succinic Anhydride (ASA)“. Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30179.
Der volle Inhalt der QuelleBuchteile zum Thema "Colloidal agglomeration"
Nicklas, Jan, Lisa Ditscherlein, Shyamal Roy, Stefan Sandfeld und Urs A. Peuker. „Microprocesses of Agglomeration, Hetero-coagulation and Particle Deposition of Poorly Wetted Surfaces in the Context of Metal Melt Filtration and Their Scale Up“. In Multifunctional Ceramic Filter Systems for Metal Melt Filtration, 361–86. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-40930-1_15.
Der volle Inhalt der QuelleErnst, M., und M. Sommerfeld. „Resolved Numerical Simulation of Particle Agglomeration“. In Colloid Process Engineering, 45–71. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15129-8_3.
Der volle Inhalt der QuelleRoch, A., F. Moiny, R. N. Muller und P. Gillis. „Water Magnetic Relaxation in Superparamagnetic Colloid Suspensions: The Effect of Agglomeration“. In Magnetic Resonance in Colloid and Interface Science, 383–92. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0534-0_33.
Der volle Inhalt der QuelleBunker, Bruce C., und William H. Casey. „The Colloidal Chemistry of Oxides“. In The Aqueous Chemistry of Oxides. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780199384259.003.0014.
Der volle Inhalt der QuelleOyegbile, Benjamin A. „Fundamentals of flocculation and colloidal stability“. In Optimization of Micro Processes in Fine Particle Agglomeration by Pelleting Flocculation, 7–22. CRC Press, 2016. http://dx.doi.org/10.1201/9781315671871-2.
Der volle Inhalt der QuelleDe León Portilla, Paulina, Ana Lilia González Ronquillo und Enrique Sánchez Mora. „Theoretical and Experimental Study on the Functionalization Effect on the SERS Enhancement Factor of SiO2-Ag Composite Films“. In Silver Micro-Nanoparticles - Properties, Synthesis, Characterization, and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97028.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Colloidal agglomeration"
Ghamari, Mohsen, und Ahmed Aboalhamayie. „Thermal Conductivity of Colloidal Suspensions of Jet Fuel and Carbon-Based Nanoparticles and its Effect on Evaporation Rate“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-88618.
Der volle Inhalt der QuelleChoi, Young Joon, Razzi Movassaghi Jorshari und Ned Djilali. „An adaptive extended finite element method for the analysis of agglomeration of colloidal particles in a flowing fluid“. In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913183.
Der volle Inhalt der QuelleYousuf, Hazzaz Bin, Seyed Hasan Hajiabi, Pouya Khalili und Mahmoud Khalifeh. „Hydrophobic Modification of Bentonite: Unravelling the Impacts of Aluminium Cation on Silica-Water Interface“. In The Nordic Rheology Conference. University of Stavanger, 2024. http://dx.doi.org/10.31265/atnrs.774.
Der volle Inhalt der QuelleMollick, Rahat, Nitin Nagarkar, Ford Loskill und Albert Ratner. „Studying Reultrasonication Effects on the Suspension Stability of Stored Nanofuels Based on Optical Measurements“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-112467.
Der volle Inhalt der QuelleGutierrez, Gustavo, Juan Catan˜o und Oscar Perales-Perez. „Development of a Magnetocaloric Pump Using a Mn-Zn Ferrite Ferrofluid“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13784.
Der volle Inhalt der QuelleKumar, Ravi Shankar, Muhammad Arif, Sikandar Kumar und Tushar Sharma. „Impact of Reservoir Salinity on Oil Recovery Using Surface-Modified Silica Nanofluid for Offshore Oilfield Applications“. In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32365-ms.
Der volle Inhalt der QuelleBarz, Dominik P. J., Michael J. Vogel und Paul H. Steen. „Generation of Electrokinetic Flow in a Doped Non-Polar Liquid“. In ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30258.
Der volle Inhalt der QuelleIllera, Danny, Chatura Wickramaratne, Diego Guillen, Chand Jotshi, Humberto Gomez und D. Yogi Goswami. „Stabilization of Graphene Dispersions by Cellulose Nanocrystals Colloids“. In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87830.
Der volle Inhalt der QuelleMortazavi, Farzam, und Debjyoti Banerjee. „Review of Molten Salt Nanofluids“. In ASME 2016 Heat Transfer Summer Conference collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/ht2016-7316.
Der volle Inhalt der QuelleChigier, Norman. „Industrial Applications of Spray Technology“. In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0776.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Colloidal agglomeration"
Hersman, L. Microbial effects on colloidal agglomeration. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/171273.
Der volle Inhalt der Quelle