Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Collagène dense“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Collagène dense" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Collagène dense"
Zou, Chao, Wen Jian Weng, Xu Liang Deng, Kui Cheng, Pi Yi Du, Ge Shen und Gao Rong Han. „Influence of Collagen Status on Microstructures of Porous Collagen/TCP Composites“. Key Engineering Materials 330-332 (Februar 2007): 495–98. http://dx.doi.org/10.4028/www.scientific.net/kem.330-332.495.
Der volle Inhalt der QuelleAplin, J. D., S. Campbell und T. D. Allen. „The extracellular matrix of human amniotic epithelium: ultrastructure, composition and deposition“. Journal of Cell Science 79, Nr. 1 (01.11.1985): 119–36. http://dx.doi.org/10.1242/jcs.79.1.119.
Der volle Inhalt der QuelleKeene, D. R., L. Y. Sakai, G. P. Lunstrum, N. P. Morris und R. E. Burgeson. „Type VII collagen forms an extended network of anchoring fibrils.“ Journal of Cell Biology 104, Nr. 3 (01.03.1987): 611–21. http://dx.doi.org/10.1083/jcb.104.3.611.
Der volle Inhalt der QuelleJaziri, Abdul Aziz, Rossita Shapawi, Ruzaidi Azli Mohd Mokhtar, Wan Norhana Md Noordin und Nurul Huda. „Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish (Saurida tumbil Bloch, 1795) Skin, Bone and Scales“. Gels 8, Nr. 8 (27.07.2022): 471. http://dx.doi.org/10.3390/gels8080471.
Der volle Inhalt der QuelleFatiroi, Nurul Syazwanie, Abdul Aziz Jaziri, Rossita Shapawi, Ruzaidi Azli Mohd Mokhtar, Wan Norhana Md Noordin und Nurul Huda. „Biochemical and Microstructural Characteristics of Collagen Biopolymer from Unicornfish (Naso reticulatus Randall, 2001) Bone Prepared with Various Acid Types“. Polymers 15, Nr. 4 (20.02.2023): 1054. http://dx.doi.org/10.3390/polym15041054.
Der volle Inhalt der QuelleMatarsim, Nur Nadiah, Abdul Aziz Jaziri, Rossita Shapawi, Ruzaidi Azli Mohd Mokhtar, Wan Norhana Md Noordin und Nurul Huda. „Type I Collagen from the Skin of Barracuda (Sphyraena sp.) Prepared with Different Organic Acids: Biochemical, Microstructural and Functional Properties“. Journal of Functional Biomaterials 14, Nr. 2 (03.02.2023): 87. http://dx.doi.org/10.3390/jfb14020087.
Der volle Inhalt der QuelleEbelt, Nancy D., Vic Zamloot, Edith Zuniga, Kevin B. Passi, Lukas J. Sobocinski, Cari A. Young, Bruce R. Blazar und Edwin R. Manuel. „Collagenase-Expressing Salmonella Targets Major Collagens in Pancreatic Cancer Leading to Reductions in Immunosuppressive Subsets and Tumor Growth“. Cancers 13, Nr. 14 (16.07.2021): 3565. http://dx.doi.org/10.3390/cancers13143565.
Der volle Inhalt der QuelleWalchli, C., M. Koch, M. Chiquet, B. F. Odermatt und B. Trueb. „Tissue-specific expression of the fibril-associated collagens XII and XIV“. Journal of Cell Science 107, Nr. 2 (01.02.1994): 669–81. http://dx.doi.org/10.1242/jcs.107.2.669.
Der volle Inhalt der QuelleItoh, Yoshifumi, Noriko Ito, Hideaki Nagase, Richard D. Evans, Sarah A. Bird und Motoharu Seiki. „Cell Surface Collagenolysis Requires Homodimerization of the Membrane-bound Collagenase MT1-MMP“. Molecular Biology of the Cell 17, Nr. 12 (Dezember 2006): 5390–99. http://dx.doi.org/10.1091/mbc.e06-08-0740.
Der volle Inhalt der QuelleShort, Ben. „Dense collagen kindles invadopodia formation“. Journal of Cell Biology 208, Nr. 3 (02.02.2015): 252. http://dx.doi.org/10.1083/jcb.2083iti3.
Der volle Inhalt der QuelleDissertationen zum Thema "Collagène dense"
Lama, Miléna. „Structure-properties relationship in dense collagen gels produced by injection of spray-dried collagen“. Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS559.pdf.
Der volle Inhalt der QuelleInjection of dense collagen to obtain 3D biomimetic scaffolds in terms of structure and mechanical properties is challenging for regenerative medicine since it would avoid open-surgery. It is well-known that highly concentrated collagen solutions can form liquid crystal mesophases with tissue-like geometries. Thus, it is possible to obtain 3D collagen gels in vitro with better mechanical properties, without widely used chemical crosslinkers that may lead to inflammatory responses. Nevertheless, the injection of highly concentrated collagen solutions is unlikely due to their high viscosity.How to combine biomimetism and injectability of dense collagen gels?To achieve this goal we concentrate acidic collagen solutions by spray-drying, forming dense collagen beads. A simple weighing of the beads determines the concentration of the gels. Mixed with an aqueous solvent, the beads are injected into a mold mimicking a tissue defect. The fibrillogenesis in vitro is induced within the collagen solutions that transform into stiff gels. Electron and polarized light microscopies show organizations resulting from collagen self-assembly at macroscopic length scale depending on the collagen concentration i.e. from 3wt% to 8wt%. Mechanical tests results reveal tissue-like properties strongly linked to collagen fibrils ultrastructure. This study opens perspectives in tissue repair in setting the framework of a library made of biomimetic (anisotropic, dense and stiff) and injectable collagen gels, enabling minimally invasive procedures
Camman, Marie. „Hydrogels de collagène dense structurés par impression 3D pour modéliser la matrice extracellulaire musculaire et cardiaque dans la Dystrophie Musculaire de Duchenne“. Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS447.
Der volle Inhalt der QuelleDuchenne Muscular Dystrophy is a rare genetic disease characterized by progressive degeneration of striated muscles, notably skeletal and cardiac. At the cellular level, the absence of dystrophin disturbs the integrity of the plasma membrane, cell signaling, and consequently muscle contraction. At the tissue level, these changes result in muscle weakness and a disturbance of the extracellular matrix which becomes rigid and loses its anisotropic organization with reduced porosity. The matrix plays a crucial role in the evolution of the disease and is often neglected in existing models. The matrix plays a crucial role in the evolution of the disease and is often neglected in existing models. This project aims to develop a new tissue model that considers these structural changes in ECM to improve our understanding of the pathology and discover novel therapeutic solutions. First, the 3D printing of dense type I collagen generated a healthy extracellular matrix model. Its parameters were adjusted to reproduce the physiological matrix, i.e., a stiffness of 10 kPa, anisotropy, and porosity. Dense collagen printing allows collagen molecules alignment and generates porosity. Then, its pathological counterpart could be synthesized by modifying the printing and gelling parameters of collagen to get a matrix with a 50 kPa stiffness, isotropic, and non-porous. In vivo, the muscle and heart cells are physiologically arranged in bundles. A cellularized cylindrical pore generated by molding reproduced this morphology within the matrices. To mimic the physiological conditions, the challenge was to recreate a joined microtissue with densely-packed cells within these pores. We obtained a cardiac and a muscular microtissue with both types of matrices (healthy or pathological) using human cardiomyocytes derived from induced pluripotent stem cells or murine myoblasts. For the muscle microtissue, the healthy cells seeded in the pathological matrix showed high stress due to hypoxia, associated with cell cycle arrest and weak differentiation into myotubes. For the cardiac microtissue, cells seeded in the pathological model had irregular beatings when stimulated. In addition, the matrices were adapted to a microfluidic chip to ensure the perfusion of the culture medium through the pores created by the 3D printing. This perfusion enhances nutrient and oxygen diffusion in the model. These new cardiac and muscular tissue models take into account cell/cell and cell/matrix interactions in the evolution of the pathology. Thus, the different combinations between healthy/pathological matrix and healthy/mutated cells will allow us a better understanding of the pathology to discover novel and adapted therapeutic strategies
Metzmacher, Iris. „Enzymatic Degradation and Drug Release Behavior of Dense Collagen Implants“. Diss., lmu, 2005. http://nbn-resolving.de/urn:nbn:de:bvb:19-45495.
Der volle Inhalt der QuelleGhezzi, Chiara Elia. „Dense collagen-based tubular tissue constructs for airway tissue engineering“. Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114489.
Der volle Inhalt der QuelleÀ ce jour, seuls les tissus synthétisés de forme plane, comme les substituts dermiques et épidermiques, ont réussi à percer le marché, surtout en raison de leur complexité relativement faible et de leur géométrie simple. À l'opposé, les exigences mécaniques et fonctionnelles des tissus tubulaires imposent un plus grand nombre de contraintes que les tissus planaires. Principales composantes de plusieurs systèmes biologiques (circulatoire, urinaire ou respiratoire), les tissus tubulaires sont non seulement plus complexes sur le plan de la géométrie et de l'architecture tissulaire, mais ils sont aussi composés de cellules de différents types. De plus, ils sont continuellement exposés à des stimuli mécaniques cycliques. Voilà pourquoi il est essentiel de comprendre les milieux physiologiquement équivalents et de pouvoir les reproduire si on veut obtenir des néotissus ou des modèles tissulaires fonctionnels sur le plan mécanique et biologique.La présente recherche de doctorat visait donc à produire et à caractériser des constructions tubulaires 3D à base de CD, les tissus des voies respiratoires dans des conditions de culture physiologiquement pertinentes. Le premier objectif était de concevoir des constructions à base de CD et d'évaluer la réaction des fibroblastes ensemencés à la CP et à la culture dans un milieu à base de CD; de fabriquer et de caractériser des hybrides multicouches CD-fibroïne-CD ensemencés de cellules souches mésenchymateuses (CSM); et d'évaluer la différenciation.Le deuxième objectif de la présente recherche était de concevoir et de caractériser des constructions tubulaires faites de collagène dense (CTCD). Le troisième objectif était d'implanter des constructions tubulaires à base de CD comme modèle tissulaire des voies respiratoires par l'évaluation de la réponse des cellules musculaires lisses (CML) des voies respiratoires dans les CTCD en présence de stimuli mécaniques physiologiques.En leur fournissant une niche physiologiquement équivalente, et grâce à la stimulation de l'écoulement pulsatoire, in vitro, les CML des voies respiratoires ont pris leur orientation naturelle, maintenu leur phénotype contractile et amélioré les propriétés mécaniques de la CTCD grâce au remodelage matriciel. La capacité de la CTCD à transférer la stimulation physiologique pulsatile aux CSM résidentes a donné une orientation des cellules s'apparentant à leur orientation naturelle et induit l'expression phénotypique.En conclusion, les constructions tubulaires à base de collagène dense qui ont été développées et implantées sont parvenues à fournir in vitro un modèle tissulaire des voies respiratoires pour d'éventuelles études précliniques visant à reproduire les conditions physiologiques et pathologiques.
Oliveira, Stéphanie de. „Hydrogels denses collagène/acide hyaluronique par biofabrication pour le développement d’un nouveau modèle in vitro d’Annulus Fibrosus“. Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS307.
Der volle Inhalt der QuelleThe intervertebral disc degeneration is an irreversible pathology leading to low back pain. The intervertebral disc is composed of three tissues: the Nucleus Pulposus located in the center, surrounded by the Annulus Fibrosus (AF) and two cartilaginous plates located above and below. Disc degeneration is characterized by a hydration loss of the Nucleus Pulposus (NP), which becomes fibrous and no longer acts as a shock absorber. The forces exerted by the NP on the AF break it, causing the leakage of the NP leading to disc herniation. Several drug and surgical treatments have been developed but none stops or slows down the disc degeneration. This is due to a lack of knowledge of this disease. Most animal models are quadrupedal and do not reproduce the characteristics of the human pathology. This is why it is essential to develop novel in vitro models using human cells. Furthermore, biomaterials based on natural polymers are the most suitable for the development of three-dimensional in vitro models because these biopolymers are the natural support of cells. In order to mimic a complete intervertebral disc, it is essential to reproduce the three parts of this tissue. This thesis project aimed to develop a novel model of Annulus Fibrosus. For this purpose, two biopolymers present in the native tissue were selected: hyaluronic acid which gives hydration to the disc and collagen which is the natural support of cells. The first objective of this thesis was devoted to the formulation of a printable ink to reproduce the AF extracellular matrix. To do this, a physicochemical study was carried out on collagen/hyaluronic acid (HA) interactions. After mixing, these two biopolymers form polyionic complexes (PICs) and precipitate due to their opposite charges. So, a homogeneous ink cannot be obtained. Inhibition of PICs formation is effective at very acidic pH (pH 1) in with salt addition. Nevertheless, these conditions are incompatible with cell survival. By modulating the pH and ionic strength, we discovered a new method to formulate a homogeneous collagen/HA ink. Using a collagen solution close to its isoelectric point (pH 5.5) in presence of NaCl, we triggered the formation of collagen fibrils in solution. Interactions with HA are inhibited in these conditions and PICs are not formed anymore. Then, a fibrillary collagen hydrogel can be formed by raising the pH to 7 and HA can be crosslinked to obtain hydrogels with optimized physical properties. The second objective was to design the in vitro model of Annulus Fibrosus. Since AF is an anisotropic tissue, we 3D printed dense collagen solutions to induce alignment. Indeed, the shearing of dense solutions during printing aligns collagen. Two strategies were tested in this study. (i) The ink previously formulated was used at high concentration (30 mg.mL-1 for collagen, 7.5 mg.mL-1 for HA) with a 4:1 collagen/hyaluronic acid ratio to resemble the native AF. This ink was printed in a gelation bath (2X PBS, 10-3M NaOH) and photocrosslinked under green light (eosin Y used as photo initiator). (ii) A second ink was used, only composed of concentrated collagen and printed in the same gelling bath. Then, an impregnation process with HA was carried out followed by the photocrosslinking with green light. The two methods allowed the production of anisotropic lamellae with structural features resembling those of AF as well as interesting rheological properties (G' = 6kPa). These lamellae were cellularized with fibroblasts confined between two printed layers. Cell viability and morphology were similar to that observed within the native tissue. If the physiological mechanical properties were not reached, biocompatibility, bioactivity, structure and anisotropy of these biomaterials were close to the native tissue, this allows to validate them as a novel 3D model of Annulus Fibrosus
Alekseeva, T. „Introducing controllable 3D features into dense collagen constructs for tissue engineering applications“. Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1344165/.
Der volle Inhalt der QuelleGobeaux, Frédéric. „PHASES DENSES DE COLLAGÈNE DE TYPE I :TRANSITION ISOTROPE/CHOLESTÉRIQUE, FIBRILLOGENÈSE ET MINÉRALISATION“. Phd thesis, Université Pierre et Marie Curie - Paris VI, 2007. http://tel.archives-ouvertes.fr/tel-00337402.
Der volle Inhalt der QuelleAlcock, Rebekah D. „Dietary collagen intake and sources for support of dense connective tissues in athletes“. Thesis, Australian Catholic University, 2019. https://acuresearchbank.acu.edu.au/download/735dcbe3102bcc4d19ddd84efe04e7267e078206d002757b8221417651e13847/5376764/Alcock_2019_Dietary_collagen_intake_and_sources_for_Redacted.pdf.
Der volle Inhalt der QuelleCollignon, Anne-Margaux. „Utilisation de cellules souches pulpaires combinées à une matrice de collagène pour la réparation osseuse cranio-faciale Strategies developed to induce, direct, and potentiate bone healing Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells Mouse Wnt1-CRE-RosaTomato dental pulp stem cells directly contribute to the calvarial bone regeneration process Early angiogenesis detected by PET imaging with 64Cu-NODAGA-RGD is predictive of bone critical defect repair“. Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB113.
Der volle Inhalt der QuelleThe craniofacial area is particularly vulnerable to structural loss. Its location and visibility make a loss causes disorders, both physical (food, phonation...) than psychological (integrity of the person...). Current treatments (autografts, allografts or synthetic bone grafts) are particularly invasive and have a high failure rate. All this strongly affects the quality of life of the patient. In addition, the cost of these treatments is significant for the health systems and the patient. Therefore, there is a real need to develop innovative treatments based on biomimetic tissue approaches for bone repair. The purpose of this thesis is to develop a tissue engineering approach for the repair/regeneration of injured cranial-facial bone tissue. It is based on the use of cellularized scaffolds with mesenchymal stem cells derived from the dental pulp: Dental Pulp Stem Cells (DPSCs). Many studies have demonstrated the high plasticity of these cells, which initially derive from the neural crest, but also their trophic ability in the repair of damaged tissues by their osteogenic and chondrocyte differentiation capacity. Moreover, these cells have better's pro-angiogenic properties than mesenchymal cells of the bone marrow (MSCs) and access to this reserve is easy since they can be obtained from extracted teeth. In this context, we have used dense collagen scaffolds seeded with DPSCs to regenerate cranial bone tissue on critical defects model. The objective is to induce a very early neo-angiogenesis for improved short-term survival of implanted cells, then stimulate the long-term maintenance of cells in the implanted neo-tissue, finally to cause osteoformation. We were able to study and validate various aspects of this theme: 1- The positive impact of the use of dense collagen scaffold as osteoconductive support, 2- Long-term follow-up of the cells after implantation in vivo (thanks to the use of a cell line constitutively expressing an intracellular fluorescence protein), 3- The positive impact of a pre-treatment with hypoxia on i/ the survival of the cells after implantation in vivo ii/ their contribution to bone regeneration / repair by orienting their differentiation towards an osteoblastic pathway, 4- The significant contribution of imaging techniques for the monitoring of animals (less sacrifice and longitudinal follow-up...) thanks to positron emission tomography (use of specific tracers of the mineralization within the scaffolds and neo-angiogenesis) and X-ray microscanner (kinetic monitoring of the quality and quantity of regenerated bone matrix) 5- Validation and confirmation of all these results by histology. Thus, these different results allowed us to respond to the working hypothesis and optimize some aspects of the cellular component. However, it remains necessary to optimize the biomaterial itself. It is indeed possible to improve the compressed collagen scaffolds that we currently use, for example by incorporating bioactive ceramics such as bioglasses or hydroxyapatite. In recent years, the study of stem cells has progressed from in vitro to in vivo. The in vivo models established to study these cells in the craniofacial area have already provided valuable information and this work is a continuation of these previous studies by seeking to build on better strategies (right characterization, environment oriented...) for the future use of DPSCs for tissue engineering purposes. In view of this work, potentiating the biomaterials of the scaffolds and combining the DPSCs with a support more adapted to their survival and their growth would considerably improve bone healing, as well as bone regeneration / repair
Marelli, Benedetto. „In vitro mineralization of an osteoid-like dense collagen construct for bone tissue engineering“. Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106503.
Der volle Inhalt der QuelleDes millions de personnes dans le monde souffrent de maladies osseuses. Les techniques chirurgicales actuelles font appel à l'autogreffe, à l'allogreffe, à la xénogreffe et à la greffe de matériaux artificiels. Cependant, comme ces interventions comportent plusieurs inconvénients, l'ingénierie tissulaire de l'os (ITO) est apparue comme une solution prometteuse. Comme l'os est un biocomposite constitué de nanofibres de collagène de type I renforcées de nanocristaux d'hydroxylapatite carbonatée (HAC), les gels de collagène de type I représentent un choix attrayant pour la production de ces matrices. Toutefois, la minéralisation in vivo de ces matrices de collagène est difficile et la minéralisation in vitro n'est obtenue qu'après avoir soustrait les matrices des contraintes physiologiques, ce qui limite leur utilisation.Ces travaux s'appuyaient sur l'hypothèse selon laquelle la densité en fibrine du collagène (DFC) influe sur le microenvironnement et les propriétés physiques de la charpente de gels de collagène. Afin de vérifier cette hypothèse, et d'atteindre l'objectif premier de l'essai, la minéralisation de gel de collagène d'une DFC croissante a été réalisée dans du liquide organique simulé (LOS). Les gels de collagène d'une DFC physiologique ont permis d'obtenir une plus grande minéralisation et a aussi influé sur les propriétés électrostatiques des gels. Cette découverte suggère donc que l'augmentation de la DF du gel de collagène a permis de créer un microenvironnement plus physiologique, ce qui a facilité la formation minérale et a permis de valider le modèle proposé. Comme deuxième objectif, la minéralisation de gels de collagène dense a été améliorée et accélérée en reproduisant le rôle des protéines anioniques (PANC) au sein des ostéoïdes indigènes. Deux stratégies ont été mises en œuvre : étude de l'influence du pH des fibrines du collagène et de polypeptides anioniques dérivés de la fibroïne. Premièrement, la charge de la molécule de collagène étant légèrement positive dans un milieu doté d'un pH physiologique l'hypothèse est que un milieu dont le pH se situe au-dessus de son point isoélectrique, a été posée et validée. L'effet du pH alcalin durant la formation de fibrines sur la minéralisation du gel de collagène dense a été constaté par la quantité d'HAC formée; la matrice s'était largement minéralisée au jour 3. De plus, la minéralisation a significativement augmenté le module apparents des gels, rendant les structures autoportantes. Deuxièmement, la minéralisation de gels de collagène dense additionnés de 10 % poids de polypeptides anioniques dérivés de la fibroïne a été évaluée dans du LOS. De l'apatite s'était formée dans les 6 heures et des cristaux d'HAC étaient distribués de façon homogène dans les rouleaux de gels au jour 3.Le troisième objectif a été la mise au point d'une approche bio-inorganique en vue d'améliorer et d'accélérer la minéralisation du collagène. Des gels de collagène dense ont été additionnés de micro- et de nanoparticules de verre bioactif (μBG et nBG, respectivement) 45S5 à base de silice. Les gels de collagène dense additionnés de μBG préparés dans un LOS ont produit une importante minéralisation de la matrice de collagène. De plus, l'effet des nBG sur la minéralisation du collagène dense et son effet sur des cellules préostéoblastiques ensemencées ont aussi été étudiés. La formation d'apatite a immédiatement été détectée par la présence de gels hybrides de collagène dense contenant des nBG. Au jour 7, le module à la compression de la construction de gel hybride était 13 fois plus élevé. De plus, l'activité métabolique des MC3T3 cellules a été altérée par la présence des nBG, indiquant une différenciation ostéogénique accélérée en l'absence de suppléments ostéogéniques.En conclusion, le rôle des matrices de collagène à microstructures dans la minéralisation ayant été ignoré jusqu'ici, la présente dissertation doctorale jette un nouvel éclairage sur la minéralisation du collagène.
Buchteile zum Thema "Collagène dense"
Le Touze, Anne. „Scars in Pediatric Patients“. In Textbook on Scar Management, 397–404. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_46.
Der volle Inhalt der QuellePavelka, Margit, und Jürgen Roth. „Dense Connective Tissue: Collagen Bundles in the Cornea“. In Functional Ultrastructure, 282–83. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-211-99390-3_145.
Der volle Inhalt der QuelleWeinberg, Crispin B., Kimberlie D. O’Neil, Robert M. Carr, John F. Cavallaro, Bruce A. Ekstein, Paul D. Kemp, Mireille Rosenberg, Jose P. Garcia, Michael Tantillo und Shukri F. Khuri. „Matrix Engineering: Remodeling of Dense Fibrillar Collagen Vascular Grafts in Vivo“. In Tissue Engineering, 190–98. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4615-8186-4_18.
Der volle Inhalt der QuelleRicard-Blum, Sylvie, *. Bernard Dublet und Michel van der Rest. „Collagen VII and the formation of anchoring fibrils“. In Unconventional Collagens, 25–41. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780198505457.003.0003.
Der volle Inhalt der QuellePark, Hyeree, Derek H. Rosenzweig und Showan N. Nazhat. „Dense collagen-based scaffolds for soft tissue engineering applications“. In Tissue Engineering Using Ceramics and Polymers, 771–802. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-12-820508-2.00010-6.
Der volle Inhalt der QuelleColby, Georgina. „Collage and the Anxiety of Self-description: Blood and Guts in High School“. In Kathy Acker. Edinburgh University Press, 2016. http://dx.doi.org/10.3366/edinburgh/9780748683505.003.0002.
Der volle Inhalt der QuelleAlexander, Neal. „Basil Bunting’s Regional Modernism“. In Late Modernism and the Poetics of Place, 52–80. Edinburgh University Press, 2022. http://dx.doi.org/10.3366/edinburgh/9781474484404.003.0003.
Der volle Inhalt der QuelleAdachi, Eijiro, Ian Hopkinson und Toshihiko Hayashi. „Basement-Membrane Stromal Relationships: Interactions between Collagen Fibrils and the Lamina Densa“. In International Review of Cytology, 73–156. Elsevier, 1997. http://dx.doi.org/10.1016/s0074-7696(08)62476-6.
Der volle Inhalt der QuelleVedam-Mai, Vinata, Anthony T. Yachnis, Michael Ullman, Saman P. Javedan und Michael S. Okun. „Fibrous Scarring and Deep Brain Stimulation Lead Implantation“. In Deep Brain Stimulation, herausgegeben von Laura S. Surillo Dahdah, Padraig O’Suilleabhain, Hrishikesh Dadhich, Mazen Elkurd, Shilpa Chitnis und Richard B. Dewey, 137–40. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780190647209.003.0028.
Der volle Inhalt der QuelleVincent, Maria, Jose Quintero, Henry D. Perry und James M. Rynerson. „Biofilm Theory for Lid Margin and Dry Eye Disease“. In Ocular Surface Diseases - Some Current Date on Tear Film Problem and Keratoconic Diagnosis. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.89969.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Collagène dense"
Esbona, Karla, David Inman, Sandeep Saha, Kevin Eliceiri, Lee G. Wilke und Patricia J. Keely. „Abstract 1116: Response to cyclooxygenase-2 inhibition is regulated by collagen dense stroma“. In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1116.
Der volle Inhalt der QuelleGarcia Mendoza, Maria Gracia, David Inman, Suzanne M. Ponik und Patricia J. Keely. „Abstract 2345: The collagen-dense tumor microenvironment increases neutrophil recruitment in mouse mammary carcinoma“. In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2345.
Der volle Inhalt der QuelleHong, Hyeonjun, Hyeonji Kim, Seonjin Han, Hong Kyun Kim, Dong-Woo Cho und Dong Sung Kim. „Development of dense collagenous construct mimicking native corneal stroma based on collagen compression process“. In 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS). IEEE, 2018. http://dx.doi.org/10.1109/cbs.2018.8612178.
Der volle Inhalt der QuelleCoudrillier, Baptiste, Craig Boote und Thao D. Nguyen. „Effects of the Scleral Collagen Structure on the Biomechanical Response of the Optic Nerve Head“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80540.
Der volle Inhalt der QuelleCoudrillier, Baptiste, Craig Boote und Thao D. Nguyen. „Modeling the Effect of the Experimentally-Derived Collagen Structure on the Mechanical Anisotropy of the Human Sclera“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53272.
Der volle Inhalt der QuelleEsbona, K., DR Inman, S. Saha, LG Wilke und PJ Keely. „Abstract P1-03-04: Response to cyclooxygenase-2 inhibition is regulated by collagen dense stroma“. In Abstracts: Thirty-Eighth Annual CTRC-AACR San Antonio Breast Cancer Symposium; December 8-12, 2015; San Antonio, TX. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.sabcs15-p1-03-04.
Der volle Inhalt der QuelleZiegler, Kimberly A., und Thao D. Nguyen. „Modeling Study Incorporating Depth-Dependent Transverse Reinforcement due to Variation in Collagen Lamellae Interweaving in Corneal Tissue“. In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80771.
Der volle Inhalt der QuelleMendoza, Maria Gracia Garcia, David R. Inman, Justin J. Jeffery und Patricia J. Keely. „Abstract C09: The collagen-dense tumor microenvironment recruits tumor promoting Ly6G+Ly6C+ neutrophils in mouse mammary carcinoma“. In Abstracts: AACR Special Conference: The Function of Tumor Microenvironment in Cancer Progression; January 7-10, 2016; San Diego, CA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.tme16-c09.
Der volle Inhalt der QuelleMalmgren, R. „LUMI-AGGREGOMETER STUDIES OF THE INITIAL ATP-SECRETION FROM COLLAGEN-ADHERENT PLATELETS“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643550.
Der volle Inhalt der QuelleHarley, Brendan A. C. „Collagen Scaffold-Membrane Composites for Mimicking Orthopedic Interfaces“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-54026.
Der volle Inhalt der Quelle