Auswahl der wissenschaftlichen Literatur zum Thema „Collaborative mobile robot“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Collaborative mobile robot" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Collaborative mobile robot"

1

Engelbrecht, Duanne, Nico Steyn und Karim Djouani. „Adaptive Virtual Impedance Control of a Mobile Multi-Robot System“. Robotics 10, Nr. 1 (21.01.2021): 19. http://dx.doi.org/10.3390/robotics10010019.

Der volle Inhalt der Quelle
Annotation:
The capabilities of collaborative robotics have transcended the conventional abilities of decentralised robots as it provides benefits such as scalability, flexibility and robustness. Collaborative robots can operate safely in complex human environments without being restricted by the safety cages or barriers that often accompany them. Collaborative robots can be used for various applications such as machine tending, packaging, process tasks and pick and place. This paper proposes an improvement of the current virtual impedance algorithm by developing an adaptive virtual impedance controlled mobile multi-robot system focused on dynamic obstacle avoidance with a controlled planar movement. The study includes the development of a mobile multi-robot platform whereby each robot plans a path individually without a supervisor. The proposed system would implement a two-layered hierarchy for robot path planning. The higher layer generates a trajectory from the current position to the desired position, and the lower layer develops a real-time strategy to follow the generated trajectory while avoiding static and dynamic obstacles. The key contribution of this paper is the adaptive virtual impedance controller for a multi-robot system that will maintain movement stability and improve the motion behaviour in a dynamic environment.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Bonci, Andrea, Pangcheng David Cen Cheng, Marina Indri, Giacomo Nabissi und Fiorella Sibona. „Human-Robot Perception in Industrial Environments: A Survey“. Sensors 21, Nr. 5 (24.02.2021): 1571. http://dx.doi.org/10.3390/s21051571.

Der volle Inhalt der Quelle
Annotation:
Perception capability assumes significant importance for human–robot interaction. The forthcoming industrial environments will require a high level of automation to be flexible and adaptive enough to comply with the increasingly faster and low-cost market demands. Autonomous and collaborative robots able to adapt to varying and dynamic conditions of the environment, including the presence of human beings, will have an ever-greater role in this context. However, if the robot is not aware of the human position and intention, a shared workspace between robots and humans may decrease productivity and lead to human safety issues. This paper presents a survey on sensory equipment useful for human detection and action recognition in industrial environments. An overview of different sensors and perception techniques is presented. Various types of robotic systems commonly used in industry, such as fixed-base manipulators, collaborative robots, mobile robots and mobile manipulators, are considered, analyzing the most useful sensors and methods to perceive and react to the presence of human operators in industrial cooperative and collaborative applications. The paper also introduces two proofs of concept, developed by the authors for future collaborative robotic applications that benefit from enhanced capabilities of human perception and interaction. The first one concerns fixed-base collaborative robots, and proposes a solution for human safety in tasks requiring human collision avoidance or moving obstacles detection. The second one proposes a collaborative behavior implementable upon autonomous mobile robots, pursuing assigned tasks within an industrial space shared with human operators.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lin, Huei-Yung, und Yi-Chun Huang. „Collaborative Complete Coverage and Path Planning for Multi-Robot Exploration“. Sensors 21, Nr. 11 (26.05.2021): 3709. http://dx.doi.org/10.3390/s21113709.

Der volle Inhalt der Quelle
Annotation:
In mobile robotics research, the exploration of unknown environments has always been an important topic due to its practical uses in consumer and military applications. One specific interest of recent investigation is the field of complete coverage and path planning (CCPP) techniques for mobile robot navigation. In this paper, we present a collaborative CCPP algorithms for single robot and multi-robot systems. The incremental coverage from the robot movement is maximized by evaluating a new cost function. A goal selection function is then designed to facilitate the collaborative exploration for a multi-robot system. By considering the local gains from the individual robots as well as the global gain by the goal selection, the proposed method is able to optimize the overall coverage efficiency. In the experiments, our CCPP algorithms are carried out on various unknown and complex environment maps. The simulation results and performance evaluation demonstrate the effectiveness of the proposed collaborative CCPP technique.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chen, Wenzhou, Shizheng Zhou, Zaisheng Pan, Huixian Zheng und Yong Liu. „Mapless Collaborative Navigation for a Multi-Robot System Based on the Deep Reinforcement Learning“. Applied Sciences 9, Nr. 20 (09.10.2019): 4198. http://dx.doi.org/10.3390/app9204198.

Der volle Inhalt der Quelle
Annotation:
Compared with the single robot system, a multi-robot system has higher efficiency and fault tolerance. The multi-robot system has great potential in some application scenarios, such as the robot search, rescue and escort tasks, and so on. Deep reinforcement learning provides a potential framework for multi-robot formation and collaborative navigation. This paper mainly studies the collaborative formation and navigation of multi-robots by using the deep reinforcement learning algorithm. The proposed method improves the classical Deep Deterministic Policy Gradient (DDPG) to address the single robot mapless navigation task. We also extend the single-robot Deep Deterministic Policy Gradient algorithm to the multi-robot system, and obtain the Parallel Deep Deterministic Policy Gradient (PDDPG). By utilizing the 2D lidar sensor, the group of robots can accomplish the formation construction task and the collaborative formation navigation task. The experiment results in a Gazebo simulation platform illustrates that our method is capable of guiding mobile robots to construct the formation and keep the formation during group navigation, directly through raw lidar data inputs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hichri, Bassem, Jean Christophe Fauroux, Lounis Adouane, Youcef Mezouar und Ioan Doroftei. „Design of Collaborative, Cross & Carry Mobile RoBots "C3Bots"“. Advanced Materials Research 837 (November 2013): 588–93. http://dx.doi.org/10.4028/www.scientific.net/amr.837.588.

Der volle Inhalt der Quelle
Annotation:
This paper presents an introduction aboutC3Botsproject which aims to design collaborative, cross and carry mobile robots. In this project it is considered to design an innovative robotic system based on modular entities with a simple mechanical architecture able to collaborate to ensure object co-manipulation and transport. The resulting multi-robot system is calledC3Bots. In this paper we present the first version of this system using a parallelogram mechanism for co-manipulation and the realized prototypes which are going to be used for first experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zenkevich, Stanislav, Anaid Nazarova und Jianwen Huo. „Control of mobile robot group using collaborative drone“. Robotics and Technical Cybernetics 7, Nr. 3 (September 2019): 208–14. http://dx.doi.org/10.31776/rtcj.7305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

MIYAUCHI, Takahiro, Tomohito TAKUBO, Tatsuo ARAI und Kenichi OHARA. „4215 Collaborative Monitoring Using UFAM and Mobile Robot“. Proceedings of the JSME annual meeting 2007.7 (2007): 333–34. http://dx.doi.org/10.1299/jsmemecjo.2007.7.0_333.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Maroşan, Iosif-Adrian, und George Constantin. „Wireless communication based on Raspberry pi and Codesys for mobile robots using IoT technology“. MATEC Web of Conferences 343 (2021): 08008. http://dx.doi.org/10.1051/matecconf/202134308008.

Der volle Inhalt der Quelle
Annotation:
The industrial environment is going through exponential changes, due to the diversity of technological solutions that appear more and more frequently and the increase of productivity at increasing capacities. Due to this fact in the industrial area the number of devices, processing systems, collaborative robots, mobile robots and industrial equipment is increasing more and more. Consequently, there is a need for communication and connectivity of entities, common physical or virtual functioning and decision making, all of which are fundamental to the transition to the new concept of Industry 4.0. This study presents how wireless communication can be achieved in a mobile robotic platform that serves an industrial sector with other equipment in the production area, such as industrial equipment, collaborative industrial robots or other mobile robots. Also in this paper is presented how to create an HMI interface for the mobile platform that can be accessed from a touchscreen display mounted on the robot or from any mobile device connected to the internet.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yasuda, Motohiro, Hiroshi Ogiya und Nobuto Matsuhira. „Shared map for multiple teleoperated robot system with RSNP to perform a collaborative task : An exploration experiment by two mobile robots“. Abstracts of the international conference on advanced mechatronics : toward evolutionary fusion of IT and mechatronics : ICAM 2015.6 (2015): 41–42. http://dx.doi.org/10.1299/jsmeicam.2015.6.41.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tan, Bin. „Soccer-Assisted Training Robot Based on Image Recognition Omnidirectional Movement“. Wireless Communications and Mobile Computing 2021 (16.08.2021): 1–10. http://dx.doi.org/10.1155/2021/5532210.

Der volle Inhalt der Quelle
Annotation:
With the continuous emergence and innovation of computer technology, mobile robots are a relatively hot topic in the field of artificial intelligence. It is an important research area of more and more scholars. The core of mobile robots is to be able to realize real-time perception of the surrounding environment and self-positioning and to conduct self-navigation through this information. It is the key to the robot’s autonomous movement and has strategic research significance. Among them, the goal recognition ability of the soccer robot vision system is the basis of robot path planning, motion control, and collaborative task completion. The main recognition task in the vision system is the omnidirectional vision system. Therefore, how to improve the accuracy of target recognition and the light adaptive ability of the robot omnidirectional vision system is the key issue of this paper. Completed the system construction and program debugging of the omnidirectional mobile robot platform, and tested its omnidirectional mobile function, positioning and map construction capabilities in the corridor and indoor environment, global navigation function in the indoor environment, and local obstacle avoidance function. How to use the local visual information of the robot more perfectly to obtain more available information, so that the “eyes” of the robot can be greatly improved by relying on image recognition technology, so that the robot can obtain more accurate environmental information by itself has always been domestic and foreign one of the goals of the joint efforts of scholars. Research shows that the standard error of the experimental group’s shooting and dribbling test scores before and the experimental group’s shooting and dribbling test results after the standard error level is 0.004, which is less than 0.05, which proves the use of soccer-assisted robot-assisted training. On the one hand, we tested the positioning and navigation functions of the omnidirectional mobile robot, and on the other hand, we verified the feasibility of positioning and navigation algorithms and multisensor fusion algorithms.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Collaborative mobile robot"

1

Rasheed, Tahir. „Collaborative Mobile Cable-Driven Parallel Robots“. Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0055.

Der volle Inhalt der Quelle
Annotation:
Cette thèse présente un nouveau concept de robots parallèles à câble mobile (RPCM) comme un nouveau système robotique. RPCM est composé d'un robot parallèle à câble (RPC) classique monté sur plusieurs bases mobiles. Les RPCMs combinent l'autonomie des robots mobiles avec les avantages des RPCs, à savoir un grand espace de travail, un rapport charge utile/poids élevé, une faible inertie de l'effecteur final, une capacité de déploiement et une reconfigurabilité. De plus, les RPCMs présentent une nouvelle innovation technique qui pourrait contribuer à apporter plus de flexibilité et de polyvalence par rapport aux solutions robotiques industrielles existantes. Deux prototypes de RPCMs appelés FASTKIT et MoPICK ont été développés au cours de cette thèse. FASTKIT est composé de deux bases mobiles portant une plate-forme mobile à six degrés de liberté, tirée par huit câbles, dans le but de fournir une solution robotique économique et polyvalente pour la logistique. MoPICK est composé d'une plate-forme mobile à trois degrés de liberté tirée par quatre câbles montés sur quatre bases mobiles. Les applications ciblées de MoPICK sont des tâches mobiles dans un environnement contraint, par exemple un atelier ou des opérations logistiques dans un entrepôt. Les contributions de cette thèse sont les suivantes. Tout d'abord, toutes les conditions nécessaires à l'atteinte de l'équilibre statique d'un RPCM sont étudiées. Ces conditions sont utilisées pour développer un algorithme de distribution de tension pour le contrôle en temps réel des câbles RPCM. Les conditions d'équilibre sont également utilisées pour étudier l'espace de travail clé en main des RPCMs. Ensuite, les performances cinématiques et les capacités de torsion des RPCMs sont étudiées. Enfin, la dernière partie de la thèse présente des stratégies de planification de trajectoires multiples pour les RPCMs afin de reconfigurer l'architecture géométrique du RPC pour réaliser la tâche souhaitée
This thesis presents a novel concept of Mobile Cable - Driven Parallel Robots (MCDPRs) as a new robotic system. MCDPR is composed of a classical C able - D riven P a rallel R obot (CDPR) mounted on multiple mobile bases. MCDPRs combines the autonomy of mobile robots with the advantages of CDPRs, namely, large workspace, high payload - to - weight ratio, low end - effector inertia, deployability and reconfigurability. Moreover , MCDPRs presents a new technical innovation that could help to bring more flexibility and versatility with respect to existing industrial robotic solutions. Two MCDPRs prototypes named FASTKIT and MoPICK have been developed during the course of this the sis. FASTKIT is composed of two mobile bases carrying a six degrees - of - freedom moving - platform, pulled by eight cables , with a goal to provide a low cost and versatile robotic solution for logistics. MoPICK is composed of a three degrees - of - freedom movi ng - platform pulled by four cables mounted on four mobile bases. The targeted applications of MoPICK are mobile tasks in a constrained environment, for example, a workshop or logistic operations in a warehouse. The contributions of this thesis are as follow s. Firstly, all the necessary conditions are studied that required to achieve the static equilibrium of a MCDPR . These conditions are used to develop a Tension Distribution Algorithm for the real time control of the MCDRP cables. The equilibrium conditions are also used to investigate the Wrench - Feasible - Workspace of MCDPRs. Afterwards, the kinematic performance and twist capabilities of the MCDPRs are investigated. Finally, the last part of the thesis presents multiple path planning strategies for MCDPRs i n order to reconfigure the CDPR’s geometric architecture for performing the desired task
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Adámek, Tomáš. „Konstrukce dopravníkové nástavby mobilního robotu MiR“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-442861.

Der volle Inhalt der Quelle
Annotation:
The subject of this diploma thesis is the design of a conveyor superstructure of a collaborative mobile robot MiR. The first part is a theoretical research basis focused on mobile collaborative technologies and information related to Mobile industrial Robots. The following is a practical part built on previous acquired knowledge. The key issue of the solution is the logistics transport of the PCB magazine in the field of SMT industry. There are created two structural design variants of the superstructure arrangement for the transport of two binders and the most suitable variant is selected on the basis of the multicriteria basic method. The selected alternative of the conveyor top module is then subjected to design calculations. In order to obtain a comprehensive overview of the prototype production, the following section contains drawing documentation, including relevant comments, an economic cost estimate and a risk analysis.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Da, Silva Filho José Grimaldo. „Towards natural human-robot collaboration during collision avoidance“. Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALM003.

Der volle Inhalt der Quelle
Annotation:
Ces dernières années, la tendance des robots capables de partager des espaces domestiques ou de travail avec des personnes a connu une croissance importante. Du robot guide à l’aspirateur autonome, ces robots dits "de service" sont de plus en plus intégrés dans la vie quotidienne des profanes.Bien que les progrès des logiciels et du matériel aient permis un comportement plus intelligent et plus autonome des robots, la présence plus répandue des robots parmi les gens pose un nouvel ensemble de défis pour la communauté scientifique. Même si les gens ne sont pas que des obstacles ordinaires, les approches classiques de navigation se sont concentrées sur la garantie d’un mouvement sans collision en supposant que les gens sont soit des obstacles statiques, soit des obstacles en mouvement. Traiter les gens comme des obstacles ordinaires signifie qu’un robot est incapable de tenir compte de la réaction d’une personne au mouvement du robot. Pour cette raison, un mouvement donné d’un robot peut être perçu comme dangereux ou inhabituel, ce qui incite les gens à adopter un mouvement plus prudent pendant qu’ils réfléchissent activement aux intentions du robot. Dans ce contexte, notre travail se concentre sur la manière dont un robot doit se déplacer au milieu des gens, ce qu’on appelle un problème de Mouvement homme-robot. Plus précisément, nous nous concentrons sur la reproduction d’une caractéristique de l’interaction homme-homme lors de la prévention des collisions, à savoir le partage mutuel des adaptations effectuées pour résoudre une collision.Etant donné que les situations d’évitement des collisions entre les personnes sont résolues en coopération, cette thèse modélise la manière dont cette coopération se fait afin qu’un robot puisse reproduire leur comportement. Pour ce faire, des centaines de situations où deux personnes ont des trajectoires de croisement ont été analysées. À partir de ces trajectoires humaines impliquant une tâche d’évitement des collisions, nous avons déterminé comment l’effort total est partagé entre chaque agent en fonction de plusieurs facteurs de l’interaction tels que l’angle de croisement, le temps avant collision ainsi que la vitesse. Pour valider notre approche, une preuve de concept est intégrée dans le framework Robot Operating System (ROS) utilisant une version modifiée de Reciprocal Velocity Objects (RVO) afin de répartir l’effort d’évitement des collisions de façon humanoïde.Bien que la modélisation de la manière dont un robot devrait collaborer avec des personnes ait fourni une base de référence importante pour le comportement d’évitement des collisions, la collaboration pendant une collision pourrait éventuellement engendrer de conséquences négatives. En particulier, pour assurer une collaboration efficace lors de la prévention des collisions, il est nécessaire de prévoir si la personne tentera d’éviter la collision en passant du côté gauche ou du côté droit, c’est-à-dire en prenant une décision de classe homotopie. Cependant, à situation ou cette décision de classe d’homotopie n’est pas cohérente pour les gens, le robot est obligé de tenir compte de la possibilité que les deux agents tentent de se croiser d’un côté ou de l’autre et prennent une décision nuisible à la prévention des collisions.Ainsi, dans cette thèse, nous évaluons également ce qui détermine la frontière qui sépare la décision d’éviter la collision d’un côté ou de l’autre. En faisant une approximation de l’incertitude entourant cette limite, nous avons élaboré une stratégie d’évitement des collisions qui tente de résoudre ce problème. Notre approche est basée sur l’idée que le robot doit planifier son mouvement d’évitement des collisions de telle sorte que, même si les agents, dans un premier temps, choisissent à tort de se croiser sur des côtés différents, le robot et la personne soient capables de percevoir
Classical approaches for robot navigation among people have focused on guaranteed collision-free motion with the assumption that people are either static or moving obstacles. However, people are not ordinary obstacles. People react to the presence and the motion of a robot. In this context, a robot that behaves in human-like manner has been shown to reduce overall cognitive effort for nearby people as they do not have to actively think about a robot's intentions while moving on its proximity.Our work is focused on replicating a characteristic of human-human interaction during collision avoidance that is the mutual sharing of effort to avoid a collision. Based on hundreds of situations where two people have crossing trajectories, we determined how total effort is shared between agents depending on several factors of the interaction such as crossing angle and time to collision. As a proof of concept our generated model is integrated into gls{rvo}. For validation, the trajectories generated by our approach are compared to the standard gls{rvo} and to our dataset of people with crossing trajectories.Collaboration during collision avoidance is not without its potential negative consequences. For effective collaboration both agents have to pass each other on the same side. However, whenever the decision of which side collision should be avoided from is not consistent for people, the robot should also account for the risk that both agents will attempt to incorrectly cross each other on different sides. Our work first determines the uncertainty around this decision for people. Based on this, a collision avoidance approach is proposed so that, even if agents initially choose to incorrectly attempt to cross each other on different sides, the robot and the person would be able to perceive the side from which collision should be avoided in their following collision avoidance action. To validate our approach, several distinct scenarios where the crossing side decision is ambiguous are presented alongside collision avoidance trajectories generated by our approach in such scenarios
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Brind'Amour, Francois. „Navigation sensor for collaborative mobile robots“. Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/26860.

Der volle Inhalt der Quelle
Annotation:
This thesis presents a possible inexpensive and simple solution for humanitarian demining in developing countries. It consists of a group of mobile robots that can advance and interact collaboratively with each other in a mine field. A base station controls the group and can map their position with the aid of a long range positioning system, thus, identify the landmine position when one is detected by a robot. A short range positioning system is used within the group to measure the distance separating them from one another and the geometry of the formation. A prototype battery powered mobile robot platform has been developed and tested. Electronic hardware and software was designed and built to allow for low level control of the movements of the vehicle and for wireless communications with a base station. The base station exercises high level control over the mobile robot. A positioning system consisting of a long and a short range positioning system has been designed. The short range positioning system, which uses sonic waves within the audible frequency range, has been implemented and tested. Operating within the audible frequency range reduces the sensory system cost and results in an omni-directional range measuring system. The system provides sub-wavelength precision with an absolute error less than 2 cm for distances from 1 m to 4 m at a 5 KHz frequency.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Biddlestone, Scott Richard. „Collaborative Motion for Mobile Platforms“. The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1357227236.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chebab, Zine Elabidine. „Conception et commande collaborative de manipulateurs mobiles modulaires (C3M3)“. Thesis, Université Clermont Auvergne‎ (2017-2020), 2018. http://www.theses.fr/2018CLFAC070/document.

Der volle Inhalt der Quelle
Annotation:
Dans un contexte d’Industrie 4.0, on perçoit de nouveaux usages possibles des manipulateurs mobiles (MMs), des robots généralement obtenus par l’association d’un bras manipulateur et d’une plate-forme mobile. Ce travail de thèse se focalise sur la synthèse et la commande de nouveaux MMs coopératifs en définissant trois défis à relever. Le premier défi concerne l’élargissement des domaines d’utilisation des robots par la possibilité de leur utilisation coopérative. Nous définissons ainsi un système robotique modulaire basé sur l’utilisation d’entités robotiques appelés mono-robots (m-bots). Ceux-ci sont des MMs qui peuvent se réarranger sous forme de poly-robot (p-bot) pour réaliser une tâche en collaboration. Le deuxième défi se focalise sur la définition de l’architecture cinématique élémentaire de ces robots. Ainsi, nous proposons une démarche générique de synthèse structurale qui permet l’obtention de plusieurs architectures de m-bots respectant les cahiers des charges relatifs à la tâche en tant que m-bot, mais aussi en tant que p-bot pour un environnement considéré. Cette démarche est basée sur l’analyse structurale des MMs à l’aide des paramètres structuraux des mécanismes (connectivité, mobilité, redondance et hyperstatisme). Le troisième défi proposé est d’arriver à modéliser et contrôler les architectures de MMs synthétisées pour la tâche. Deux lois de commande (PID et hybride force-position) sont proposées pour la réalisation de la tâche considérée. Leur validation a été réalisée grâce à des simulations avancées
In recent years, the concept of Industry 4.0 has led to new possibilities of use for mobile manipulators (MMs) that are generally made of a manipulator arm mounted on a mobile base. The current Ph.D. is focused on the synthesis and control of new cooperative MMs by defining three challenges. The first challenge concerns the widening of the fields of application of robots. Therefore, we define a modular robotic system based on the use of multiple MMs (mono robots or m-bots) that can be used as a global system (poly-robot or p-bot) for collaborative tasks. The second challenge concerns the definition of the kinematic structure of the MMs. We propose a new generic method of structural synthesis that allows to obtain multiple kinematic architectures for m-bots that respect the constraints imposed by the task and the workspace. This method is based on structural analysis of MMs by the evaluation of the structural parameters (connectivity, mobility, redundancy and overconstraint). The last challenge concerns the modelling and control of the new architectures for the new fields of application. Two control laws (PID control and hybrid force-position control) are proposed in order to realise the considered task. Their validation is done with advanced simulations
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hichri, Bassem. „Design and control of collaborative, cross and carry mobile robots : C3Bots“. Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22601/document.

Der volle Inhalt der Quelle
Annotation:
L'objectif du travail proposé est de concevoir et commander un groupe des robots mobiles similaires et d'architecture simple appelés m-bots (mono-robots). Plusieurs m-bots ont la capacité de saisir ensemble un objet afin d'assurer sa co-manipulation et son transport quelle que soit sa forme et sa masse. Le robot résultant est appelé p-bot (poly-robot) et est capable d'effectuer des tâches de déménageur pour le transport d'objets génériques. La reconfigurabilité du p-bot par l'ajustement du nombre des m-bots utilisés permet de manipuler des objets lourds et des objets de formes quelconques (particulièrement s'ils sont plus larges qu'un seul m-bot). Sont considérés dans ce travail l'évitement d'obstacle ainsi que la stabilité du p-bot incluant la charge à transporter. Une cinématique pour un mécanisme de manipulation a été proposée et étudiée. Ce dernier assure le levage de la charge et son dépôt sur le corps des robots pour la transporter. Plusieurs variantes d'actionnement ont été étudiées : passif, avec compliance et actionné. Un algorithme de positionnement optimal des m-bots autour de l'objet à manipuler a été proposé afin d'assurer la réussite de la tâche à effectuer par les robots. Cet algorithme respecte le critère de "Force Closure Grasping" qui assure la stabilité de la charge durant la phase de manipulation. Il maintient aussi une marge de stabilité statique qui assure la stabilité de l'objet durant la phase de transport. Enfin, l'algorithme respecte le critère des zones inaccessibles qui ne peuvent pas être atteintes par les m-bots. Une loi de commande a été utilisée afin d'atteindre les positions désirées pour les m-bots et d'assurer la navigation en formation, durant la phase du transport, durant laquelle chaque robot élémentaire doit maintenir une position désirée par rapport à l'objet transporté. Des résultats de simulation pour un objet de forme quelconque, décrite par une courbe paramétrique, sont présentés. Des simulations 3D en dynamique multi-corps ainsi que des expériences menées sur les prototypes réalisés ont permis de valider nos propositions
Our goal in the proposed work is to design and control a group of similar mobile robots with a simple architecture, called m-bot. Several m-bots can grip a payload, in order to co-manipulate and transport it, whatever its shape and mass. The resulting robot is called a p-bot andis capable to solve the so-called "removal-man task" to transport a payload. Reconfiguring the p-bot by adjusting the number of m-bots allows to manipulate heavy objects and to manage objects with anyshape, particularly if they are larger than a single m-bot. Obstacle avoidance is addressed and mechanical stability of the p-bot and its payload is permanently guaranteed. A proposed kinematic architecture for a manipulation mechanism is studied. This mechanism allows to lift a payload and put it on them-bot body in order to be transported. The mobile platform has a free steering motion allowing the system maneuver in any direction. An optimal positioning of the m-bots around the payload ensures a successful task achievement without loss of stability for the overall system. The positioning algorithm respects the Force Closure Grasping (FCG) criterion which ensures the payload stability during the manipulation phase. It respects also the Static Stability Margin (SSM) criterion which guarantees the payload stability during the transport. Finally, it considers also the Restricted Areas (RA) that could not be reached by the robots to grab the payload. A predefined control law is then used to ensure the Target Reaching (TR) phase of each m-bot to its desired position around the payload and to track a Virtual Structure (VS), during the transportation phase, in which each elementary robot has to keep the desired position relative to the payload. Simulation results for an object of any shape, described by aparametric curve, are presented. Additional 3D simulation results with a multi-body dynamic software and experiments by manufactured prototypes validate our proposal
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Alves, Silas Franco dos Reis. „Plataforma de software para técnicas de navegação e colaboração de robôs móveis autônomos“. [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265320.

Der volle Inhalt der Quelle
Annotation:
Orientadores: João Maurício Rosário, Humberto Ferasoli Filho
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-19T15:08:00Z (GMT). No. of bitstreams: 1 Alves_SilasFrancodosReis_M.pdf: 3766365 bytes, checksum: dbbe1298b44cd06d13a9d2e56dfe873e (MD5) Previous issue date: 2011
Resumo: A navegação e a colaboração são aspectos importantes da robótica móvel. A navegação confere aos robôs móveis as habilidades básicas de interação com o ambiente, os obstáculos e agentes nele situado. Já a colaboração permite que os robôs coordenem sua navegação e interação com o ambiente de forma que os permita realizar tarefas complexas de forma rápida e eficiente. Neste trabalho de pesquisa foi desenvolvida uma plataforma de software que oferece suporte a algumas técnicas tradicionais de navegação e colaboração de robôs móveis. Com esta plataforma, é possível programar diferentes robôs com os mesmos componentes de software, o que reduz o tempo de desenvolvimento do aplicativo ao incentivar o reuso de software. Além disso, as técnicas de navegação e colaboração fornecidas pela plataforma amenizam o esforço em desenvolver o software de controle para robôs móveis colaborativos, pois a plataforma permite que o usuário concentre seus esforços na solução dos problemas pertinentes a aplicação do robô, uma vez que as técnicas de navegação e colaboração são fornecidas pela plataforma
Abstract: The navigation and collaboration are important aspects of mobile robotics. The navigation provides to mobile robots the basic skills of interaction with the environment, and the obstacles and agents located therein. The collaboration allows the robots to coordinate their navigation and interaction with the environment in a way that enables them to per-form complex tasks quickly and efficiently. This research project developed a software plat-form that supports some traditional navigation techniques and collaboration of mobile robots. With this platform, different robots can be programmed with the same software components, reducing the application's development time by encourage software reuse. Furthermore, the techniques of navigation and collaboration provided by the platform alleviate the effort to develop the control software for collaborative mobile robots, because the plat-form allows the user to focus their efforts on solving the problems relevant to the robot's application, since the navigation techniques and collaboration are provided by the platform
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dumont, Emmanuel. „Collaboration entre un humain, un robot et un système ambiant pour l’évaluation de comportements“. Thesis, Compiègne, 2019. http://www.theses.fr/2019COMP2484/document.

Der volle Inhalt der Quelle
Annotation:
Évaluer un comportement humain c’est évaluer tous les marqueurs traduisant ce comportement (gestes, paroles interactions, etc.). L’observation par un humain de certains marqueurs tels que les expressions faciales, la prosodie ou encore la linguistique, nécessite une formation spécialisée. Pour faciliter l’évaluation du comportement, des échelles indiquant les observations à mener et les conclusions à faire sont employées. Ainsi, automatiser l’évaluation du comportement revient à automatiser l’analyse d’un environnement par le biais de plusieurs capteurs, puis analyser les signaux obtenus afin d’en extraire les marqueurs permettant la déduction du comportement observé. Suite à la variabilité des observations de l’humain lors d’analyses trop spécifiques, de plus en plus d’études emploient ces systèmes automatiques d’observation et d’évaluation du comportement. L’objectif est d’assister l’analyse et l’évaluation humaine en exploitant des systèmes automatiques capables d’extraire des informations difficilement observables pour l’humain. En conséquence, la collaboration entre l’humain et les systèmes informatiques permet d’analyser plus d’éléments du comportement de manière fiable et objective. Cette thèse propose une approche de l’analyse du comportement s’appuyant sur la collaboration entre l’humain et un système automatique. Nous avons mis en place une plate-forme électronique et informatique composée d’un robot mobile et d’un système ambiant afin d’évaluer le comportement humain. Cette plate-forme se définie comme étant : — Modulaire à l’ajout ou le retrait de capteurs : L’ajout et la suppression de capteurs est faisable sans qu’un système ne soit impacté autrement que sur ses performances à reconnaître précisément les comportements; — Accessible à la lecture des données enregistrées : L’utilisation d’ontologies, en tant que base de données sémantiques et logiques, rend la plate-forme utilisable et accessible aux personnes non familiarisées aux systèmes informatiques complexes; — Robuste aux ambiguïtés : Chaque système de la plate-forme (ambiant ou robot) est indépendant et a sa propre représentation de l’environnement. Cependant, ils collaborent entre eux pour répondre aux incohérences ou aux manques d’informations durant l’accomplissement d’une tâche. A partir de la plate-forme présentée précédemment, nous analysons et mesurons la qualité de l’interaction entre un patient et un soignant lors d’une prise de sang réalisée en conditions habituelles. Pour cela, nous utilisons deux méthodes de renseignement des échelles : par un observateur présent lors du soin et par une étude de l’enregistrement vidéo réalisé durant le soin par la plate-forme. Nous émettons l’hypothèse que la présence d’un système automatique d’aide au diagnostic lors de l’analyse des vidéos enregistrées limite la complexité de l’évaluation du comportement et améliore l’objectivité de l’analyse
To evaluate a human behavior is equivalent to evaluate all the markers translating this behavior (gestures, lyrics interactions, etc.). The observation by a human of certain markers such as facial expressions, prosody or linguistics, requires specialized training. To facilitate the assessment of behavior, scales indicating the observations to be made and the conclusions to be made are used. Thus, automating the evaluation of the behavior amounts to automate the analysis of an environment by means of several sensors, then analyzing the signals obtained in order to extract the markers allowing the deduction of the observed behavior. Due to the variability of human observations in overly specific analyzes, more and more studies are using thes automatic observation and behavioral evaluation systems. The objective is to assist human analysis and evaluation by exploiting automatic systems capable of extracting information that is difficult to observe for humans. As a result, the collaboration between the human and the computer systems makes it possible to analyze more elements of the behavior in a reliable and objective way. This thesis proposes an approach of behavior analysis based on the collaboration between humans and an automatic system. We set up an electronic and computer platform consisting of a mobile robot and an ambient system to evaluate human behavior. This platform is defined as: — Modular to the addition or removal of sensors: The addition and removal of sensors is feasible without a system is impacted otherwise than its performance to accurately recognize behaviors; — Accessible to Reading Recorded Data: The use of ontologies, as a semantic and logical database, makes the platform usable and accessible to people unfamiliar With complex computer systems; — Robust to ambiguities: every platform system (ambient or robot) is independent and has its own representation of the environment. However, they collaborate With each Other to respond to inconsistencies or lack of information during the performance of a task
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Baalbaki, Hassan. „Logistique hospitalière à l’aide de robots mobiles reconfigurables“. Thesis, Saint-Etienne, EMSE, 2011. http://www.theses.fr/2011EMSE0618/document.

Der volle Inhalt der Quelle
Annotation:
Ce manuscrit expose notre travail dans le cadre du projet IWARD et détaille la couche de gestion et de décision du groupement de robots. Ce projet avait comme objectif d’assister le personnel médical dans leur travail, ceci est réalisé en utilisant des robots mobiles, reconfigurables, et rechargeables. Ces robots sont conçus pour effectuer des taches logistiques comme : Le transport de médicaments, le nettoyage, le guidage des patients, la surveillance et la téléconsultation. Dans la première partie de la thèse nous présenterons le problème stratégique qui consiste à déterminer les plannings de rechargement des robots, la configuration des robots opérationnels ainsi que la localisation des stations d’attentes des robots lorsqu’ils sont en état de veille. Différentes hiérarchies à plusieurs niveaux de décisions, sont formulées comme des programmes linéaires en nombres entiers. Des formulations utilisant l’approche de génération de colonnes sont aussi développées pour résoudre ces problèmes. Dans la deuxième partie, le problème tactique est exposé, ceci consiste à affecter les taches arrivantes aux différents robots et d’ordonnancer dynamiquement l’exécution ces missions. Deux approches sont inspectées une version centralisée utilisant les algorithmes évolutionnaires et une autre version distribuée utilisant les algorithmes d’enchères inversées. Afin de mettre à l épreuve ces deux approches, une simulation a événements discrets a été conçue et développée spécifiquement pour le projet, permettant ainsi d’évaluer ces deux approches
Due to the expansion of the life duration and the shortage of medical personal in hospitals the EU funded IWARD project as part of the IFP6 program. The aims of this project were to assist the medical personnel in logistic and non medical tasks (transport, cleaning, environmental monitoring, guidance and tele-monitoring) through the usage of mobile, reconfigurable, rechargeable robots, thus letting the Medical staff to concentrate on medical aspects of their work.This thesis was part of this project, and our work consisted on developing a decision making framework for the team of robots.In the first part of the thesis, we address the strategic decisions essentially the: (i) the robots’ home station location problem, (ii) Robot‘s reconfiguration problems and (iii) Robots recharging scheduling. We formulate those problems as a linear problems and we propose to solve them using Mixed Integer Programming (MIP). We also present a formulation using a column generation approach to solve those problems.In the later part we address the tactical problems, mainly the mission assignment, the mission scheduling and rescheduling. We present two different approaches; a centralized decision finder implemented using genetic algorithms. And a decentralized approach using auction like and market based algorithms in order to provided collaborative decision making framework.Finally we compare those two approaches using a custom made discrete event simulation (DES)
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Collaborative mobile robot"

1

Mobile Robots - State of the Art in Land, Sea, Air, and Collaborative Missions. InTech, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chen, XiaoQi, Y. Q. Chen und J. G. Chase, Hrsg. Mobile Robots - State of the Art in Land, Sea, Air, and Collaborative Missions. InTech, 2009. http://dx.doi.org/10.5772/120.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Collaborative mobile robot"

1

Pavlichenko, Dmytro, Germán Martín García, Seongyong Koo und Sven Behnke. „KittingBot: A Mobile Manipulation Robot for Collaborative Kitting in Automotive Logistics“. In Intelligent Autonomous Systems 15, 849–64. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01370-7_66.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Franchi, Antonio. „Human-Collaborative Schemes in the Motion Control of Single and Multiple Mobile RobotsMobile robot“. In Trends in Control and Decision-Making for Human–Robot Collaboration Systems, 301–24. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-40533-9_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wongwatkit, Charoenchai, Pakpoom Prommool, Ratchanon Nobnob, Siwaporn Boonsamuan und Rodjana Suwan. „A Collaborative STEM Project with Educational Mobile Robot on Escaping the Maze: Prototype Design and Evaluation“. In Advances in Web-Based Learning – ICWL 2018, 77–87. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96565-9_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Guo, Yi, Lynne E. Parker und Raj Madhavan. „Collaborative Robots for Infrastructure Security Applications“. In Mobile Robots: The Evolutionary Approach, 185–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49720-2_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Das, Shantanu, Dariusz Dereniowski und Christina Karousatou. „Collaborative Exploration by Energy-Constrained Mobile Robots“. In Structural Information and Communication Complexity, 357–69. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25258-2_25.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bärtschi, Andreas, Jérémie Chalopin, Shantanu Das, Yann Disser, Barbara Geissmann, Daniel Graf, Arnaud Labourel und Matúš Mihalák. „Collaborative Delivery with Energy-Constrained Mobile Robots“. In Structural Information and Communication Complexity, 258–74. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48314-6_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Varela-Aldás, José, Jorge Buele, Janio Jadan-Guerrero und Víctor H. Andaluz. „Teaching STEM Competencies Through an Educational Mobile Robot“. In Learning and Collaboration Technologies. Human and Technology Ecosystems, 560–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-50506-6_38.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Aliev, Khurshid, Dario Antonelli, Ahmed Awouda und Paolo Chiabert. „Key Performance Indicators Integrating Collaborative and Mobile Robots in the Factory Networks“. In Collaborative Networks and Digital Transformation, 635–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28464-0_56.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hichri, B., J. C. Fauroux, L. Adouane, I. Doroftei und Y. Mezouar. „Lifting Mechanism for Payload Transport by Collaborative Mobile Robots“. In New Trends in Mechanism and Machine Science, 157–65. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-09411-3_17.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Bampas, Evangelos, Shantanu Das, Dariusz Dereniowski und Christina Karousatou. „Collaborative Delivery by Energy-Sharing Low-Power Mobile Robots“. In Algorithms for Sensor Systems, 1–12. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-72751-6_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Collaborative mobile robot"

1

Miyauchi, Takahiro, Tomohito Takubo, Tatsuo Arai und Kenichi Ohara. „Collaborative Monitoring Using UFAM and Mobile Robot“. In 2007 International Conference on Mechatronics and Automation. IEEE, 2007. http://dx.doi.org/10.1109/icma.2007.4303756.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Rivas-Perea, Pablo, Jose Gerardo Rosiles, Omar Velarde Anaya, Leonardo Valencia Olvera, Luis Humberto Uribe Chavira und Mario I. Chacon M. „Mobile robot for face recognition: A collaborative environment“. In Simulation (HPCS). IEEE, 2009. http://dx.doi.org/10.1109/hpcsim.2009.5192664.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Hong, Tsu-Zen, Hsin-Han Chiang und Yen-Lin Chen. „Design and implementation of human-robot collaborative control for wheeled mobile robots“. In 2013 CACS International Automatic Control Conference (CACS). IEEE, 2013. http://dx.doi.org/10.1109/cacs.2013.6734125.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Arvanitakis, Ioannis, und Anthony Tzes. „Collaborative mapping and navigation for a mobile robot swarm“. In 2017 25th Mediterranean Conference on Control and Automation (MED). IEEE, 2017. http://dx.doi.org/10.1109/med.2017.7984199.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhong, Xu, und Yu Zhou. „Establishing and Maintaining Wireless Communication Coverage Among Multiple Mobile Robots via Fuzzy Control“. In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47989.

Der volle Inhalt der Quelle
Annotation:
This paper addresses the critical issue of establishing and maintaining desired wireless communication connectivity in a team of collaborative mobile robots, which is highly demanded for reliable functioning of multi-robot systems but challenging in realistic environments. The signal propagation of wireless communications among mobile robots is affected by not only the transmission power and distance but also obstacles and other environmental conditions as well as robot movement, which result in signal loss, attenuation, multi-path fading and shadowing. Consequently, the communication condition among mobile robots in a physical environment is usually unstable, and it is difficult to accurately predict the actual communication ranges of robots. We propose a decentralized control strategy which, based on perceived link quality, adopts fuzzy control to accommodate the fluctuating communication condition, and approach and maintain desired and reliable communication connections among neighboring robots. The effectiveness of the proposed scheme has been verified in several simulated environments with different signal propagation conditions based on a probabilistic signal propagation model.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cheung, Yushing, Jae H. Chung und Ketula Patel. „Semi-Autonomous Collaborative Control of Multi-Robotic Systems for Multi-Task Multi-Target Pairing“. In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64699.

Der volle Inhalt der Quelle
Annotation:
In many applications, it is required that heterogeneous multi-robots are grouped to work on multi-targets simultaneously. Therefore, this paper proposes a control method for a single-master multi-slave (SMMS) teleoperator to cooperatively control a team of mobile robots for a multi-target mission. The major components of the proposed control method are the compensation for contact forces, modified potential field based leader-follower formation, and robot-task-target pairing method. The robot-task-target paring method is derived from the proven auction algorithm for a single target and is extended for multi-robot multi-target cases, which optimizes effect-based robot-task-target pairs based on heuristic and sensory data. The robot-task-target pairing method can produce a weighted attack guidance table (WAGT), which contains benefits of different robot-task-target pairs. With the robot-task-target pairing method, subteams are formed by paired robots. The subteams perform their own paired tasks on assigned targets in the modified potential field based leader-follower formation while avoiding sensed obstacles. Simulation studies illustrate system efficacy with the proposed control method.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kim, Wansoo, Pietro Balatti, Edoardo Lamon und Arash Ajoudani. „MOCA-MAN: A MObile and reconfigurable Collaborative Robot Assistant for conjoined huMAN-robot actions“. In 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020. http://dx.doi.org/10.1109/icra40945.2020.9197115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

ARBULU, M., und C. BALAGUER. „HUMAN-HUMANOID ROBOT COOPERATION IN COLLABORATIVE TRANSPORTATION TASKS“. In Proceedings of the Eleventh International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812835772_0145.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Abruzzo, Benjamin, David Cappelleri und Philippos Mordohai. „A Collaborative Visual Localization Scheme for a Low-Cost Heterogeneous Robotic Team With Non-Overlapping Perspectives“. In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97377.

Der volle Inhalt der Quelle
Annotation:
Abstract This paper presents and evaluates a relative localization scheme for a heterogeneous team of low-cost mobile robots. An error-state, complementary Kalman Filter was developed to fuse analytically-derived uncertainty of stereoscopic pose measurements of an aerial robot, made by a ground robot, with the inertial/visual proprioceptive measurements of both robots. Results show that the sources of error, image quantization, asynchronous sensors, and a non-stationary bias, were sufficiently modeled to estimate the pose of the aerial robot. In both simulation and experiments, we demonstrate the proposed methodology with a heterogeneous robot team, consisting of a UAV and a UGV tasked with collaboratively localizing themselves while avoiding obstacles in an unknown environment. The team is able to identify a goal location and obstacles in the environment and plan a path for the UGV to the goal location. The results demonstrate localization accuracies of 2cm to 4cm, on average, while the robots operate at a distance from each-other between 1m and 4m.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kim, Wansoo, Marta Lorenzini, Pietro Balatti, Yuqiang Wu und Arash Ajoudani. „Towards Ergonomic Control of Collaborative Effort in Multi-human Mobile-robot Teams“. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019. http://dx.doi.org/10.1109/iros40897.2019.8967628.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Collaborative mobile robot"

1

Ray, Asok. Collaboration of Miniature Multi-Modal Mobile Smart Robots over a Network. Fort Belvoir, VA: Defense Technical Information Center, Juli 2015. http://dx.doi.org/10.21236/ada626480.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie