Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Collaborative Immersive Analytics“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Collaborative Immersive Analytics" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Collaborative Immersive Analytics"
Chhikara, Vanshika. „IMMERSIVE ANALYTICS“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 05 (10.05.2024): 1–5. http://dx.doi.org/10.55041/ijsrem33585.
Der volle Inhalt der QuelleBenk, Michaela, Raphael P. Weibel, Stefan Feuerriegel und Andrea Ferrario. „"Is It My Turn?"“. Proceedings of the ACM on Human-Computer Interaction 6, CSCW2 (07.11.2022): 1–23. http://dx.doi.org/10.1145/3555580.
Der volle Inhalt der QuelleChen, Lei, Hai-Ning Liang, Feiyu Lu, Jialin Wang, Wenjun Chen und Yong Yue. „Effect of Collaboration Mode and Position Arrangement on Immersive Analytics Tasks in Virtual Reality: A Pilot Study“. Applied Sciences 11, Nr. 21 (08.11.2021): 10473. http://dx.doi.org/10.3390/app112110473.
Der volle Inhalt der QuelleFanini, Bruno, und Giorgio Gosti. „A New Generation of Collaborative Immersive Analytics on the Web: Open-Source Services to Capture, Process and Inspect Users’ Sessions in 3D Environments“. Future Internet 16, Nr. 5 (25.04.2024): 147. http://dx.doi.org/10.3390/fi16050147.
Der volle Inhalt der QuelleWong, Jing-Ying, Chun-Chieh Yip, Su-Ting Yong, Andy Chan, Sien-Ti Kok, Teck-Leong Lau, Mohammed T. Ali und Essameldin Gouda. „BIM-VR Framework for Building Information Modelling in Engineering Education“. International Journal of Interactive Mobile Technologies (iJIM) 14, Nr. 06 (17.04.2020): 15. http://dx.doi.org/10.3991/ijim.v14i06.13397.
Der volle Inhalt der QuelleRubart, Jessica, Valentin Grimm und Jonas Potthast. „Augmenting Industrial Control Rooms with Multimodal Collaborative Interaction Techniques“. Future Internet 14, Nr. 8 (26.07.2022): 224. http://dx.doi.org/10.3390/fi14080224.
Der volle Inhalt der QuelleVatanen, Anna, Heidi Spets, Maarit Siromaa, Mirka Rauniomaa und Tiina Keisanen. „Experiences in Collecting 360° Video Data and Collaborating Remotely in Virtual Reality“. QuiViRR: Qualitative Video Research Reports 3 (01.09.2022): a0005. http://dx.doi.org/10.54337/ojs.quivirr.v3.2022.a0005.
Der volle Inhalt der QuelleAparicio-Gómez, Oscar-Yecid, Olga-Lucia Ostos-Ortiz und Constanza Abadía-García. „Convergence between emerging technologies and active methodologies in the university“. Journal of Technology and Science Education 14, Nr. 1 (30.01.2024): 31. http://dx.doi.org/10.3926/jotse.2508.
Der volle Inhalt der QuelleGowher Hassan. „TECHNOLOGY AND THE TRANSFORMATION OF EDUCATIONAL PRACTICES: A FUTURE PERSPECTIVE“. International Journal of Economic, Business, Accounting, Agriculture Management and Sharia Administration (IJEBAS) 3, Nr. 1 (27.02.2023): 1596–603. http://dx.doi.org/10.54443/ijebas.v3i1.1136.
Der volle Inhalt der QuellePatricia, Kulemeka, und Chatola Fanny. „Climate change visualization awareness system“. i-manager's Journal on Computer Science 11, Nr. 4 (2024): 21. http://dx.doi.org/10.26634/jcom.11.4.20653.
Der volle Inhalt der QuelleDissertationen zum Thema "Collaborative Immersive Analytics"
Chen, Xin. „Be the Data: Embodied Visual Analytics“. Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/72287.
Der volle Inhalt der QuelleMaster of Science
Sereno, Mickaël. „Collaborative Data Exploration and Discussion Supported by Augmented Reality“. Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG106.
Der volle Inhalt der QuelleI studied the benefits and limitations of Augmented Reality (AR) Head-Mounted Displays (AR-HMDs) for collaborative 3D data exploration. Prior of conducting any projects, I saw in AR-HMDs benefits concerning their immersive features: AR-HMDs merge the interactive, visualization, collaborative, and users' physical spaces together. Multiple collaborators can then see and interact directly with 3D visuals anchored within the users' physical space. AR-HMDs usually rely on stereoscopic 3D displays which provide additional depth cues compared to 2D screens, supporting users at understanding 3D datasets better. As AR-HMDs allow users to see each other within the workspace, seamless switches between discussion and exploration phases are possible. Interacting within those visualizations allow for fast and intuitive 3D direct interactions, which yields cues about one's intentions to others, e.g., moving an object by grabbing it is a strong cue about what a person intends to do with that object. Those cues are important for everyone to understand what is currently going on. Finally, by not occluding the users' physical space, usual but important tools such as billboards and workstations performing simulations are still easily accessible within this environment without wearing off the headsets. That being said, and while AR-HMDs are being studied for decades, their computing power before the recent release of the HoloLens in 2016 was not enough for an efficient exploration of 3D data such as ocean datasets. Moreover, previous researchers were more interested in how to make AR possible as opposed to how to use AR. Then, despite all those qualities one may think prior of working with AR-HMDs, there were almost no work that discusses the exploration of such 3D datasets. Moreover AR-HMDs are not suitable for 2D input which are however commonly used with usual explorative tools such as ParaView or CAD software, where users such as scientists and engineers are already efficient with. I then theorize in what situations are AR-HMDs preferable. They seem preferable when the purpose is to share insights with multiple collaborators and to explore patterns together, and where explorative tools can be minimal compared to what workstations provide as most of the prior work and simulations can be done before hand. I am thus combining AR-HMDs with multi-touch tablets, where I use AR-HMDs to merge the visualizations, some 3D interactions, and the collaborative spaces within the users' physical space, and I use the tablets for 2D input and usual Graphical User Interfaces that most software provides (e.g., buttons and menus). I then studied low-level interactions necessary for data exploration which concern the selection of points and regions inside datasets using this new hybrid system. The techniques my co-authors and I have chosen possess different level of directness that we investigated. As this PhD aims at studying AR-HMDs within collaborative environments, I also studied their capacities to adapt the visual to each collaborator for a given anchored 3D object. This is similar to the relaxed "What-You-See-Is-What-I-See" that allows, e.g., multiple users to see different parts of a shared document that remote users can edit simultaneously. Finally, I am currently (i.e., is not finished by the time I am writing this PhD) studying the use of this new system for the collaborative 3D data exploration of ocean datasets that my collaborators at Helmholtz-Zentrum Geesthacht, Germany, are working on. This PhD provides a state of the art of AR used within collaborative environments. It also gives insights about the impacts of 3D interaction directness for 3D data exploration. This PhD finally gives designers insights about the use of AR for collaborative scientific data exploration, with a focus on oceanography
(6861467), Hui Tang. „ShapeUD: A Real-time, Modifiable, Tangible Interactive Tabletop System for Collaborative Urban Design“. Thesis, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Collaborative Immersive Analytics"
Billinghurst, Mark, Maxime Cordeil, Anastasia Bezerianos und Todd Margolis. „Collaborative Immersive Analytics“. In Immersive Analytics, 221–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-01388-2_8.
Der volle Inhalt der QuelleGarrido, Daniel, João Jacob und Daniel Castro Silva. „Building a Prototype for Easy to Use Collaborative Immersive Analytics“. In Computational Science – ICCS 2021, 628–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77961-0_50.
Der volle Inhalt der QuelleNakamura, Shohei, und Yoshihiro Okada. „Co-browsing Cubic Gantt Charts with VR Goggles for Collaborative Immersive Visual Data Analytics“. In Complex, Intelligent and Software Intensive Systems, 384–94. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-35734-3_39.
Der volle Inhalt der QuelleKlamma, Ralf, Rizwan Ali und István Koren. „Immersive Community Analytics for Wearable Enhanced Learning“. In Learning and Collaboration Technologies. Ubiquitous and Virtual Environments for Learning and Collaboration, 162–74. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21817-1_13.
Der volle Inhalt der QuelleKhalid, Md Saifullah. „Sustainable Tourism's Tomorrow“. In Achieving Sustainable Transformation in Tourism and Hospitality Sectors, 139–55. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3390-7.ch008.
Der volle Inhalt der QuelleDel Moral Pérez, M. Esther, Nerea López-Bouzas und Jonathan Castañeda Fernández. „Activating Teacher Competencies Through Designing Gamified Stories With Augmentative Reality“. In Handbook of Research on Establishing Digital Competencies in the Pursuit of Online Learning, 230–52. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-7010-7.ch012.
Der volle Inhalt der QuelleThompson, Kate, und Lina Markauskaite. „Identifying Group Processes and Affect in Learners“. In Cases on the Assessment of Scenario and Game-Based Virtual Worlds in Higher Education, 175–210. IGI Global, 2014. http://dx.doi.org/10.4018/978-1-4666-4470-0.ch006.
Der volle Inhalt der QuelleThompson, Kate, und Lina Markauskaite. „Identifying Group Processes and Affect in Learners“. In Gamification, 1479–505. IGI Global, 2015. http://dx.doi.org/10.4018/978-1-4666-8200-9.ch075.
Der volle Inhalt der QuelleEllis, Maureen, und Patricia Anderson. „Teaching and Learning Through Interdisciplinary Pedagogies in a Second Life Environment“. In Handbook of Research on Program Development and Assessment Methodologies in K-20 Education, 275–303. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3132-6.ch013.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Collaborative Immersive Analytics"
Geymayer, Thomas, und Dieter Schmalstieg. „Collaborative distributed cognition using a seamless desktop infrastructure“. In 2016 Workshop on Immersive Analytics (IA). IEEE, 2016. http://dx.doi.org/10.1109/immersive.2016.7932375.
Der volle Inhalt der QuelleHackathorn, Richard, und Todd Margolis. „Immersive analytics: Building virtual data worlds for collaborative decision support“. In 2016 Workshop on Immersive Analytics (IA). IEEE, 2016. http://dx.doi.org/10.1109/immersive.2016.7932382.
Der volle Inhalt der QuelleNguyen, Huyen, Peter Marendy und Ulrich Engelke. „Collaborative Framework Design for Immersive Analytics“. In 2016 Big Data Visual Analytics (BDVA). IEEE, 2016. http://dx.doi.org/10.1109/bdva.2016.7787044.
Der volle Inhalt der QuelleLee, Benjamin, Maxime Cordeil, Arnaud Prouzeau und Tim Dwyer. „FIESTA: A Free Roaming Collaborative Immersive Analytics System“. In ISS '19: Interactive Surfaces and Spaces. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3343055.3360746.
Der volle Inhalt der QuelleZagermann, Johannes, Sebastian Hubenschmid, Daniel Immanuel Fink, Jonathan Wieland, Harald Reiterer und Tiare Feuchtner. „Challenges and Opportunities for Collaborative Immersive Analytics with Hybrid User Interfaces“. In 2023 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE, 2023. http://dx.doi.org/10.1109/ismar-adjunct60411.2023.00044.
Der volle Inhalt der QuelleLock, John G., Daniel Filonik, Robert Lawther, Nalini Pather, Katharina Gaus, Sarah Kenderdine und Tomasz Bednarz. „Visual analytics of single cell microscopy data using a collaborative immersive environment“. In VRCAI '18: International Conference on Virtual Reality Continuum and its Applications in Industry. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3284398.3284412.
Der volle Inhalt der QuelleReski, Nico, Aris Alissandrakis, Jukka Tyrkkö und Andreas Kerren. „“Oh, that’s where you are!” – Towards a Hybrid Asymmetric Collaborative Immersive Analytics System“. In NordiCHI '20: Shaping Experiences, Shaping Society. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3419249.3420102.
Der volle Inhalt der QuelleKim, Duck Bong, Mahdi Sadeqi Bajestani, Guodong Shao, Albert Jones und Sang Do Noh. „Conceptual Architecture of Digital Twin With Human-in-the-Loop-Based Smart Manufacturing“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-112791.
Der volle Inhalt der QuelleBorhani, Zahra. „[DC] Annotation in Asynchronous Collaborative Immersive Analytic Environments using Augmented Reality“. In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). IEEE, 2022. http://dx.doi.org/10.1109/vrw55335.2022.00326.
Der volle Inhalt der QuelleSeraji, Mohammad Rajabi, und Wolfgang Stuerzlinger. „XVCollab: An Immersive Analytics Tool for Asymmetric Collaboration across the Virtuality Spectrum“. In 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE, 2022. http://dx.doi.org/10.1109/ismar-adjunct57072.2022.00035.
Der volle Inhalt der Quelle