Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cold kinetic deposition“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cold kinetic deposition" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cold kinetic deposition"
Yu, Hai Jiao, Yu Ya Wang, Jun Xue und Zun Wang. „An Advanced Metal Deposition Technique-Kinetic Metallization“. Materials Science Forum 817 (April 2015): 510–15. http://dx.doi.org/10.4028/www.scientific.net/msf.817.510.
Der volle Inhalt der QuelleKoivuluoto, Heli, Andrea Milanti, Giovanni Bolelli, Jyrki Latokartano, Francesco Marra, Giovanni Pulci, Jorma Vihinen, Luca Lusvarghi und Petri Vuoristo. „Structures and Properties of Laser-Assisted Cold-Sprayed Aluminum Coatings“. Materials Science Forum 879 (November 2016): 984–89. http://dx.doi.org/10.4028/www.scientific.net/msf.879.984.
Der volle Inhalt der QuelleLee, Jae Chul, Doo Man Chun, Sung Hoon Ahn und Caroline S. Lee. „Material Properties of Thick Aluminum Coating Made by Cold Gas Dynamic Spray Deposition“. Key Engineering Materials 345-346 (August 2007): 1097–100. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.1097.
Der volle Inhalt der QuelleW. J., W. J. „Effects of Metal Particles on Cold Spray Deposition onto Ti-6Al-4V Alloy via Abaqus/Explicit“. Journal of Engineering Sciences 7, Nr. 2 (2020): E19—E25. http://dx.doi.org/10.21272/jes.2020.7(2).e4.
Der volle Inhalt der QuelleOyinbo, Sunday Temitope, und Tien-Chien Jen. „Feasibility of numerical simulation methods on the Cold Gas Dynamic Spray (CGDS) Deposition process for ductile materials“. Manufacturing Review 7 (2020): 24. http://dx.doi.org/10.1051/mfreview/2020023.
Der volle Inhalt der QuelleTului, Mario, Cecilia Bartuli, Alessia Bezzon, Angelo Luigi Marino, Francesco Marra, Susanna Matera und Giovanni Pulci. „Amorphous Steel Coatings Deposited by Cold-Gas Spraying“. Metals 9, Nr. 6 (12.06.2019): 678. http://dx.doi.org/10.3390/met9060678.
Der volle Inhalt der QuelleSpencer, Kevin, Daniel Fabijanic und Ming Xing Zhang. „Cold Spray of Al-MMC Coatings on Magnesium Alloys for Improved Corrosion and Wear Resistance“. Materials Science Forum 618-619 (April 2009): 377–80. http://dx.doi.org/10.4028/www.scientific.net/msf.618-619.377.
Der volle Inhalt der QuelleKoivuluoto, Heli, Jussi Larjo, Danilo Marini, Giovanni Pulci und Francesco Marra. „Cold-Sprayed Al6061 Coatings: Online Spray Monitoring and Influence of Process Parameters on Coating Properties“. Coatings 10, Nr. 4 (03.04.2020): 348. http://dx.doi.org/10.3390/coatings10040348.
Der volle Inhalt der QuelleBala, Niraj, Harpreet Singh und S. Prakash. „An Overview of Cold Spray Technique“. Materials Science Forum 561-565 (Oktober 2007): 2419–22. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.2419.
Der volle Inhalt der QuelleKrumdieck, S. „Kinetic model of low pressure film deposition from single precursor vapor in a well-mixed, cold-wall reactor“. Acta Materialia 49, Nr. 4 (Februar 2001): 583–88. http://dx.doi.org/10.1016/s1359-6454(00)00356-6.
Der volle Inhalt der QuelleDissertationen zum Thema "Cold kinetic deposition"
Šteiniger, Jakub. „Hodnocení využití technologie studené kinetické depozice na materiálech používaných v elektrotechnice“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442436.
Der volle Inhalt der QuelleSámel, Maroš. „Využití technologie studené kinetické depozice na materiálech používaných v elektrotechnice“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442477.
Der volle Inhalt der QuelleWu, Bo-Yu, und 吳柏諭. „Kinetics study and material analysis of metalorganic chemical vapor deposition copper films-Precursor: (hfac)CuI(COD)“. Thesis, 2006. http://ndltd.ncl.edu.tw/handle/ygbv29.
Der volle Inhalt der Quelle國立臺灣科技大學
化學工程系
94
Growth kinetics and material analysis of copper films with metalorganic chemical vapor deposition (MOCVD) reaction system using hexafluoroacetonate-Cu(I)-1,5-cyclooctadiene (hfac)CuI(COD) as the precursor was studied. In this study, the kinetic data of MOCVD Cu thin films as a function of deposition temperature and partial pressure of precursor were investigated. In addition, the effect of different deposition temperatures on the surface morphology、crystal structure、microstructure and film electricity was discussed. It was found that the growth rate of copper between 120~190℃was written surface reaction limited regime with the value of activation energy as 18.32KJ/mol. Above 190℃, growth rate was in the mass transfer limited regime with an activation energy of 0.652KJ/mol. Through the analysis on the growth kinetics, the kinetic model of chemical vapor deposition as follows: -ra=k2Pa^2/(1+K1Pa)^2 where k2=6.96x106(nm*min-1*torr-2),K1=324.54(torr-1) When the deposition temperature was 190℃, the best copper film electricity was obtained. The electricity of copper film, deposited at 190℃ was better than that of the copper films of deposited at 140℃, because the former could grow the flatter and denser copper films, and stronger preferred orientation of Cu(111). As a result, this lowered electron scattering of grain boundary. The electricity of copper films deposited at 230℃ is worse than that of copper films deposited at 190℃, because the former had large voids in the films due to huge copper grains. Consequently, this caused higher surface electron scattering.
Buchteile zum Thema "Cold kinetic deposition"
Bailyn, Charles D. „Outflows and Jets“. In What Does a Black Hole Look Like? Princeton University Press, 2014. http://dx.doi.org/10.23943/princeton/9780691148823.003.0003.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cold kinetic deposition"
Celeste, Geoffrey, Vincent Guipont und Djamel Missoum-Benziane. „Investigation of Agglomerated and Porous Ceramic Powders Suitable for Cold Spray“. In ITSC2021, herausgegeben von F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0139.
Der volle Inhalt der QuelleGao, Hong, Liangju Zhao, Danling Zeng und Lijuan Gao. „Molecular Dynamics Simulation of Au Cluster Depositing on Au Surface in Cold Gas Spray“. In 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21609.
Der volle Inhalt der QuelleRen, Baihua, und Jun Song. „Peridynamic Simulation of Particles Impact and Interfacial Bonding in Cold Spray Process“. In ITSC2021, herausgegeben von F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0396.
Der volle Inhalt der QuelleYu, Minjae, Hiroki Saito, Chrystelle Bernard, Yuji Ichikawa und Kazuhiro Ogawa. „Influence of the Low-Pressure Cold Spray Operation Parameters on Coating Properties in Metallization of Ceramic Substrates Using Copper and Aluminum Composite Powder“. In ITSC2021, herausgegeben von F. Azarmi, X. Chen, J. Cizek, C. Cojocaru, B. Jodoin, H. Koivuluoto, Y. C. Lau et al. ASM International, 2021. http://dx.doi.org/10.31399/asm.cp.itsc2021p0147.
Der volle Inhalt der QuelleDai, S., J. P. Delplanque, E. J. Lavernia und R. H. Rangel. „Modeling of Reactive Spray Atomization and Deposition“. In ITSC 1998, herausgegeben von Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p0341.
Der volle Inhalt der QuelleWeiss, H. J., V. T. Turitto und H. R. Baumgartner. „FACTORS INFLUENCING FIBRIN DEPOSITION ON SUBENDOTHELIUM“. In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1642950.
Der volle Inhalt der QuellePapa, Stefano, Giuseppe di Gironimo, Federica Casoria und Gioacchino Micciché. „Virtual Prototyping and Simulation of Robotic Devices and Maintenance Procedures for Remote Handling Activities in the Access Cell of DONES“. In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-82390.
Der volle Inhalt der QuelleRotavera, Brandon, Nolan Polley, Eric L. Petersen, Kara Scheu, Mark Crofton und Gilles Bourque. „Ignition and Combustion of Heavy Hydrocarbons Using an Aerosol Shock-Tube Approach“. In ASME Turbo Expo 2010: Power for Land, Sea, and Air. ASMEDC, 2010. http://dx.doi.org/10.1115/gt2010-22844.
Der volle Inhalt der QuelleSuman, Alessio, Nicola Casari, Elettra Fabbri, Michele Pinelli, Luca di Mare und Francesco Montomoli. „Gas Turbine Fouling Tests: Review, Critical Analysis and Particle Impact Behavior Map“. In ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/gt2018-76934.
Der volle Inhalt der QuelleAustin, Morgan, Thao Tran-Le, Robert Kunz, Timothy Simpson und Rui Ni. „Experimental and Computational Studies of Particle Scavenge Flow in Direct Laser Metal Sintering“. In ASME-JSME-KSME 2019 8th Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/ajkfluids2019-4965.
Der volle Inhalt der Quelle