Dissertationen zum Thema „Cohomology of condensed groups“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Cohomology of condensed groups" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Artusa, Marco. „Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Der volle Inhalt der QuelleThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Watson, Toni Aliza. „Twisted cohomology groups“. College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3929.
Der volle Inhalt der QuelleThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Česnavičius, Kęstutis. „Selmer groups as flat cohomology groups“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90180.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 44-46).
Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined by the mod pm Galois representation A[pm]; we show, however, that this is the case if p is large enough. More precisely, we exhibit a finite explicit set of rational primes E depending on K and A, such that Selpm A is determined by A[pm] for all ... In the course of the argument we describe the flat cohomology group ... of the ring of integers of K with coefficients in the pm- torsion A[pm] of the Neron model of A by local conditions for p V E, compare them with the local conditions defining Selm 2A, and prove that A[p't ] itself is determined by A[pm] for such p. Our method sharpens the relationship between Selpm A and ... which was observed by Mazur and continues to work for other isogenies 0 between abelian varieties over global fields provided that deg o is constrained appropriately. To illustrate it, we exhibit resulting explicit rank predictions for the elliptic curve 11A1 over certain families of number fields. Standard glueing techniques developed in the course of the proofs have applications to finite flat group schemes over global bases, permitting us to transfer many of the known local results to the global setting.
by Kęstutis Česnavičius.
Ph. D.
Clark, Jonathan Owen. „Cohomology of some finite groups“. Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240535.
Der volle Inhalt der QuelleEastridge, Samuel Vance. „First l^2-Cohomology Groups“. Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52952.
Der volle Inhalt der QuelleMaster of Science
QUADRELLI, CLAUDIO. „Cohomology of Absolute Galois Groups“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/56993.
Der volle Inhalt der QuelleLeary, Ian James. „The cohomology of certain finite groups“. Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386114.
Der volle Inhalt der QuelleKim, Yunhyong. „Smooth cochain cohomology of loop groups“. Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621575.
Der volle Inhalt der QuelleFoster-Greenwood, Briana A. „Hochschild Cohomology and Complex Reflection Groups“. Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149591/.
Der volle Inhalt der QuelleAnwar, Muhammad F. „Representations and cohomology of algebraic groups“. Thesis, University of York, 2011. http://etheses.whiterose.ac.uk/2032/.
Der volle Inhalt der QuelleUsher, Andrew Edward Ronald. „Cluster points and cohomology for abelian groups“. Thesis, Queen Mary, University of London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.397960.
Der volle Inhalt der QuelleRizkallah, John. „Bounding cohomology for low rank algebraic groups“. Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/267214.
Der volle Inhalt der QuelleEastridge, Samuel Vance. „First Cohomology of Some Infinitely Generated Groups“. Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77517.
Der volle Inhalt der QuellePh. D.
Chen, Yu Qing. „Farrell cohomology of automorphism groups of free groups of finite rank /“. The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487947908404206.
Der volle Inhalt der QuelleGreen, David John. „On the cohomology of certain finite simple groups“. Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239184.
Der volle Inhalt der QuelleHutchinson, Samuel M. A. „The Morava cohomology of finite general linear groups“. Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/20464/.
Der volle Inhalt der QuelleHaller, Sergei. „Computing Galois cohomology and forms of linear algebraic groups“. Giessen Giessener Elektronische Bibliothek, 2005. http://geb.uni-giessen.de/geb/volltexte/2005/2474/index.html.
Der volle Inhalt der QuelleLafferty, Matthew J. „Eichler-Shimura cohomology groups and the Iwasawa main conjecture“. Thesis, The University of Arizona, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3702136.
Der volle Inhalt der QuelleOhta has given a detailed study of the ordinary part of p-adic Eichler-Shimura cohomology groups (resp., generalized p-adic Eichler-Shimura cohomology groups) from the perspective of p-adic Hodge theory. Assuming various hypotheses, he is able to use the structure of these groups to give a simple proof of the Iwasawa main conjecture over Q. The goal of this thesis is to extend Ohta’s arguments with a view towards removing these hypotheses.
Xu, Mingzhi. „On Cohomology Groups of Global Units in Zdp-Extensions /“. The Ohio State University, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487864986611668.
Der volle Inhalt der QuelleLafferty, Matthew John. „Eichler-Shimura Cohomology Groups and the Iwasawa Main Conjecture“. Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/556816.
Der volle Inhalt der QuelleHamilton, Martin. „Finiteness conditions in group cohomology“. Thesis, Connect to e-thesis, 2008. http://theses.gla.ac.uk/182/.
Der volle Inhalt der QuellePh.D. thesis submitted to the Faculty of Information and Mathematical Sciences, University of Glasgow, 2008. Includes bibliographical references. Print version also available.
Edmundo, Mario Jorge. „O-minimal expansions of groups“. Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.312447.
Der volle Inhalt der QuelleGuillot, Pierre. „Representations and Cohomology of Groups -- Topics in algebra and topology“. Habilitation à diriger des recherches, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00732874.
Der volle Inhalt der QuelleClarke, Nicholas. „Cohomology of groups with coefficients in a non-trivial module“. Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/cohomology-of-groups-with-coefficients-in-a-nontrivial-module(497ed9be-bac2-4b73-9fd1-f4f21bf5b610).html.
Der volle Inhalt der QuelleReeder, Mark Stephen. „The Steinberg module and the top cohomology of arithmetic groups /“. The Ohio State University, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487587604133071.
Der volle Inhalt der QuelleGriffin, James Thomas. „Automorphisms of free products of groups“. Thesis, University of Cambridge, 2013. https://www.repository.cam.ac.uk/handle/1810/244265.
Der volle Inhalt der QuelleLiedtke, Christian. „On fundamental groups of Galois closures of generic projections“. Bonn : Mathematisches Institut der Universität, 2004. http://catalog.hathitrust.org/api/volumes/oclc/62768237.html.
Der volle Inhalt der QuelleCha, Byungchul. „Vanishing of some cohomology groups and bounds for the Shafarevich-Tate groups of elliptic curves“. Available to US Hopkins community, 2003. http://wwwlib.umi.com/dissertations/dlnow/3080634.
Der volle Inhalt der QuelleOzel, Cenap. „On the complex cobordism of flag varieties associated to loop groups“. Thesis, University of Glasgow, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241783.
Der volle Inhalt der QuelleCheng, Jian-Jun. „Restrictions of invariants of reflections and dirac cohomology /“. View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?MATH%202004%20CHENG.
Der volle Inhalt der QuelleSantacruz, Camilo Andres Angulo. „A cohomology theory for Lie 2-algebras and Lie 2-groups“. Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-084657/.
Der volle Inhalt der QuelleNesta tese, nós introduzimos uma nova teoria de cohomologia associada às 2-álgebras de Lie e uma nova teoria de cohomologia associada aos 2-grupos de Lie. Prova-se que estas teorias de cohomologia estendem as teorias de cohomologia clássicas de álgebras de Lie e grupos de Lie em que os seus segundos grupos classificam extensões. Finalmente, usaremos estos fatos junto com um morfismo de van Est adaptado para encontrar uma nova prova da integrabilidade das 2-álgebras de Lie.
Callegaro, Filippo. „Cohomology of finite and affine type Artin groups over Abelian representation /“. Pisa, Italy : Edizioni della normale, 2009. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017728632&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Der volle Inhalt der QuelleKatayama, Shin-ichi. „A Theorem on the Cohomology of Groups and some Arithmetical Applications“. 京都大学 (Kyoto University), 1985. http://hdl.handle.net/2433/86360.
Der volle Inhalt der QuelleCallegaro, Filippo. „Cohomology of finite and affine type Artin groups over abelian representations“. Doctoral thesis, Scuola Normale Superiore, 2007. http://hdl.handle.net/11384/85685.
Der volle Inhalt der QuelleJoecken, Kyle. „Dimension of Virtually Cyclic Classifying Spaces for Certain Geometric Groups“. The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1374085871.
Der volle Inhalt der QuelleGrieder, Ralph. „On the symplectic classes in the cohomology of the mapping class groups /“. [S.l.] : [s.n.], 1996. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=11677.
Der volle Inhalt der QuelleWeber, Patrick. „Cohomology groups on hypercomplex manifolds and Seiberg-Witten equations on Riemannian foliations“. Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/252914.
Der volle Inhalt der QuelleDoctorat en Sciences
info:eu-repo/semantics/nonPublished
馮淑貞 und Suk-ching Fung. „Asymptotic vanishing theorem of cohomology groups on compact quotientsof the unit ball“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31220848.
Der volle Inhalt der QuelleKumon, Asuka. „On derivatives of L-series, p-adic cohomology and ray class groups“. Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/on-derivatives-of-lseries-padic-cohomology-and-ray-class-groups(1ec486f7-f9aa-45c2-a245-976d4dd9d10f).html.
Der volle Inhalt der QuelleAndo, Matthew. „Operations in complex-oriented cohomology theories related to subgroups of formal groups“. Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13230.
Der volle Inhalt der QuelleMelo, Heather Aurora Florence de. „Totally real Galois representations in characteristic 2 and arithmetic cohomology /“. Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd1048.pdf.
Der volle Inhalt der QuelleTERRAGNI, TOMMASO. „Hecke algebras associated to coxeter groups“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/29634.
Der volle Inhalt der QuelleSato, Takashi. „The T-equivariant Integral Cohomology Ring of F4/T“. 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199076.
Der volle Inhalt der QuelleDeshpande, D. V. „Topological methods in algebraic geometry : cohomology rings, algebraic cobordism and higher Chow groups“. Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598515.
Der volle Inhalt der QuelleNave, Lee Stewart. „The cohomology of finite subgroups of Morava stabilizer groups and Smith-Toda complexes /“. Thesis, Connect to this title online; UW restricted, 1999. http://hdl.handle.net/1773/5803.
Der volle Inhalt der QuelleFung, Suk-ching. „Asymptotic vanishing theorem of cohomology groups on compact quotients of the unit ball /“. Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20667991.
Der volle Inhalt der QuelleFukumoto, Yoshiyasu. „On the Strong Novikov Conjecture of Locally Compact Groups for Low Degree Cohomology Classes“. Kyoto University, 2016. http://hdl.handle.net/2433/217729.
Der volle Inhalt der QuelleGandhi, Raj. „Oriented Cohomology Rings of the Semisimple Linear Algebraic Groups of Ranks 1 and 2“. Thesis, Université d'Ottawa / University of Ottawa, 2021. http://hdl.handle.net/10393/42566.
Der volle Inhalt der QuelleLond, Daniel. „On Reductive Subgroups of Algebraic Groups and a Question of Külshammer“. Thesis, University of Canterbury. Mathematics and Statistics, 2013. http://hdl.handle.net/10092/8033.
Der volle Inhalt der QuelleMierach, Svea Nora Verfasser], und Christoph [Akademischer Betreuer] [Schweigert. „Hochschild cohomology, modular tensor categories and mapping class groups / Svea Nora Mierach ; Betreuer: Christoph Schweigert“. Hamburg : Staats- und Universitätsbibliothek Hamburg, 2020. http://d-nb.info/1216998140/34.
Der volle Inhalt der Quelle