Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Cohomology of condensed groups“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Cohomology of condensed groups" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Cohomology of condensed groups"
Rodrigues Jacinto, Joaquín, und Juan Rodríguez Camargo. „Solid locally analytic representations of 𝑝-adic Lie groups“. Representation Theory of the American Mathematical Society 26, Nr. 31 (31.08.2022): 962–1024. http://dx.doi.org/10.1090/ert/615.
Der volle Inhalt der QuelleArtusa, Marco. „Duality for condensed cohomology of the Weil group of a $p$-adic field“. Documenta Mathematica 29, Nr. 6 (26.11.2024): 1381–434. http://dx.doi.org/10.4171/dm/977.
Der volle Inhalt der QuelleGähler, Franz, und Johannes Kellendonk. „Cohomology groups for projection tilings of codimension 2“. Materials Science and Engineering: A 294-296 (Dezember 2000): 438–40. http://dx.doi.org/10.1016/s0921-5093(00)01171-0.
Der volle Inhalt der QuelleFISHER, BENJI N., und DAVID A. RABSON. „Group Cohomology and Quasicrystals I: Classification of Two-Dimensional Space Groups“. Ferroelectrics 305, Nr. 1 (Januar 2004): 37–40. http://dx.doi.org/10.1080/00150190490462360.
Der volle Inhalt der QuelleConduché, Daniel, Hvedri Inassaridze und Nick Inassaridze. „Modq cohomology and Tate–Vogel cohomology of groups“. Journal of Pure and Applied Algebra 189, Nr. 1-3 (Mai 2004): 61–87. http://dx.doi.org/10.1016/j.jpaa.2003.10.025.
Der volle Inhalt der QuelleInassaridze, H. „Non-Abelian Cohomology of Groups“. gmj 4, Nr. 4 (August 1997): 313–31. http://dx.doi.org/10.1515/gmj.1997.313.
Der volle Inhalt der QuelleThomas, C. B. „COHOMOLOGY OF FINITE GROUPS“. Bulletin of the London Mathematical Society 29, Nr. 1 (Januar 1997): 121–23. http://dx.doi.org/10.1112/blms/29.1.121.
Der volle Inhalt der QuelleHiller, Howard. „Cohomology of Bieberbach groups“. Mathematika 32, Nr. 1 (Juni 1985): 55–59. http://dx.doi.org/10.1112/s002557930001086x.
Der volle Inhalt der QuelleHuebschmann, Johannes. „Cohomology of metacyclic groups“. Transactions of the American Mathematical Society 328, Nr. 1 (01.01.1991): 1–72. http://dx.doi.org/10.1090/s0002-9947-1991-1031239-1.
Der volle Inhalt der QuellePirashvili, Mariam. „Symmetric cohomology of groups“. Journal of Algebra 509 (September 2018): 397–418. http://dx.doi.org/10.1016/j.jalgebra.2018.05.020.
Der volle Inhalt der QuelleDissertationen zum Thema "Cohomology of condensed groups"
Artusa, Marco. „Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique“. Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Der volle Inhalt der QuelleThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Watson, Toni Aliza. „Twisted cohomology groups“. College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3929.
Der volle Inhalt der QuelleThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Česnavičius, Kęstutis. „Selmer groups as flat cohomology groups“. Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90180.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 44-46).
Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined by the mod pm Galois representation A[pm]; we show, however, that this is the case if p is large enough. More precisely, we exhibit a finite explicit set of rational primes E depending on K and A, such that Selpm A is determined by A[pm] for all ... In the course of the argument we describe the flat cohomology group ... of the ring of integers of K with coefficients in the pm- torsion A[pm] of the Neron model of A by local conditions for p V E, compare them with the local conditions defining Selm 2A, and prove that A[p't ] itself is determined by A[pm] for such p. Our method sharpens the relationship between Selpm A and ... which was observed by Mazur and continues to work for other isogenies 0 between abelian varieties over global fields provided that deg o is constrained appropriately. To illustrate it, we exhibit resulting explicit rank predictions for the elliptic curve 11A1 over certain families of number fields. Standard glueing techniques developed in the course of the proofs have applications to finite flat group schemes over global bases, permitting us to transfer many of the known local results to the global setting.
by Kęstutis Česnavičius.
Ph. D.
Clark, Jonathan Owen. „Cohomology of some finite groups“. Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240535.
Der volle Inhalt der QuelleEastridge, Samuel Vance. „First l^2-Cohomology Groups“. Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52952.
Der volle Inhalt der QuelleMaster of Science
QUADRELLI, CLAUDIO. „Cohomology of Absolute Galois Groups“. Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/56993.
Der volle Inhalt der QuelleLeary, Ian James. „The cohomology of certain finite groups“. Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386114.
Der volle Inhalt der QuelleKim, Yunhyong. „Smooth cochain cohomology of loop groups“. Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621575.
Der volle Inhalt der QuelleFoster-Greenwood, Briana A. „Hochschild Cohomology and Complex Reflection Groups“. Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149591/.
Der volle Inhalt der QuelleAnwar, Muhammad F. „Representations and cohomology of algebraic groups“. Thesis, University of York, 2011. http://etheses.whiterose.ac.uk/2032/.
Der volle Inhalt der QuelleBücher zum Thema "Cohomology of condensed groups"
Adem, Alejandro, und R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06280-7.
Der volle Inhalt der QuelleAdem, Alejandro, und R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06282-1.
Der volle Inhalt der QuelleCogdell, James W., Günter Harder, Stephen Kudla und Freydoon Shahidi, Hrsg. Cohomology of Arithmetic Groups. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95549-0.
Der volle Inhalt der QuelleJames, Milgram R., Hrsg. Cohomology of finite groups. 2. Aufl. Berlin: Springer, 2004.
Den vollen Inhalt der Quelle findenJames, Milgram R., Hrsg. Cohomology of finite groups. Berlin: Springer-Verlag, 1994.
Den vollen Inhalt der Quelle findenVermani, L. R. Lectures on cohomology of groups. Kurukshetra: Publication Bureau, Kurukshetra University, 1994.
Den vollen Inhalt der Quelle findenLang, Serge. Topics in Cohomology of Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092624.
Der volle Inhalt der QuelleCarlson, Jon F., Lisa Townsley, Luis Valeri-Elizondo und Mucheng Zhang. Cohomology Rings of Finite Groups. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0215-7.
Der volle Inhalt der QuelleMaulik, Davesh. Quantum groups and quantum cohomology. Paris: Société Mathématique de France, 2019.
Den vollen Inhalt der Quelle findenLang, Serge. Topics in cohomology of groups. Berlin: Springer, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Cohomology of condensed groups"
Jantzen, Jens. „Cohomology“. In Representations of Algebraic Groups, 49–64. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/107/04.
Der volle Inhalt der QuelleBump, Daniel. „Cohomology of Grassmannians“. In Lie Groups, 517–27. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8024-2_48.
Der volle Inhalt der QuelleBump, Daniel. „Cohomology of Grassmannians“. In Lie Groups, 428–37. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4094-3_50.
Der volle Inhalt der QuelleMac Lane, Saunders. „Cohomology of Groups“. In Homology, 103–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-62029-4_5.
Der volle Inhalt der QuelleHilton, Peter J., und Urs Stammbach. „Cohomology of Groups“. In A Course in Homological Algebra, 184–228. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4419-8566-8_7.
Der volle Inhalt der QuelleHalter-Koch, Franz. „Cohomology of groups“. In Class Field Theory and L Functions, 87–154. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429506574-2.
Der volle Inhalt der QuelleWedhorn, Torsten. „Lie Groups“. In Manifolds, Sheaves, and Cohomology, 123–37. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-10633-1_6.
Der volle Inhalt der QuelleKoch, Helmut. „Cohomology of Profinite Groups“. In Springer Monographs in Mathematics, 21–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04967-9_4.
Der volle Inhalt der QuelleHarari, David. „Cohomology of Profinite Groups“. In Galois Cohomology and Class Field Theory, 65–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43901-9_4.
Der volle Inhalt der QuelleSerre, Jean-Pierre. „Cohomology of profinite groups“. In Springer Monographs in Mathematics, 1–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59141-9_1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Cohomology of condensed groups"
Masuoka, Akira. „Hopf cohomology vanishing via approximation by Hochschild cohomology“. In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-8.
Der volle Inhalt der QuelleBONANZINGA, V., und L. SORRENTI. „LEXSEGMENT IDEALS AND SIMPLICIAL COHOMOLOGY GROUPS“. In Selected Contributions from the 8th SIMAI Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709394_0016.
Der volle Inhalt der QuelleVenkataramana, T. N. „Cohomology of Arithmetic Groups and Representations“. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0100.
Der volle Inhalt der QuelleKhalkhali, M., und B. Rangipour. „Cyclic cohomology of (extended) Hopf algebras“. In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.
Der volle Inhalt der QuelleVENKATESH, AKSHAY. „COHOMOLOGY OF ARITHMETIC GROUPS - FIELDS MEDAL LECTURE“. In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0014.
Der volle Inhalt der QuelleSAKANE, YUSUKE, und TAKUMI YAMADA. „HARMONIC COHOMOLOGY GROUPS ON COMPACT SYMPLECTIC NILMANIFOLDS“. In Proceedings of the International Conference on Modern Mathematics and the International Symposium on Differential Geometry. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776419_0014.
Der volle Inhalt der QuelleSOMA, TERUHIKO. „THE THIRD BOUNDED COHOMOLOGY AND KLEINIAN GROUPS“. In Proceedings of the 37th Taniguchi Symposium. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814503921_0015.
Der volle Inhalt der QuelleLI, JIAN-SHU, und JOACHIM SCHWERMER. „AUTOMORPHIC REPRESENTATIONS AND COHOMOLOGY OF ARITHMETIC GROUPS“. In Proceedings of the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811264_0005.
Der volle Inhalt der QuelleSharygin, G. I. „Hopf-type Cyclic Cohomology via the Karoubi Operator“. In Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-14.
Der volle Inhalt der QuelleCallegaro, Filippo, Davide Moroni und Mario Salvetti. „Cohomology of Artin groups of type \tildeAn, Bn and applications“. In Groups, homotopy and configuration spaces, in honour of Fred Cohen's 60th birthday. Mathematical Sciences Publishers, 2008. http://dx.doi.org/10.2140/gtm.2008.13.85.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Cohomology of condensed groups"
Holod, Petro I. Geometric Quantization, Cohomology Groups and Intertwining Operators. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-95-104.
Der volle Inhalt der Quelle