Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Coherent sampling.

Zeitschriftenartikel zum Thema „Coherent sampling“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Coherent sampling" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kim, Inwoong, Cheolhwan Kim und Guifang Li. „Requirements for the sampling source in coherent linear sampling“. Optics Express 12, Nr. 12 (2004): 2723. http://dx.doi.org/10.1364/opex.12.002723.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kray, Stefan, Felix Spöler, Thomas Hellerer und Heinrich Kurz. „Electronically controlled coherent linear optical sampling for optical coherence tomography“. Optics Express 18, Nr. 10 (28.04.2010): 9976. http://dx.doi.org/10.1364/oe.18.009976.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Yang, Honglei, Shengkang Zhang, Huan Zhao und Jun Ge. „Phase-coherent asynchronous optical sampling system“. Optics Express 28, Nr. 24 (20.11.2020): 37040. http://dx.doi.org/10.1364/oe.405074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Xin Chen, Xiaobo Xie, Inwoong Kim, Guifang Li, Hanyi Zhang und Bingkun Zhou. „Coherent Detection Using Optical Time-Domain Sampling“. IEEE Photonics Technology Letters 21, Nr. 5 (März 2009): 286–88. http://dx.doi.org/10.1109/lpt.2008.2010868.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Agrež, Dušan. „Power measurement in the non-coherent sampling“. Measurement 41, Nr. 3 (April 2008): 230–35. http://dx.doi.org/10.1016/j.measurement.2006.12.005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Chaturvedi, S. „The sampling theorem and coherent state systems“. Optics and Spectroscopy 103, Nr. 3 (September 2007): 405–10. http://dx.doi.org/10.1134/s0030400x07090093.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Avitzour, D. „SNR/bandwidth tradeoff in coherent radar sampling“. IEEE Transactions on Aerospace and Electronic Systems 26, Nr. 2 (März 1990): 403–5. http://dx.doi.org/10.1109/7.53447.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Agrez, Dusan. „Estimation of the signal component from random equivalent and non-coherent sampling measurements“. ACTA IMEKO 6, Nr. 4 (28.12.2017): 54. http://dx.doi.org/10.21014/acta_imeko.v6i4.474.

Der volle Inhalt der Quelle
Annotation:
Estimations of the signal component parameters in the case of random equivalent time sampling and under non-coherent sampling condition comprise two main error contributions: spectral leakage effect due to non-coherency and additional noise due to the randomization of sampling intervals. In the estimation procedure the non-parametric interpolated DFT approach has to be used first to estimate the component frequency and, after that, an iterative 4-parametric sine-fit algorithm should be used for other component parameters (amplitude and phase). Their estimations are possible when the duty ratio of random samples from the total samples in the non-coherent measurement interval is above 0.1. With these duty ratios of random samples it is possible to achieve error levels of 0.001 bins of the frequency estimations in relation to the estimation on full ensemble of points.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Roberts, Lyle E., Robert L. Ward, Craig Smith und Daniel A. Shaddock. „Coherent Beam Combining Using an Internally Sensed Optical Phased Array of Frequency-Offset Phase Locked Lasers“. Photonics 7, Nr. 4 (28.11.2020): 118. http://dx.doi.org/10.3390/photonics7040118.

Der volle Inhalt der Quelle
Annotation:
Coherent beam combining can be used to scale optical power and enable mechanism-free beam steering using an optical phased array. Coherently combining multiple free-running lasers in a leader-follower laser configuration is challenging due to the need to measure and stabilize large and highly dynamic phase differences between them. We present a scalable technique based on frequency-offset phase locking and digitally enhanced interferometry to clone the coherence of multiple lasers without the use of external sampling optics, which has the potential to support both coherent and spectral beam combining, and alleviates issues of voltage wrapping associated with actuating feedback control using electro-optic modulators. This technique was demonstrated experimentally using a tiled-aperture optical phased array in which the relative output phase of three free-running lasers was stabilized with an RMS output phase stability of λ/104.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Tankeliun, Tomas, Oleg Zaytsev und Vytautas Urbanavicius. „Hybrid Time-Base Device for Coherent Sampling Oscilloscope“. Measurement Science Review 19, Nr. 3 (01.06.2019): 93–100. http://dx.doi.org/10.2478/msr-2019-0015.

Der volle Inhalt der Quelle
Annotation:
Abstract In this paper, a hybrid time-base (HTB) device for the coherent sampling oscilloscope is presented. The HTB device makes it possible to reduce the uncertainty of determining the time position of the sample in the horizontal channel of the sampling oscilloscope. For its functioning, the proposed HTB device requires that the system-under-test, in addition to the test signal, also has a synchronous reference clock – harmonic oscillation. It should be noted that both the test signal and the harmonic reference clock are sampled simultaneously. The harmonic reference clock is connected to one of the oscilloscope channels and a special algorithm processes the clock samples and adjusts the coherent sampling mode. Two techniques of determining the position of the sample on the time axis are combined in the HTB device – the “trigonometric”, when the position is calculated by the arccosine or arcsine formula of the reference clock sampling value, and the interpolation method, according to which the time position of the sample is found by averaging the positions of two adjacent samples, obtained using said “trigonometric” technique. Primary experimental studies have shown that using the HTB device can reduce jitter of the sampling oscilloscope by several times and the drift with constant time distortion components is practically absent in this device.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Zizhe Ding, Xiaodong Wang und Xian-Da Zhang. „Sampling-Based Soft Equalization for Coherent Optical Channels“. Journal of Lightwave Technology 27, Nr. 16 (August 2009): 3599–606. http://dx.doi.org/10.1109/jlt.2009.2024775.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Barák, T., J. Bittner und V. Havran. „Temporally Coherent Adaptive Sampling for Imperfect Shadow Maps“. Computer Graphics Forum 32, Nr. 4 (Juli 2013): 87–96. http://dx.doi.org/10.1111/cgf.12154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Carbone, P., und G. Chiorboli. „ADC sinewave histogram testing with quasi-coherent sampling“. IEEE Transactions on Instrumentation and Measurement 50, Nr. 4 (2001): 949–53. http://dx.doi.org/10.1109/19.948305.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Wallace, Tim, und Ali Sekmen. „Kaczmarz Iterative Projection and Nonuniform Sampling with Complexity Estimates“. Journal of Medical Engineering 2014 (15.12.2014): 1–15. http://dx.doi.org/10.1155/2014/908984.

Der volle Inhalt der Quelle
Annotation:
Kaczmarz’s alternating projection method has been widely used for solving mostly over-determined linear system of equations Ax=b in various fields of engineering, medical imaging, and computational science. Because of its simple iterative nature with light computation, this method was successfully applied in computerized tomography. Since tomography generates a matrix A with highly coherent rows, randomized Kaczmarz algorithm is expected to provide faster convergence as it picks a row for each iteration at random, based on a certain probability distribution. Since Kaczmarz’s method is a subspace projection method, the convergence rate for simple Kaczmarz algorithm was developed in terms of subspace angles. This paper provides analyses of simple and randomized Kaczmarz algorithms and explains the link between them. New versions of randomization are proposed that may speed up convergence in the presence of nonuniform sampling, which is common in tomography applications. It is anticipated that proper understanding of sampling and coherence with respect to convergence and noise can improve future systems to reduce the cumulative radiation exposures to the patient. Quantitative simulations of convergence rates and relative algorithm benchmarks have been produced to illustrate the effects of measurement coherency and algorithm performance, respectively, under various conditions in a real-time kernel.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Patil, G. P., A. K. Sinha und C. Taillie. „Ranked set sampling, coherent rankings and size-biased permutations“. Journal of Statistical Planning and Inference 63, Nr. 2 (Oktober 1997): 311–24. http://dx.doi.org/10.1016/s0378-3758(97)00030-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Popescu, Voicu, Bedrich Benes, Paul Rosen, Jian Cui und Lili Wang. „A Flexible Pinhole Camera Model for Coherent Nonuniform Sampling“. IEEE Computer Graphics and Applications 34, Nr. 4 (Juli 2014): 30–41. http://dx.doi.org/10.1109/mcg.2014.21.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Merino, Sandro, und Mark A. Nyfeler. „Applying importance sampling for estimating coherent credit risk contributions“. Quantitative Finance 4, Nr. 2 (April 2004): 199–207. http://dx.doi.org/10.1080/14697680400000024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Bernard, Florent, Viktor Fischer und Boyan Valtchanov. „Mathematical model of physical RNGs based on coherent sampling“. Tatra Mountains Mathematical Publications 45, Nr. 1 (01.12.2010): 1–14. http://dx.doi.org/10.2478/v10127-010-0001-1.

Der volle Inhalt der Quelle
Annotation:
ABSTRACT Random number generators represent one of basic cryptographic primitives used in creating cryptographic protocols. Their security evaluation represents very important part in the design, implementation and employment phase of the generator. One of important security requirements is the existence of a mathematical model describing the physical noise source and the statistical properties of the digitized noise derived from it. The aim of this paper is to propose the model of a class of generators using two jittery clocks with rationally related frequencies. The clock signals with related frequencies can be obtained using phase-locked loops, delay-locked loops or ring oscillators with adjusted oscillation periods. The proposed mathematical model is used to provide entropy per bit estimators and expected bias on the generated sequence. The model is validated by hardware experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Coddington, I., W. C. Swann und N. R. Newbury. „Coherent linear optical sampling at 15 bits of resolution“. Optics Letters 34, Nr. 14 (09.07.2009): 2153. http://dx.doi.org/10.1364/ol.34.002153.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Vaisman, Radislav, Dirk P. Kroese und Ilya B. Gertsbakh. „Improved Sampling Plans for Combinatorial Invariants of Coherent Systems“. IEEE Transactions on Reliability 65, Nr. 1 (März 2016): 410–24. http://dx.doi.org/10.1109/tr.2015.2446471.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Shalashilin, Dmitrii V., und Mark S. Child. „Basis set sampling in the method of coupled coherent states: Coherent state swarms, trains, and pancakes“. Journal of Chemical Physics 128, Nr. 5 (07.02.2008): 054102. http://dx.doi.org/10.1063/1.2828509.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Sakamoto, Takahide, Guo-Wei Lu und Naokatsu Yamamoto. „Loop-Assisted Coherent Matched Detector for Parallel Time-Frequency Sampling“. Journal of Lightwave Technology 35, Nr. 4 (15.02.2017): 807–14. http://dx.doi.org/10.1109/jlt.2016.2645224.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Yu, F. T. S., und Y. W. Zhang. „Fringe visibility of dual-aperture sampling with partially coherent illumination“. Applied Optics 25, Nr. 18 (15.09.1986): 3191. http://dx.doi.org/10.1364/ao.25.003191.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Arvind, S. Chaturvedi, N. Mukunda und R. Simon. „The sampling theorem and coherent state systems in quantum mechanics“. Physica Scripta 74, Nr. 2 (19.07.2006): 168–79. http://dx.doi.org/10.1088/0031-8949/74/2/004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Bakopoulos, Paraskevas, Stefanos Dris, Bernhard Schrenk, Ioannis Lazarou und Hercules Avramopoulos. „Bandpass sampling in heterodyne receivers for coherent optical access networks“. Optics Express 20, Nr. 28 (19.12.2012): 29404. http://dx.doi.org/10.1364/oe.20.029404.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Fischer, J. K., R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss und C. Schubert. „High-Speed Digital Coherent Receiver Based on Parallel Optical Sampling“. Journal of Lightwave Technology 29, Nr. 4 (Februar 2011): 378–85. http://dx.doi.org/10.1109/jlt.2010.2090132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Guo, Cheng-Shan, Kun Liang, Xin-Ting Zhang und Hui-Tian Wang. „Real-time coherent diffractive imaging with convolution-solvable sampling array“. Optics Letters 35, Nr. 6 (15.03.2010): 850. http://dx.doi.org/10.1364/ol.35.000850.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Gavish, Matan, und Ronald R. Coifman. „Sampling, denoising and compression of matrices by coherent matrix organization“. Applied and Computational Harmonic Analysis 33, Nr. 3 (November 2012): 354–69. http://dx.doi.org/10.1016/j.acha.2012.02.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Tang, Zijian, und Xander Campman. „Acquisition and separation of coherent simultaneous sources: Theory and an application to data acquired in the Sultanate of Oman“. GEOPHYSICS 84, Nr. 1 (01.01.2019): V55—V66. http://dx.doi.org/10.1190/geo2017-0613.1.

Der volle Inhalt der Quelle
Annotation:
In an effort to reduce acquisition costs or increase (source) sampling density, we have developed a coherent simultaneous-source scheme. Different from most existing simultaneous acquisition, our scheme enforces the received signal to remain coherent in all sorting domains, thus even in the common-receiver domain. A major benefit of the enforced signal coherency is that it enables multidomain preprocessing prior to source separation. At the same time, it poses a challenge to the source separation itself. Based on the observation that the proposed coherent simultaneous-source scheme is equivalent to the traditional source array, we have developed a novel source separation method that comprises (1) interpolating the observed signal in the space domain and (2) removing the source-array effect. In practice, the source-array effect cannot perfectly be removed in the presence of notches. This fact can, however, be deliberately leveraged for noise attenuation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Nahata, Ajay, David H. Auston, Tony F. Heinz und Chengjiu Wu. „Coherent detection of freely propagating terahertz radiation by electro‐optic sampling“. Applied Physics Letters 68, Nr. 2 (08.01.1996): 150–52. http://dx.doi.org/10.1063/1.116130.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Takizawa, Shigekazu, Kotaro Hiramatsu und Keisuke Goda. „Compressed time-domain coherent Raman spectroscopy with real-time random sampling“. Vibrational Spectroscopy 107 (März 2020): 103042. http://dx.doi.org/10.1016/j.vibspec.2020.103042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Zhuang, Yuming, und Degang Chen. „Accurate Spectral Testing With Non-Coherent Sampling for Multi-Tone Test“. IEEE Transactions on Circuits and Systems II: Express Briefs 64, Nr. 12 (Dezember 2017): 1357–61. http://dx.doi.org/10.1109/tcsii.2017.2740937.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Masia, Francesco, Paola Borri und Wolfgang Langbein. „Sparse sampling for fast hyperspectral coherent anti-Stokes Raman scattering imaging“. Optics Express 22, Nr. 4 (13.02.2014): 4021. http://dx.doi.org/10.1364/oe.22.004021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Cao, Minghua, Jianqiang Li, Yitang Dai, Feifei Yin und Kun Xu. „Multiband Phase-Modulated RoF Link With Coherent Detection and Bandpass Sampling“. IEEE Photonics Technology Letters 27, Nr. 21 (01.11.2015): 2308–11. http://dx.doi.org/10.1109/lpt.2015.2462087.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Lawson, Kevin L., Fred W. Huffer und Hani Doss. „Bayesian nonparametric estimation via Gibbs sampling for coherent systems with redundancy“. Annals of Statistics 25, Nr. 3 (Juni 1997): 1109–39. http://dx.doi.org/10.1214/aos/1069362740.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Göbel, T., D. Schoenherr, C. Sydlo, M. Feiginov, P. Meissner und H. L. Hartnagel. „Single-sampling-point coherent detection in continuous-wave photomixing terahertz systems“. Electronics Letters 45, Nr. 1 (2009): 65. http://dx.doi.org/10.1049/el:20093086.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Hudert, F., A. Bartels, C. Janke, T. Dekorsy und K. Köhler. „Coherent acoustic phonons in phonon cavities investigated by asynchronous optical sampling“. Journal of Physics: Conference Series 92 (01.12.2007): 012012. http://dx.doi.org/10.1088/1742-6596/92/1/012012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

WEI, GongXiang, XinTing ZHANG, ChengShan GUO und ShengGui FU. „Noniterative real-time coherent diffraction imaging by period sampling aperture array“. SCIENTIA SINICA Physica, Mechanica & Astronomica 42, Nr. 5 (01.04.2012): 452–57. http://dx.doi.org/10.1360/132011-776.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

Öztürk, Hande, Hanfei Yan, John P. Hill und Ismail C. Noyan. „Sampling statistics of diffraction from nanoparticle powder aggregates“. Journal of Applied Crystallography 47, Nr. 3 (29.05.2014): 1016–25. http://dx.doi.org/10.1107/s1600576714008528.

Der volle Inhalt der Quelle
Annotation:
In this study, the sampling statistics of X-ray diffraction data obtained from polycrystalline nanopowders are studied through analytical formulations and numerical modelling. It is shown that the very large acceptance angles of crystalline nanoparticles can cause issues in computing the number of diffracting grains scattering into a given Bragg reflection. These results intimate that formulations previously tested and verified for polycrystalline aggregates with grains larger than 500 nm should be revalidated for particles with coherent scattering lengths below 10 nm.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Wang, Fanggang, und Xiaodong Wang. „Coherent Optical DFT-Spread OFDM“. Advances in Optical Technologies 2011 (31.03.2011): 1–4. http://dx.doi.org/10.1155/2011/689289.

Der volle Inhalt der Quelle
Annotation:
We consider application of the discrete Fourier transform-spread orthogonal frequency-division multiplexing (DFT-spread OFDM) technique to high-speed fiber optic communications. The DFT-spread OFDM is a form of single-carrier technique that possesses almost all advantages of the multicarrier OFDM technique (such as high spectral efficiency, flexible bandwidth allocation, low sampling rate, and low-complexity equalization). In particular, we consider the optical DFT-spread OFDM system with polarization division multiplexing (PDM) that employs a tone-by-tone linear minimum mean square error (MMSE) equalizer. We show that such a system offers a much lower peak-to-average power ratio (PAPR) performance as well as better bit error rate (BER) performance compared with the optical OFDM system that employs amplitude clipping.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Lin, Qianqiang, Zeng Ping Chen, Yue Zhang und Jianzhi Lin. „COHERENT PHASE COMPENSATION METHOD BASED ON DIRECT IF SAMPLING IN WIDEBAND RADAR“. Progress In Electromagnetics Research 136 (2013): 753–64. http://dx.doi.org/10.2528/pier12122203.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Wu, Minshun, Guican Chen und Degang Chen. „ADC jitter estimation using a single frequency test without requiring coherent sampling“. IEICE Electronics Express 9, Nr. 18 (2012): 1485–91. http://dx.doi.org/10.1587/elex.9.1485.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Geng, Zihan, Deming Kong, Bill Corcoran, Pengyu Guan, Francesco Da Ros, Edson Porto da Silva, Leif Katsuo Oxenløwe und Arthur James Lowery. „All-optical OFDM demultiplexing with optical partial Fourier transform and coherent sampling“. Optics Letters 44, Nr. 2 (15.01.2019): 443. http://dx.doi.org/10.1364/ol.44.000443.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Cao, Minghua, Jianqiang Li, Jian Dai, Yitang Dai, Feifei Yin, Yue Zhou und Kun Xu. „Photonic aided bandpass sampling in coherent phase modulated radio-over-fiber links“. Optics Communications 368 (Juni 2016): 160–64. http://dx.doi.org/10.1016/j.optcom.2016.02.015.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Rossi, Nicola, Paolo Serena und Alberto Bononi. „Stratified-Sampling Estimation of PDL-Induced Outage Probability in Nonlinear Coherent Systems“. Journal of Lightwave Technology 32, Nr. 24 (15.12.2014): 4905–11. http://dx.doi.org/10.1109/jlt.2014.2366921.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Wabnitz, Stefan. „Importance Sampling Analysis of PMD Outages in PDM-QPSK Coherent Nonlinear Transmissions“. IEEE Photonics Technology Letters 25, Nr. 3 (Februar 2013): 264–67. http://dx.doi.org/10.1109/lpt.2012.2234097.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Dekorsy, T., R. Taubert, F. Hudert, G. Schrenk, A. Bartels, R. Cerna, V. Kotaidis et al. „High-speed asynchronous optical sampling for high-sensitivity detection of coherent phonons“. Journal of Physics: Conference Series 92 (01.12.2007): 012005. http://dx.doi.org/10.1088/1742-6596/92/1/012005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Turner, B. J., und M. Y. Leclerc. „Conditional Sampling of Coherent Structures in Atmospheric Turbulence Using the Wavelet Transform“. Journal of Atmospheric and Oceanic Technology 11, Nr. 1 (Februar 1994): 205–9. http://dx.doi.org/10.1175/1520-0426(1994)011<0205:csocsi>2.0.co;2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Zhuang, Yuming, und Degang Chen. „ADC Spectral Testing with Signal Amplitude Drift and Simultaneous Non-coherent Sampling“. Journal of Electronic Testing 33, Nr. 3 (26.01.2017): 305–13. http://dx.doi.org/10.1007/s10836-017-5642-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Wu, Minshun, Yue Lin, Jiangtao Xu und Zhiqiang Liu. „Efficient algorithm for multi-tone spectral test of ADCs without requiring coherent sampling“. IEICE Electronics Express 13, Nr. 21 (2016): 20160784. http://dx.doi.org/10.1587/elex.13.20160784.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie