Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Coherent sampling“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Coherent sampling" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Coherent sampling"
Kim, Inwoong, Cheolhwan Kim und Guifang Li. „Requirements for the sampling source in coherent linear sampling“. Optics Express 12, Nr. 12 (2004): 2723. http://dx.doi.org/10.1364/opex.12.002723.
Der volle Inhalt der QuelleKray, Stefan, Felix Spöler, Thomas Hellerer und Heinrich Kurz. „Electronically controlled coherent linear optical sampling for optical coherence tomography“. Optics Express 18, Nr. 10 (28.04.2010): 9976. http://dx.doi.org/10.1364/oe.18.009976.
Der volle Inhalt der QuelleYang, Honglei, Shengkang Zhang, Huan Zhao und Jun Ge. „Phase-coherent asynchronous optical sampling system“. Optics Express 28, Nr. 24 (20.11.2020): 37040. http://dx.doi.org/10.1364/oe.405074.
Der volle Inhalt der QuelleXin Chen, Xiaobo Xie, Inwoong Kim, Guifang Li, Hanyi Zhang und Bingkun Zhou. „Coherent Detection Using Optical Time-Domain Sampling“. IEEE Photonics Technology Letters 21, Nr. 5 (März 2009): 286–88. http://dx.doi.org/10.1109/lpt.2008.2010868.
Der volle Inhalt der QuelleAgrež, Dušan. „Power measurement in the non-coherent sampling“. Measurement 41, Nr. 3 (April 2008): 230–35. http://dx.doi.org/10.1016/j.measurement.2006.12.005.
Der volle Inhalt der QuelleChaturvedi, S. „The sampling theorem and coherent state systems“. Optics and Spectroscopy 103, Nr. 3 (September 2007): 405–10. http://dx.doi.org/10.1134/s0030400x07090093.
Der volle Inhalt der QuelleAvitzour, D. „SNR/bandwidth tradeoff in coherent radar sampling“. IEEE Transactions on Aerospace and Electronic Systems 26, Nr. 2 (März 1990): 403–5. http://dx.doi.org/10.1109/7.53447.
Der volle Inhalt der QuelleAgrez, Dusan. „Estimation of the signal component from random equivalent and non-coherent sampling measurements“. ACTA IMEKO 6, Nr. 4 (28.12.2017): 54. http://dx.doi.org/10.21014/acta_imeko.v6i4.474.
Der volle Inhalt der QuelleRoberts, Lyle E., Robert L. Ward, Craig Smith und Daniel A. Shaddock. „Coherent Beam Combining Using an Internally Sensed Optical Phased Array of Frequency-Offset Phase Locked Lasers“. Photonics 7, Nr. 4 (28.11.2020): 118. http://dx.doi.org/10.3390/photonics7040118.
Der volle Inhalt der QuelleTankeliun, Tomas, Oleg Zaytsev und Vytautas Urbanavicius. „Hybrid Time-Base Device for Coherent Sampling Oscilloscope“. Measurement Science Review 19, Nr. 3 (01.06.2019): 93–100. http://dx.doi.org/10.2478/msr-2019-0015.
Der volle Inhalt der QuelleDissertationen zum Thema "Coherent sampling"
Li, Changxiu [Verfasser]. „Femtosecond Yb:KYW oscillators based high-speed asynchronous optical sampling and coherent acoustic phonon investigations / Changxiu Li“. Konstanz : KOPS Universität Konstanz, 2020. http://d-nb.info/1215032706/34.
Der volle Inhalt der Quelle河合, 勇太, Yuta KAWAI, 義之 辻, Yoshiyuki TSUJI, 豊. 久木田 und Yutaka KUKITA. „エッジトーン現象によって噴流中に形成された組織構造の特徴 (第1報, レイノルズ応力と乱れの生成項からの考察)“. 日本機械学会, 2006. http://hdl.handle.net/2237/9095.
Der volle Inhalt der QuelleSymonds, Christopher Charles. „Development and applications of new basis set sampling and basis set handling procedures for the coupled coherent states family of methods“. Thesis, University of Leeds, 2015. http://etheses.whiterose.ac.uk/13430/.
Der volle Inhalt der QuelleČepl, Ondřej. „Tlumení tlakových pulzací a snižování hluku v potrubních systémech“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444301.
Der volle Inhalt der QuelleAyari, Lotfi. „Contribution au développement d’un banc de mesures temporelles 4-canaux pour la caractérisation avancée de composants et de sous-systèmes RF non linéaires“. Thesis, Limoges, 2016. http://www.theses.fr/2016LIMO0117/document.
Der volle Inhalt der QuelleThe future communications for civil and military applications will use complex wideband modulated signals to be transmitted through multi-channel DOHERTY power amplifiers which should have high performance in terms of power, efficiency, OBO, and bandwidth. In order to meet these stringent requirements, designers need time-domain characterization tools for calibrated measurements and for optimizing voltages and currents at both ports of non-linear connectorized or on-wafer devices. This work successfully implements time-domain characterization tools used to meet specific needs for transistor modeling, to optimize their operation in terms of pulse to pulse stability, and to search optimal conditions of their operation modes in a Doherty power amplifier. For this implementation, mathematical modeling is performed to evaluate sampler’s performances in terms of time-domain sampling efficiency in order to choose the best suited sampling architecture for RF time-domain measurements. Rigorous calibration procedures have been developed to obtain simultaneously full time-domain calibrated waveforms (from low Frequencies to Microwave frequencies)
Hamdi, Oussama. „Architecture d’échantillonnage rapide pour l’imagerie RADAR“. Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0120.
Der volle Inhalt der QuelleTypically, the waveforms transmitted by UWB radar cover a spectrum higher than a decade, in the 100MHz-10GHz frequency range. UWB Radar imaging has grown significantly in recent past years and is used for a large number of applications as defence, civil security and biomedical. One of their advantages lies in the fact that microwaves are able to penetrate through non-conductive materials with centimeter resolution. In UWB pulse radar, the bandwidth can reach several GHz, so that an Analog-to-Digital Converter (ADC) needs a high sampling rate and with a high resolution (>12 bits) to guarantee enough dynamic range. However, it is now possible to directly measure time-domain radar signal by associating an ADC with a Track and Hold Amplifier T&HA with wide RF bandwidth and with a maximum sampling frequency of several GSa/s. This work involves the development of a UWB SAR Radar demonstrator based on the use of a coherent sub-sampling technique for measuring UWB Radar signals. This UWB Radar demonstrator is built around a fast ADC (500 MS/s), an FPGA, and an ultra-wideband T&HA (5 GHz). It allows target detection by processing based on the use of a Radar image reconstruction algorithm
Nguyen, Trung-Hiên. „Theoretical and experimental study of optical solutions for analog-to-digital conversion of high bit-rate signals“. Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S110/document.
Der volle Inhalt der QuelleBi-dimensional modulation formats based on amplitude and phase signal modulation, are now commonly used in optical communications thanks to breakthroughs in the field of electronic and digital signal processing (DSP) required in coherent optical receivers. Photonic solutions could compensate for nowadays limitations of electrical circuits bandwidth by facilitating the signal processing parallelization. Photonic is particularly interesting for signal sampling thanks to available stable optical clocks. The heart of the present work concerns analog-to-digital conversion (ADC) as a key element in coherent detection. A prototype of linear optical sampling using an original solution for the optical sampling source, is built and validated with the successful equivalent time reconstruction of NRZ, QPSK and 16-QAM signals. Some optical and electrical limitations of the system are experimentally and numerically analyzed, notably the extinction ratio of the optical source or the ADC parameters (bandwidth, integration time, effective number of bits ENOB). Moreover, some new DSPs tools are developed for optical transmission using bi-dimensional modulation formats (amplitude and phase). Two solutions are proposed for IQ quadrature imbalance compensation in single carrier optical coherent transmission: an original method of maximum signal-to-noise ratio estimation (MSEM) and a new structure for joint compensation and equalization; these methods are experimentally and numerically validated with 16-QAM signals. Moreover, an improved solution for carrier recovery (frequency offset and phase estimation) based on a circular harmonic expansion of a maximum loglikelihood function is studied for the first time in the context of optical telecommunications. This solution which can operate with any kind of bi-dimensional modulation format signal is numerically validated up to 128-QAM. All the DSP tools developed in this work are finally used in a demonstration of a 10 Gbaud QPSK 100 km transmission experiment, featuring a strong non-linear phase noise limitation and regenerated using a phase preserving and power limiting function based on a photonic crystal nanocavity
Yaacoub, Tina. „Nouvelles approches pour l'estimation du canal ultra-large bande basées sur des techniques d'acquisition compressée appliquées aux signaux à taux d'innovation fini IR-UWB“. Thesis, Brest, 2017. http://www.theses.fr/2017BRES0077/document.
Der volle Inhalt der QuelleUltra-wideband impulse radio (IR-UWB) is a relatively new communication technology that provides an interesting solution to the problem of RF spectrum scarcity and meets the high data rate and precise localization requirements of an increasing number of applications, such as indoor communications, personal and body sensor networks, IoT, etc. Its unique characteristics are obtained by transmitting pulses of very short duration (less than 1 ns), occupying a bandwidth up to 7.5 GHz, and having an extremely low power spectral density (less than -43 dBm / MHz). The best performances of an IR-UWB system are obtained with Rake coherent receivers, at the expense of increased complexity, mainly due to the estimation of UWB channel, which is characterized by a large number of multipath components. This processing step requires the estimation of a set of spectral components for the received signal, without being able to adopt usual sampling techniques, because of the extremely high Nyquist limit (several GHz).In this thesis, we propose new low-complexity approaches for the UWB channel estimation, relying on the sparse representation of the received signal, the compressed sampling theory, and the reconstruction of the signals with finite rate of innovation. The complexity reduction thus obtained makes it possible to significantly reduce the IR-UWB receiver cost and consumption. First, two existent compressed sampling schemes, single-channel (SoS) and multi-channel (MCMW), are extended to the case of UWB signals having a bandpass spectrum, by taking into account realistic implementation constraints. These schemes allow the acquisition of the spectral coefficients of the received signal at very low sampling frequencies, which are not related anymore to the signal bandwidth, but only to the number of UWB channel multipath components. The efficiency of the proposed approaches is demonstrated through two applications: UWB channel estimation for low complexity coherent Rake receivers, and precise indoor localization for personal assistance and home care.Furthermore, in order to reduce the complexity of the MCMW approach in terms of the number of channels required for UWB channel estimation, we propose a reduced number of channel architecture by increasing the number of transmitted pilot pulses. The same approach is proven to be also useful for reducing the sampling frequency associated to the MCMW scheme.Another important objective of this thesis is the performance optimization for the proposed approaches. Although the acquisition of consecutive spectral coefficients allows a simple implementation of the MCMW scheme, we demonstrate that it not results in the best performance of the reconstruction algorithms. We then propose to rely on the coherence of the measurement matrix to find the optimal set of spectral coefficients maximizing the signal reconstruction performance, as well as a constrained suboptimal set, where the positions of the spectral coefficients are structured so as to facilitate the design of the MCMW scheme. Finally, the approaches proposed in this thesis are experimentally validated using the UWB equipment of Lab-STICC CNRS UMR 6285
Shafiullah, Syed N. „On the role of correspondence noise in human visual motion perception. A systematic study on the role of correspondence noise affecting Dmax and Dmin, using random dot kinematograms: A psychophysical and modelling approach“. Thesis, University of Bradford, 2008. http://hdl.handle.net/10454/4280.
Der volle Inhalt der QuelleShafiullah, Syed Nadeemullah. „On the role of correspondence noise in human visual motion perception : a systematic study on the role of correspondence noise affecting Dmax and Dmin, using random dot kinematograms : a psychophysical and modelling approach“. Thesis, University of Bradford, 2008. http://hdl.handle.net/10454/4280.
Der volle Inhalt der QuelleBuchteile zum Thema "Coherent sampling"
Feichtinger, Hans G. „Coherent Frames and Irregular Sampling“. In Recent Advances in Fourier Analysis and Its Applications, 427–40. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0665-5_24.
Der volle Inhalt der QuelleYang, Jing, Yuan Ma, Tianyu Chen, Jingqiang Lin und Jiwu Jing. „Extracting More Entropy for TRNGs Based on Coherent Sampling“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 694–709. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59608-2_38.
Der volle Inhalt der QuelleZhuang, Yuming, und Degang Chen. „Accurate Spectral Testing with Non-coherent Sampling for Multi-tone Test“. In Accurate and Robust Spectral Testing with Relaxed Instrumentation Requirements, 97–111. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77718-4_6.
Der volle Inhalt der QuelleTardu, S. „Detection and Identification of Near-Wall Coherent Structures Through Conditional-Sampling“. In Fluid Mechanics and Its Applications, 355–64. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4601-2_31.
Der volle Inhalt der QuelleKadota, Akihiro, Iehisa Nezu und Koichi Suzuki. „Turbulence Measurements and Conditional Sampling Analysis on Coherent Vortices in Unsteady Open-Channel Flows over Dune Bed“. In IUTAM Symposium on Geometry and Statistics of Turbulence, 351–56. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9638-1_46.
Der volle Inhalt der QuelleGamon, John A., Ran Wang, Hamed Gholizadeh, Brian Zutta, Phil A. Townsend und Jeannine Cavender-Bares. „Consideration of Scale in Remote Sensing of Biodiversity“. In Remote Sensing of Plant Biodiversity, 425–47. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33157-3_16.
Der volle Inhalt der QuelleSchulkin, Jay. „Coping and Sampling in Biological Machinery“. In Pragmatism and the Search for Coherence in Neuroscience, 87–111. London: Palgrave Macmillan UK, 2015. http://dx.doi.org/10.1057/9781137526731_5.
Der volle Inhalt der QuelleXu, Qing, Roberto Brunelli, Stefano Messelodi, Jiawan Zhang und Mingchu Li. „Image Coherence Based Adaptive Sampling for Image Synthesis“. In Computational Science and Its Applications – ICCSA 2004, 693–702. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-24709-8_73.
Der volle Inhalt der QuelleSun, Yongqing, Kyoko Sudo, Yukinobu Taniguchi und Masashi Morimoto. „Sampling of Web Images with Dictionary Coherence for Cross-Domain Concept Detection“. In Lecture Notes in Computer Science, 283–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35728-2_27.
Der volle Inhalt der QuelleZhuang, Yuming, und Degang Chen. „Accurate Spectral Testing with Arbitrary Non-coherency in Sampling and Simultaneous Drifts in Amplitude and Frequency“. In Accurate and Robust Spectral Testing with Relaxed Instrumentation Requirements, 33–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77718-4_3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Coherent sampling"
Qin Bo, Zhang Sheng, Quan Jinguo, H. F. Rashvand und Lin Xiaokang. „Nonuniform sampling in coherent UWB system“. In IET International Communication Conference on Wireless Mobile & Computing (CCWMC 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.1913.
Der volle Inhalt der QuelleRamaswamy, Anand, Leif A. Johansson, Jonathan Klamkin, Darko Zibar, Larry A. Coldren, Mark J. Rodwell und John E. Bowers. „Optical Phase Demodulation of a 10GHz RF Signal using Optical Sampling“. In Coherent Optical Technologies and Applications. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/cota.2008.ctuc3.
Der volle Inhalt der QuelleCoddington, Ian, William C. Swann und Nathan R. Newbury. „Frequency comb spectroscopy with coherent optical sampling“. In Fourier Transform Spectroscopy. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/fts.2009.fmb1.
Der volle Inhalt der QuelleChen, Xin, Inwoong Kim, Guifang Li, Hanyi Zhang und Bingkun Zhou. „Coherent Detection Using Optical Time-Domain Sampling“. In 2008 Conference on Optical Fiber Communication - OFC 2008 Collocated National Fiber Optic Engineers. IEEE, 2008. http://dx.doi.org/10.1109/ofc.2008.4528094.
Der volle Inhalt der QuelleValtcha, Boyan, Viktor Fischer und Alain Aubert. „Enhanced TRNG based on the coherent sampling“. In 2009 3rd International Conference on Signals, Circuits and Systems (SCS 2009). IEEE, 2009. http://dx.doi.org/10.1109/icscs.2009.5412601.
Der volle Inhalt der QuelleLiu, Shuo, und Qiaoling Wang. „Adaptive Coherent Sampling for Network Delay Measurement“. In ICC 2020 - 2020 IEEE International Conference on Communications (ICC). IEEE, 2020. http://dx.doi.org/10.1109/icc40277.2020.9149155.
Der volle Inhalt der QuelleFischer, J. K., R. Ludwig, L. Molle, C. Schmidt-Langhorst, C. C. Leonhardt, A. Matiss und C. Schubert. „Digital coherent receiver based on parallel optical sampling“. In 2010 36th European Conference and Exhibition on Optical Communication - (ECOC 2010). IEEE, 2010. http://dx.doi.org/10.1109/ecoc.2010.5621503.
Der volle Inhalt der QuelleStaal, Lasse, und Toshiya Hachisuka. „Randomized coherent sampling for reducing perceptual rendering error“. In ACM SIGGRAPH 2012 Posters. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2342896.2343023.
Der volle Inhalt der QuelleHampson, G. „Relationships between wavefield sampling and coherent noise attenuation“. In 56th EAEG Meeting. European Association of Geoscientists & Engineers, 1994. http://dx.doi.org/10.3997/2214-4609.201409944.
Der volle Inhalt der QuelleChou, Hsu-Feng, Leif Johansson, Darko Zibar, Anand Ramaswamy, Mark Rodwell und John Bowers. „All-Optical Coherent Receiver with Feedback and Sampling“. In 2006 International Topical Meeting on Microwave Photonics. IEEE, 2006. http://dx.doi.org/10.1109/mwp.2006.346530.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Coherent sampling"
Maxwell, Timothy John. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1249490.
Der volle Inhalt der QuelleShearman, R. K., Jonathan D. Nash, James N. Moum und John A. Barth. Lateral Coherence and Mixing in the Coastal Ocean: Adaptive Sampling using Gliders. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542832.
Der volle Inhalt der QuelleShearman, R. K., Jonathan D. Nash, James N. Moum und John A. Barth. Lateral Coherence and Mixing in the Coastal Ocean: Adaptive Sampling using Gliders. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557113.
Der volle Inhalt der QuelleMcCarthy, Noel, Eileen Taylor, Martin Maiden, Alison Cody, Melissa Jansen van Rensburg, Margaret Varga, Sophie Hedges et al. Enhanced molecular-based (MLST/whole genome) surveillance and source attribution of Campylobacter infections in the UK. Food Standards Agency, Juli 2021. http://dx.doi.org/10.46756/sci.fsa.ksj135.
Der volle Inhalt der Quelle