Auswahl der wissenschaftlichen Literatur zum Thema „Coaxial Injectors“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Coaxial Injectors" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Coaxial Injectors"

1

Xu, Jiabao, Ping Jin, Ruizhi Li, Jue Wang und Guobiao Cai. „Numerical Study on Combustion and Atomization Characteristics of Coaxial Injectors for LOX/Methane Engine“. International Journal of Aerospace Engineering 2021 (22.05.2021): 1–16. http://dx.doi.org/10.1155/2021/6670813.

Der volle Inhalt der Quelle
Annotation:
The LOX/methane engine has an admirable performance under a supercritical state. However, the properties of methane change drastically with varying injection temperature. Because the injector can greatly affect the atomization and combustion, this study performed a three-dimensional numerical simulation of atomization, combustion, and heat transfer in a subscale LOX/methane engine to evaluate the effect of the main fluid parameters with different methane injection temperatures and different injectors on atomization performance and combustion performance. The results show that the larger propellant momentum ratio and Weber number can improve the heat flux and combustion stability in shear coaxial injector, while the influence in swirl coaxial injector is relatively small. Moreover, in shear coaxial injector and in swirl coaxial injector, the larger propellant momentum ratio and Weber number can reduce the droplet size, enhance atomization performance, and improve the combustion efficiency. The numerical model provides an economical method to evaluate the main fluid parameters and proposes new design principles of injectors in LOX/methane engine.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Woo, Seongphil, Jungho Lee, Yeoungmin Han und Youngbin Yoon. „Experimental Study of the Combustion Efficiency in Multi-Element Gas-Centered Swirl Coaxial Injectors“. Energies 13, Nr. 22 (19.11.2020): 6055. http://dx.doi.org/10.3390/en13226055.

Der volle Inhalt der Quelle
Annotation:
The effects of the momentum-flux ratio of propellant upon the combustion efficiency of a gas-centered-swirl-coaxial (GCSC) injector used in the combustion chamber of a full-scale 9-tonf staged-combustion-cycle engine were studied experimentally. In the combustion experiment, liquid oxygen was used as an oxidizer, and kerosene was used as fuel. The liquid oxygen and kerosene burned in the preburner drive the turbine of the turbopump under the oxidizer-rich hot-gas condition before flowing into the GCSC injector of the combustion chamber. The oxidizer-rich hot gas is mixed with liquid kerosene passed through combustion chamber’s cooling channel at the injector outlet. This mixture has a dimensionless momentum-flux ratio that depends upon the dispensing speed of the two fluids. Combustion tests were performed under varying mixture ratios and combustion pressures for different injector shapes and numbers of injectors, and the characteristic velocities and performance efficiencies of the combustion were compared. It was found that, for 61 gas-centered swirl-coaxial injectors, as the moment flux ratio increased from 9 to 23, the combustion-characteristic velocity increased linearly and the performance efficiency increased from 0.904 to 0.938. In addition, excellent combustion efficiency was observed when the combustion chamber had a large number of injectors at the same momentum-flux ratio.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kim, Do-Hun, Jeung-Hwan Shin, In-Chul Lee und Ja-Ye Koo. „Atomizing Characteristics of Coaxial Porous Injectors“. Journal of ILASS-Korea 17, Nr. 1 (30.03.2012): 35–44. http://dx.doi.org/10.15435/jilasskr.2012.17.1.035.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Anand, Rahul, PR Ajayalal, Vikash Kumar, A. Salih und K. Nandakumar. „Spray and atomization characteristics of gas-centered swirl coaxial injectors“. International Journal of Spray and Combustion Dynamics 9, Nr. 2 (05.08.2016): 127–40. http://dx.doi.org/10.1177/1756827716660225.

Der volle Inhalt der Quelle
Annotation:
To achieve uniform and efficient combustion in a rocket engine, a fine uniform spray is needed. The same is achieved by designing an injector with good atomization characteristics. Gas-centered swirl coaxial (GCSC) injector elements have been preferred recently in liquid rocket engines because of an inherent capability to dampen the pressure oscillations in the thrust chamber. The gas-centered swirl coaxial injector chosen for this study is proposed to be used in a semi-cryogenic rocket engine operating with oxidizer rich hot exhaust gases from the pre-burner and liquid kerosene as fuel. In this paper, nine different configurations of gas-centered swirl coaxial injector, sorted out by studying the spray angle and coefficient of discharge with swirl number varying from 9 to 20 and recess ratio of 0.5, 1, and 1.5 are investigated for their atomization characteristics. Spray uniformity, spray cone angle, and droplet size in terms of Sauter mean diameter and mass median diameter are studied at various momentum flux ratios for all configurations. Sauter mean diameter is almost independent of recess ratio, whereas cone angle was inversely proportional to the recess ratio. A finer atomization was observed for injectors of high swirl number but the pressure drop also increased to achieve the same flow rate. An injector of medium swirl number and recess ratio of 1.5 is deemed most fit for above-mentioned application.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Lee, Jungho, Ingyu Lee, Seongphil Woo, Yeoungmin Han und Youngbin Yoon. „Experimental Study of Spray and Combustion Characteristics in Gas-Centered Swirl Coaxial Injectors: Influence of Recess Ratio and Gas Swirl“. Aerospace 11, Nr. 3 (08.03.2024): 209. http://dx.doi.org/10.3390/aerospace11030209.

Der volle Inhalt der Quelle
Annotation:
The spray and combustion characteristics of a gas-centered swirl coaxial (GCSC) injector used in oxidizer-rich staged combustion cycle engines were analyzed. The study focused on varying the recess ratio, presence of gas swirl, and swirl direction to improve injector performance. The impact of the recess ratio was assessed by increasing it for gas jet-type injectors with varying momentum ratios. Gas-swirl effects were studied by comparing injectors with and without swirl against a baseline of a low recess ratio gas injection. In atmospheric pressure-spray experiments, injector performance was assessed using backlight photography, cross-sectional imaging with a structured laser illumination planar imaging technique (SLIPI), and droplet analysis using ParticleMaster. Increasing the recess ratio led to reduced spray angle and droplet size, and trends of gas swirl-type injectors were similar to those of high recess ratio gas jet-type injectors. Combustion tests involved fabricating combustion chamber heads equipped with identical injectors, varying only the injector type. Oxidizer-rich combustion gas, produced by a pre-burner, and kerosene served as propellants. Combustion characteristics, including characteristic velocity, combustion efficiency, and heat flux, were evaluated. Elevated recess ratios correlated with increased characteristic velocity and reduced differences in the momentum–flux ratios of injectors. However, increasing the recess ratio yielded diminishing returns on combustion efficiency enhancement beyond a certain threshold. Gas swirling did not augment characteristic velocity but notably influenced heat flux distribution. The trends observed in spray tests were related to combustion characteristics regarding heat flux and combustion efficiency. Additionally, it was possible to estimate changes in the location and shape of the flame according to the characteristics of the injector.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sivakumar, D., und B. N. Raghunandan. „Jet Interaction in Liquid-Liquid Coaxial Injectors“. Journal of Fluids Engineering 118, Nr. 2 (01.06.1996): 329–34. http://dx.doi.org/10.1115/1.2817381.

Der volle Inhalt der Quelle
Annotation:
Interaction between two conical sheets of liquid formed by a coaxial swirl injector has been studied using water in the annular orifice and potassium permanganate solution in the inner orifice. Experiments using photographic techniques have been conducted to study the influence of the inner jet on outer conical sheet spray characteristics such as spray cone angle and break-up length. The core spray has a strong influence on the outer sheet when the pressure drop in the latter is low. This is attributed to the pressure variations caused by ejector effects. This paper also discusses the merging and separation behavior of the liquid sheets which exhibits hysteresis effect while injector pressure drop is varied.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Woo, Seongphil, Jungho Lee, Ingyu Lee, Seunghan Kim, Yeoungmin Han und Youngbin Yoon. „Analyzing Combustion Efficiency According to Spray Characteristics of Gas-Centered Swirl-Coaxial Injector“. Aerospace 10, Nr. 3 (10.03.2023): 274. http://dx.doi.org/10.3390/aerospace10030274.

Der volle Inhalt der Quelle
Annotation:
The momentum flux ratio (MFR) significantly affects the mixing characteristics and combustion efficiency of propellants in rocket engine injectors. The spray characteristics of three gas-centered swirl-coaxial injectors used in a full-scale combustion test were investigated according to the change in the momentum flux ratio. The difference in combustion efficiency was analyzed through the comparison with combustion test results using spray visualization and quantification. The spray cross-sectional shape and droplet distribution were measured using a structured laser illumination planar imaging technique. As the swirl effect was more apparent at a low MFR, the flow rate of the liquid that was sprayed outside was high. The flow rate of the liquid sprayed around the gas injection increased with the MFR. The Sauter mean diameter (SMD) of each injector liquid spray was obtained using the laser shadow imaging method. The SMD decreased as the MFR of all injector types increased, and the injector with a high liquid flow rate and small SMD injected towards the gas center exhibited higher combustion efficiency than the injector with a dominant liquid spray and the large SMD at a large injection angle. The outcomes of the study could help contribute to the increase in the combustion efficiency of the full-scale staged combustion cycle engine combustor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ahn, Kyubok, Seonghyeon Seo und Hwan-Seok Choi. „Fuel-Rich Combustion Characteristics of Biswirl Coaxial Injectors“. Journal of Propulsion and Power 27, Nr. 4 (Juli 2011): 864–72. http://dx.doi.org/10.2514/1.b34121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

So, Younseok, Yeoungmin Han und Sejin Kwon. „Combustion Characteristics of Multi-Element Swirl Coaxial Jet Injectors under Varying Momentum Ratios“. Energies 14, Nr. 13 (05.07.2021): 4064. http://dx.doi.org/10.3390/en14134064.

Der volle Inhalt der Quelle
Annotation:
The combustion characteristics of a staged combustion cycle engine with an oxidizer-rich preburner were experimentally studied at different momentum ratios of multi-element injectors. Propellants were simultaneously supplied as a liquid–liquid–liquid system, and an injector was designed in which a swirl coaxial jet is sprayed. The injector burned the propellants in the inner chamber which had a temperature greater than 2000 K. To cool the combustion gas, a liquid oxidizer was supplied to the cooling channel outside the injector. To prevent the turbine blades from melting, the temperature of the combustion gas was maintained below 700 K. To confirm the combustion characteristics at different momentum ratios of the high-temperature combustion gas inside the injector and the low-temperature liquid oxidizer outside the injector, three types of injectors were designed and manufactured with different momentum ratios: MR 3.0, MR 3.3, and MR 3.7. In this study, the results of the combustion test for each type were compared for 30 s. For ORPB-A, a combustion pressure of 18.5 MPaA, fuel mass flow rate of 0.26 kg/s, oxidizer mass flow rate of 15.3 kg/s, and turbine inlet temperature of 686 K were obtained in the combustion stability period of 29.0–29.5 s. The combustion efficiency was 98% for MR 3.0 (ORPB-A), which was superior to that for other momentum ratios. In addition, during the combustion test for MR 3.0, the fluctuations in the characteristic velocity, combustion pressure, and propellant mass flow rate were low, indicating that combustion was stable. The three types of combustion instability were all less than 0.8%, thus confirming that the combustion stability was excellent.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wataru, Miyagi, Miki Takahiro, Matsuoka Tsuneyoshi und Noda Susumu. „1112 CHARACTERISTICS OF H2/AIR ANNULAR JET FLAMES USING MULTIPLE SHEAR COAXIAL INJECTORS“. Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1112–1_—_1112–5_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1112-1_.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Coaxial Injectors"

1

Zapata, Usandivaras Jose. „Surrogate models based on large eddy simulations and deep learning for coaxial rocket engine injector design“. Electronic Thesis or Diss., Toulouse, ISAE, 2024. http://www.theses.fr/2024ESAE0024.

Der volle Inhalt der Quelle
Annotation:
La conception des fusées est soumise à une pression croissante pour réduire leurs coûts de développement. L’utilisation de la CFD pour la simulation des processus de combustion des moteurs-fusées (LRE) peut constituer une alternative économique aux coûteuses expériences. Pourtant, une approche holistique pour la conception préliminaire avec la CFD n’est pas encore pratique. Des modèles de substitution appropriés peuvent contourner ce dilemme grâce à des temps de restitution rapides, sans perte de précision significative. La conception d’un injecteur a un impact direct sur l’efficacité de la combustion et les charges thermiques. Dans ce travail, nous procédons à l’évaluation des stratégies appelées data-driven pour obtenir des modèles de substitution des injecteurs coaxiaux. Un accent particulier est mis sur les techniques supervisées d’apprentissage profond (DL). Nous commençons par réaliser une validation du concept, en construisant une base de données de ∼3600 simulations 2D axisymétriques RANS (Reynolds Averaged Navier Stokes) d’injecteurs coaxiaux couvrant un espace de paramètres à 9 dimensions, comprenant la géométrie et le régime de combustion. Des modèles de quantités scalaires d’intérêt (QoI), du profil de flux de chaleur de paroi 1D et de champ de température moyen 2D, sont formés et validés. Les modèles utilisent des réseaux neuronaux entièrement connectés (FCNN), et un U-Net adapté pour le cas 2D. Les résultats se comparent bien à d’autres méthodes établies sur l’ensemble des données d’essai. L’approche RANS présente des lacunes évidentes lorsqu’il s’agit d’applications de combustion turbulente. Au lieu de cela, les simulations aux grandes échelles (LES), sont en principe mieux adaptées à la modélisation de la combustion turbulente. La méthodologie déployée sur les données RANS est donc appliquée sur une base de données de ∼100 LES d’injecteurs couvrant un espace de conception 3D, à un coût par échantillon beaucoup plus élevé que RANS. En raison des coûts de calculs élevés, des maillages grossiers ainsi que d’autres simplifications sont adoptés pour la génération de cette base de données LES, qui est ainsi qualifiée de basse fidélité (LF). Les FCNN et les U-Nets sont utilisés pour obtenir des modèles de substitution des QoI scalaires etdes champs stationnaires 2D avec des performances satisfaisantes pour la tâche de prédiction LF. Afin d’améliorer la qualité des modèles obtenus au sens de leur capacité à décrire les phénomènes physiques, sans pour autant devoir les entraîner sur des simulations plus raffinées et coûteuses, une approche multifidélité (MF) est envisagée en tirant parti de l’apprentissage par transfert inductif sur les U-Nets. Les modèles sont réentraînés et validés sur un ensemble plus petit de ∼10 échantillons de haute fidélité (HF). Le modèle MF donne de bons résultats dans la tâche de prédiction HF sur les échantillons de test, avec la topologie de flamme souhaitée, à un coût de calcul bien inférieur à ce qu’aurait coûté uniquement sur des données HF. Par ailleurs, les informations liées au comportement dynamique restituées par la LES sont exploitées pour le développement de modèles d’ordre réduit pour la prédiction spatio-temporelle de l’écoulement réactif. Nous développons des émulateurs d’un injecteur LRE au moyen d’autoencodeurs convolutifs (CNN-AE) et d’un multilayer perceptron (MLP). Le contenu spectral reconstruit du signal surpasse celui d’une POD équivalente, ce qui démontre la capacité de compression supérieure du CNN-AE. Cependant, des problèmes de régularité sont soulevés lors de la propagation de l’émulateur au-delà de l’horizon d’apprentissage. Enfin, ce travail met en évidence les défis et les opportunités de l’utilisation de la DL pour la prédiction des caractéristiques stationnaires et dynamiques des données LES de l’écoulement réactif dans un injecteur de moteur fusée
The design of rocket propulsion systems is under growing pressure of reducing development costs. The use of CFD codes for the simulation of rocket engine combustion processes can provide an economical alternative to costly experiments which have traditionally been at the core of liquid rocket engines (LREs) development. Nonetheless, a holistic approach for preliminary design analysis and optimization is not yet practical, as the exploration of the entire engine design space via high-fidelity numerical simulations is intractable. Appropriate surrogate models may circumvent this dilemma through fast restitution times, without significant accuracy loss. The liquid rocket engine injector is a key subsystem within the LRE, whose design directly impacts flame development, combustion efficiency, and thermal loads. The multiscale nature of turbulent, non-premixed combustion, makes the modeling of injection, particularly complex. In this work, we proceed to evaluate data driven strategies for obtaining surrogate models of LRE shear coaxial injectors. A specific emphasis is taken on supervised, deep learning (DL) techniques for regression tasks. The base injector configuration is inspired on an existing experimental rocket combustor from TUM, operating with a GOx/GCH 4 mixture. We begin by conducting a proof-of-concept (PoC), by offline sampling a database of ∼3600 Reynolds Averaged Navier Stokes (RANS), 2D axisymmetric simulations of single element coaxial injectors spanning a 9 dimensional parameter space comprising geometry and combustion regime. Subsequent models of scalar quantities of interest (QoIs),1D wall heat flux profile, and 2D average temperature field are trained and validated. The models use Fully Connected Neural Networks and an adapted U-Net for the 2D case. The results perform well against other established surrogate modeling methods over the test dataset. The RANS approach has evident shortcomings when dealing with turbulent combustion applications. Instead, Large Eddy Simulations (LES), are in principle, better suited to model turbulent combustion, while furnishing information about dynamical flow features. We proceed to replicate the (PoC) efforts, albeit on a database of ∼100 LES of shear coaxial injectors spanning a 3D design space, at a much larger cost per sample than RANS. A dedicated LES data generation pipeline is put in place. Due to the cost, the LES are low-fidelity (LF) in view of the modeling simplifications, i.e. coarse meshes, global chemistry, etc. CNNs and U-Nets are used to obtain surrogate models of scalar QoIs and 2D stationary fields with satisfactory performance over the LF prediction task. To improve the overall fidelity of the surrogate, a multi-fidelity (MF) approach is considered by leveraging inductive transfer learning over our U-Nets. The decoding layers are retrained and validated over a smaller pool of ∼10 of high-fidelity (HF) samples, i.e. finer resolution. The MF surrogate performs well in the HF prediction task over the test samples, with the desired flame topology, at a lower computational cost of the offline sampling stage. The dynamic data of LES, motivates the development of reduced order models (ROMs) for the spatio-temporal prediction of the injector flame. We develop emulators of a LRE injector flame by means of convolutional autoencoders (CNN-AE) and multi-layer perceptron (MLP) for propagating in time the latent vectors. The reconstructed spectral content of the signal outperforms that of a standard POD with equal latent space dimension, demonstrating the superior compression capability of the CNN-AE. However, manifold regularity concerns are raised when propagating the emulator beyond the training horizon. Finally, this work evidences the challenges and opportunities of the use of DL for the prediction of stationary and dynamical features of LES data for a complex reactive flow configuration of a LRE coaxial injector
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gautam, Vivek. „Flow and atomization characteristics of cryogenic fluid from a coaxial rocket injector“. College Park, Md.: University of Maryland, 2007. http://hdl.handle.net/1903/7719.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.) -- University of Maryland, College Park, 2007.
Thesis research directed by: Dept. of Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cessou, Armelle. „Stabilisation de la combustion diphasique turbulente au-dessus d'un injecteur coaxial méthanol/air“. Rouen, 1994. http://www.theses.fr/1994ROUES039.

Der volle Inhalt der Quelle
Annotation:
La stabilisation de la combustion diphasique en aval d'un injecteur méthanol/air a été étudiée. L'interférométrie phase Doppler a fourni les champs de vitesse des gouttes analysées par classe de taille. Des images bidimensionnelles des zones de réaction ont été réalisées par fluorescence induite par laser du radical OH. Les niveaux de gris de ces images ont été étalonnées en concentration absolue de OH, et la position de la stabilisation de la flamme a été mesurée. La stabilisation des flammes turbulentes non-prémélangées peut être modélisée à partir du mélange turbulent à grande échelle. La comparaison des champs de vitesse dans le spray et des localisations de la stabilisation de la flamme a montré que ce résultat peut être étendu à la combustion diphasique. L'analyse des fluctuations de vitesse des gouttes en fonction de leur nombre de Stokes a montré le comportement dynamique bimodal du spray dans la zone où la flamme se stabilise. Ne considérant que le fluide à faible nombre de Stokes, la combustion a été analysée dans le référentiel de la fraction de mélange. L'accent a été mis sur le régime dit de vaporisation où les flammes se stabilisent selon deux zones réactives nettement séparées. Deux limites à ce régime apparaissent, une limite inférieure due à la mauvaise qualité de l'atomisation et une limite supérieure dynamique quand le temps de mélange à grande échelle devient trop rapide. La comparaison aux résultats expérimentaux montre que cette analyse décrit correctement le phénomène de stabilisation
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Beduneau, Jean-Luc. „Caractérisation expérimentale des flammes non-prémélangées H₂/O₂ : application aux cas des injecteurs coaxiaux de moteurs fusées“. Rouen, INSA, 2001. http://www.theses.fr/2001ISAM0005.

Der volle Inhalt der Quelle
Annotation:
La propulsion aérospatiale a connu en matière de gain de puissance et de fiabilité, une évolution importante durant les dernières décennies. Ces deux points restent cependant entièrement d'actualité pour le développement des futurs moteurs spatiaux. La progression vers ces objectifs passe par une meilleure compréhension des phénomènes physiques mis en jeux lors de la combustion dans les moteurs cryotechniques. Dans cette optique, ce mémoire concerne l'étude de la combustion hydrogène-oxygène en phase gazeuse, stabilisée sur des injecteurs coaxiaux de moteurs fusées. L'objet de ces travaux est la caractérisation de la flamme hydrogène-oxygène à l'aide de, la tomographie laser, l'anémométride Doppler laser, la vélocimétrie par inter corrélation d'images de particules et de l'imagerie de l'émission spontanée du radical OH*. Nous avons donc déterminé les régimes de fonctionnement des flammes H₂/O₂ ainsi que l'impact des grandes structures présentes dans le jet d'hydrogène sur le front de flamme. L'étude a été basée sur la variation de paramètres tels que le diamètre des injecteurs, le rapport de mélange et les vitesses débitantes. Cela a permis de caractériser l'effet d'échelle des injecteurs ainsi que l'impact des conditions du mélange sur le développement de la flamme. Les mesures obtenues dans cette étude constituent une base de données sur le développement dynamique de la flamme hydrogène-oxygène ainsi que sur l'interaction entre la flamme et la turbulence. De plus, le mode de stabilisation de la flamme a été étudié de façon très précise. Il a été montré que l'épaisseur de la lèvre de l'injecteur est un paramètre déterminant pour la stabilisation. En plus de la caractérisation globale et locale de la combustion H₂/O₂ à haute vitesse, les résultats de cette étude forment une base de données utile pour la modélisation et la simulation numérique de ce type de combustion.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

BOUKERMOUCHE, AHMED. „Mise au point et developpementde mesures de la granulometrie et de la concentration de la phase liquide dans un jet diphasique engendre par des injecteurs coaxiaux“. Université Louis Pasteur (Strasbourg) (1971-2008), 1989. http://www.theses.fr/1989STR13080.

Der volle Inhalt der Quelle
Annotation:
Dans le cadre des travaux de cette these, nous avons propose, en premier lieu, une modification a la methode de mesure de la granulometrie basee sur la mesure des piedestaux; celle-ci consiste a determiner la fonction de repartition des piedestaux, au lieu de la densite de probabilite. Cette methode a servi a l'etude des jets engendres, par des injecteurs coaxiaux. En deuxieme lieu, nous avons effectue des mesures de la concentration locale en phase liquide, en proposant d'une part, la mesure de celle-ci par la methode de la diffusion de la lumiere, et d'autre part par la methode de comptage opto-electronique des particules traversant le volume de mesure d'un anemometre laser-doppler. L'etude de la concentration nous a amene a nous interesser a la diffusivite turbulente, et au nombre de schmidt. En considerant les profils mesures des vitesses de l'air et des concentrations le long du jet, on a pu calculer les distributions de la diffusivite turbulente equivalente et d'evaluer l'evolution du nombre de schmidt le long de l'axe du jet
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

JerryLin und 林建國. „The Observation of The Spray from Coaxial Injectors“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/67987526551944470648.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

White, Clayton Andrew. „Modeling of circulation zone and shear layers in coaxial injectors“. 2003. http://etd.utk.edu/2003/WhiteClayton.pdf.

Der volle Inhalt der Quelle
Annotation:
Thesis (M.S.)--University of Tennessee, Knoxville, 2003.
Title from title page screen (viewed Mar. 24, 2004). Thesis advisor: Charles Merkle. Document formatted into pages (x, 84 p. : ill. (some col.)). Vita. Includes bibliographical references (p. 38-40).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ming-LunTsai und 蔡銘倫. „The Effects of Liquid Physical Property on the Atomization of Coaxial Injectors“. Thesis, 2013. http://ndltd.ncl.edu.tw/handle/39341541021971834975.

Der volle Inhalt der Quelle
Annotation:
碩士
國立成功大學
航空太空工程學系碩博士班
101
Coaxial injector is mainly used in the mixing and combustion between liquid oxidizer and gaseous fuel. This research focuses on the effects of viscosity and surface tension of the liquid on the spray formation from a self-designed coaxial injector. The test solutions include pure water, 50wt% glycerin in water, and ethanol 15vol% ethanol in water. The spray angle, drop size distribution, core SMD (SMD0.35), and the jet surface instability waveform of the liquid sprays are analyzed by Planar Laser Induced Fluorescence (PLIF) technique, Malvern droplet analyzer, and high-speed photography, respectively. The results show that an earlier appearance of instable wave formation on jet surface and a smaller SMD distribution of the downstream spray are observed by decreasing the surface tension of the liquid jet, however, the spray angle is shown to be insensitive to surface tension variation. By increasing the liquid viscosity, the liquid jet is more stable and less surface wave formation was observed. The jet breaks up in membrane-type into a spray. The spray has a smaller core SMD and a more even spatial distribution of the droplet size.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shao-JuiTang und 唐紹瑞. „The Study of the Breakup and Atomization of Liquid Jet from Asymmetric Coaxial Injectors“. Thesis, 2015. http://ndltd.ncl.edu.tw/handle/63856127458035990245.

Der volle Inhalt der Quelle
Annotation:
碩士
國立成功大學
航空太空工程學系
103
Coaxial injector is mainly used in liquid rocket propulsion system design. This injector atomizes the liquid oxidizer by the gasified fuel and lets the propellant mix with each other. In this research, to simplify the structure of injector plate, all gas channels are integrated into rings with liquid injector within. In order to study the spray phenomena of this ring channel injector, asymmetric coaxial injector models are used to simulate its behavior. The models are designed to be single and triplet liquid injections within a rectangular gas flow channel. All injector models have the same gas-to-liquid-flow area ratio but different aspect ratios of the rectangular channels. Three means were adopted in this research to study the phenomena of spray. First, the high speed shadowgraph is utilized to observe the breakup of liquid column. Second, planar laser induced fluorescence (PLIF) technique is used to determine the 2-D mass probability distributions of the spray and the spray angle, mass distribution area, and patternaton index (P.I) are evaluated by it. Third, Malvern droplet analyzer is used to measure the droplet size distribution as well as the core SMD (SMD0.15) of the spray. The results show that the spray behavior of the conventional axisymmetric coaxial injector is better than the asymmetric ones. However, the interaction between sprays in the triplet design shows improved liquid atomization and closer distance between liquid sprays causes stronger interaction thus to a better spray behavior, even better than the axisymmetric one.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

NareshKumar und 許庫瑪. „Numerical analysis on combustion characterization of gas centered swirl coaxial injector“. Thesis, 2018. http://ndltd.ncl.edu.tw/handle/s4954g.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Coaxial Injectors"

1

Center, Lewis Research, Hrsg. LOX/hydrogen coaxial injector atomization test program. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gomi, Hiromi. Pneumatic atomisation with coaxial injectors: Measurements of drop sizes by the diffraction method and liquid phase fraction by the attenuation method of light. Chofu, Tokyo: National Aerospace Laboratory, 1985.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

D, Klem Mark, und United States. National Aeronautics and Space Administration., Hrsg. Coaxial injector spray characterization using water/air as stimulants. [Washington, DC]: National Aeronautics and Space Administration, 1991.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

D, Smith Timothy, und NASA Glenn Research Center, Hrsg. Experimental evaluation of a subscale gaseous hydrogen/gaseous oxygen coaxial rocket injector. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shear coaxial injector atomization phenomena for combusting and non-combusting conditions. University Park, PA: Propulsion Engineering Research Center and Dept. of Mechanical Engineering, Pennyslvania State University, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

EXPERIMENTAL EVALUATION OF SUBSCALE GASEOUS HYDROGEN/GASEOUS OXYGEN COAXIAL ROCKET INJECTOR... NASA/TM--2002-211982... NATIONAL AERONAUTICS. [S.l: s.n., 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Coaxial Injectors"

1

Armbruster, Wolfgang, Justin S. Hardi und Michael Oschwald. „Experimental Investigation of Injection-Coupled High-Frequency Combustion Instabilities“. In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 249–62. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_16.

Der volle Inhalt der Quelle
Annotation:
Abstract Self-excited high-frequency combustion instabilities were investigated in a 42-injector cryogenic rocket combustor under representative conditions. In previous research it was found that the instabilities are connected to acoustic resonance of the shear-coaxial injectors. In order to gain a better understanding of the flame dynamics during instabilities, an optical access window was realised in the research combustor. This allowed 2D visualisation of supercritical flame response to acoustics under conditions similar to those found in European launcher engines. Through the window, high-speed imaging of the flame was conducted. Dynamic Mode Decomposition was applied to analyse the flame dynamics at specific frequencies, and was able to isolate the flame response to injector or combustion chamber acoustic modes. The flame response at the eigenfrequencies of the oxygen injectors showed symmetric and longitudinal wave-like structures on the dense oxygen core. With the gained understanding of the BKD coupling mechanism it was possible to derive LOX injector geometry changes in order to reduce the risks of injection-coupled instabilities for future cryogenic rocket engines.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kamalakannan Kannaiyan und Aravind Vaidyanathan. „Design and Characterization of Liquid Centered Swirl-Coaxial Injector“. In Fluid Mechanics and Fluid Power – Contemporary Research, 23–32. New Delhi: Springer India, 2016. http://dx.doi.org/10.1007/978-81-322-2743-4_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Arun, K. R. „Study of Gas-Centered Coaxial Injector Using Jet in a Cross-Flow Mechanism“. In Lecture Notes in Mechanical Engineering, 367–76. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6619-6_40.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lempke, Markus, Peter Gerlinger, Michael Rachner und Manfred Aigner. „Euler-Lagrange Simulation of a LOX/H2 Model Combustor with Single Shear Coaxial Injector“. In High Performance Computing in Science and Engineering '10, 203–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-15748-6_16.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

„Atomization in Coaxial-Jet Injectors“. In Liquid Rocket Thrust Chambers, 105–40. Reston ,VA: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/5.9781600866760.0105.0140.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

An, H., und W. Nie. „Numerical Study of acoustic characteristics of gas-liquid coaxial injectors“. In Advances in Power and Energy Engineering, 205–10. CRC Press, 2016. http://dx.doi.org/10.1201/b20131-35.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

„Fundamental Mechanisms of Combustion Instabilities: Coaxial Injector Atomization“. In Liquid Rocket Engine Combustion Instability, 145–89. Washington DC: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/5.9781600866371.0145.0189.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

„Fundamental Mechanisms of Combustion Instabilities: Shear Coaxial Injector Spray Characterization“. In Liquid Rocket Engine Combustion Instability, 191–213. Washington DC: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/5.9781600866371.0191.0213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

„Numerical Research of Combustion Efficiency of a LOX/GCH4 Shear Coaxial Injector“. In International Conference on Computer Technology and Development, 3rd (ICCTD 2011), 1947–52. ASME Press, 2011. http://dx.doi.org/10.1115/1.859919.paper320.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Coaxial Injectors"

1

Canino, James, John Tsohas, Venkateswaran Sankaran und Stephen Heister. „Dynamic Response of Coaxial Rocket Injectors“. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-4707.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

SANKAR, S., A. BRENA DE LA ROSA, A. ISAKOVIC und W. BACHALO. „Liquid atomization by coaxial rocket injectors“. In 29th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-691.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Han, Poong-Gyoo, Jae-Hoon Seol, Seong-Ha Hwang und Youngbin Yoon. „The Spray Characteristics of Swirl Coaxial Injectors“. In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-490.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Canino, James, Stephen Heister, Venkateswaran Sankaran und Sergey Zakharov. „Unsteady Response of Recessed-Post Coaxial Injectors“. In 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-4297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Yadav, Amit Kumar, Varghese Mathew Thannickal, Assiz M. P., T. John Tharakan und S. Sunil Kumar. „Comparative Combustion Performance of Swirl Coaxial Injectors“. In Proceedings of the 26thNational and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference December 17-20, 2021, IIT Madras, Chennai-600036, Tamil Nadu, India. Connecticut: Begellhouse, 2022. http://dx.doi.org/10.1615/ihmtc-2021.1010.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hill, Ruthie, Michaela R. Hemming, Jared A. Sauer und Kunning G. Xu. „Experimental Study of Liquid-Gas Coaxial Swirl Injectors“. In AIAA SCITECH 2024 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2024. http://dx.doi.org/10.2514/6.2024-1038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Morrow, David, Anil Nair und Raymond M. Spearrin. „Minimizing hydraulic losses in additively manufactured swirl coaxial injectors“. In AIAA Propulsion and Energy 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-4310.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Schumaker, S., Stephen Danczyk und Malissa Lightfoot. „Effect of Swirl on Gas-Centered Swirl-Coaxial Injectors“. In 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-5621.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Baran, Onur, Yusuf Ozyoruk und Bulent Sumer. „Experimental and Numerical Investigation of Coaxial Pressure Swirl Injectors“. In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-1740.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Woodward, R. D., R. L. Burch, Kenneth K. Kuo und Fan Bill Cheung. „CORRELATION OF INTACT-LIQUID-CORE LENGTH FOR COAXIAL INJECTORS“. In ICLASS 94. Connecticut: Begellhouse, 2023. http://dx.doi.org/10.1615/iclass-94.1450.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Coaxial Injectors"

1

Lightfoot, Malissa D., Stephen A. Danczyk und Douglas G. Talley. Scaling of Gas-Centered Swirl-Coaxial Injectors. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2008. http://dx.doi.org/10.21236/ada502809.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Heister, Stephen. Modeling Liquid Rocket Engine Atomization and Swirl/Coaxial Injectors. Fort Belvoir, VA: Defense Technical Information Center, Februar 2008. http://dx.doi.org/10.21236/ada494724.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Schumaker, S. A., Stephen A. Danczyk, Malissa D. Lightfoot und Alan L. Kastengren. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements. Fort Belvoir, VA: Defense Technical Information Center, Juni 2014. http://dx.doi.org/10.21236/ada611313.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Muss, J. A., C. W. Johnson, R. K. Cohn, P. A. Strakey und R. W. Bates. Swirl Coaxial Injector Development. Part I: Test Results. Fort Belvoir, VA: Defense Technical Information Center, März 2002. http://dx.doi.org/10.21236/ada408502.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cheng, G. C., C. W. Johnson und R. K. Cohn. Swirl Coaxial Injector Development. Part II: CFD Modeling. Fort Belvoir, VA: Defense Technical Information Center, März 2002. http://dx.doi.org/10.21236/ada412040.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Cheng, Gary C., Rory R. Davis, Curtis W. Johnson, Jeffrey A. Muss und Daniel A. Griesen. Development of GOX/Kerosene Swirl-Coaxial Injector Technology. Fort Belvoir, VA: Defense Technical Information Center, Juni 2003. http://dx.doi.org/10.21236/ada416879.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rodriguez, Juan I., Ivett A. Leyva, Douglas Talley und Bruce Chehroudi. Effects of a Variable-Phase Transverse Acoustic Field on a Coaxial Injector at Subcritical and Near-Critical Conditions (Preprint). Fort Belvoir, VA: Defense Technical Information Center, Mai 2008. http://dx.doi.org/10.21236/ada482957.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie