Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Coastal storms“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Coastal storms" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Coastal storms"
Walker, Rob A., und David R. Basco. „APPLICATION OF COASTAL STORM IMPULSE (COSI) PARAMETER TO PREDICT COASTAL EROSION“. Coastal Engineering Proceedings 1, Nr. 32 (02.02.2011): 23. http://dx.doi.org/10.9753/icce.v32.management.23.
Der volle Inhalt der QuelleBurvingt, Olivier, und Bruno Castelle. „COASTAL DUNES CHANGES ALONG THE WESTERN COAST OF EUROPE“. Coastal Engineering Proceedings, Nr. 37 (01.09.2023): 28. http://dx.doi.org/10.9753/icce.v37.sediment.28.
Der volle Inhalt der QuelleRibera, P., D. Gallego, C. Pena-Ortiz, L. Del Rio, T. A. Plomaritis und J. Benavente. „Reconstruction of Atlantic historical winter coastal storms in the Spanish coasts of the Gulf of Cadiz, 1929–2005“. Natural Hazards and Earth System Sciences 11, Nr. 6 (17.06.2011): 1715–22. http://dx.doi.org/10.5194/nhess-11-1715-2011.
Der volle Inhalt der QuelleBasco, David R., und Nader Mahmoudpour. „THE MODIFIED COASTAL STORM IMPULSE (COSI) PARAMETER AND QUANTIFICATION OF FRAGILITY CURVES FOR COASTAL DESIGN“. Coastal Engineering Proceedings 1, Nr. 33 (15.12.2012): 66. http://dx.doi.org/10.9753/icce.v33.management.66.
Der volle Inhalt der QuelleSalmun, H., A. Molod, F. S. Buonaiuto, K. Wisniewska und K. C. Clarke. „East Coast Cool-Weather Storms in the New York Metropolitan Region“. Journal of Applied Meteorology and Climatology 48, Nr. 11 (01.11.2009): 2320–30. http://dx.doi.org/10.1175/2009jamc2183.1.
Der volle Inhalt der QuelleYang, Kun, Vladimir Paramygin und Y. Peter Sheng. „An objective and efficient method for estimating probabilistic coastal inundation hazards“. Natural Hazards 99, Nr. 2 (04.10.2019): 1105–30. http://dx.doi.org/10.1007/s11069-019-03807-w.
Der volle Inhalt der QuelleMendoza, E. T., J. A. Jimenez und J. Mateo. „A coastal storms intensity scale for the Catalan sea (NW Mediterranean)“. Natural Hazards and Earth System Sciences 11, Nr. 9 (15.09.2011): 2453–62. http://dx.doi.org/10.5194/nhess-11-2453-2011.
Der volle Inhalt der QuelleLoureiro, Carlos, und Andrew Cooper. „Temporal variability in winter wave conditions and storminess in the northwest of Ireland“. Irish Geography 51, Nr. 2 (28.01.2019): 155–70. http://dx.doi.org/10.55650/igj.2018.1369.
Der volle Inhalt der QuelleThe, Nguyen Nguyen Ngoc The, Duong Cong Dien und Tran Thanh Tung. „Research on wave set-up during storms along the coast of Cua Dai, Hoi An“. Tạp chí Khoa học và Công nghệ biển 19, Nr. 3 (25.09.2019): 337–47. http://dx.doi.org/10.15625/1859-3097/19/3/14058.
Der volle Inhalt der QuelleMead, R. N., K. M. Mullaugh, G. Brooks Avery, R. J. Kieber, J. D. Willey und D. C. Podgorski. „Insights into dissolved organic matter complexity in rainwater from continental and coastal storms by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry“. Atmospheric Chemistry and Physics 13, Nr. 9 (14.05.2013): 4829–38. http://dx.doi.org/10.5194/acp-13-4829-2013.
Der volle Inhalt der QuelleDissertationen zum Thema "Coastal storms"
Mendoza, Ponce Ernesto Tonatiuh. „Coastal Vulnerability to Storms in the Catalan Coast“. Doctoral thesis, Universitat Politècnica de Catalunya, 2008. http://hdl.handle.net/10803/6402.
Der volle Inhalt der QuelleThis work presents a methodological framework for the estimation of coastal vulnerability to storm impacts at two scales, regional and local. It estimates the physical coastal vulnerability through the quantification of two components: erosion and flooding. Afterwards the two elements are integrated into the so called Coastal Vulnerability Index. The methodological process covers the following steps: (i) storm classification, (ii) evaluation of the induced beach response -flood and erosion-, (iii) coastal zone characterization, (iv) definition of a coastal vulnerability index to storms and (v) assessment of the coastal vulnerability. These steps have been derived and applied to the Catalan coast (NW Spanish Mediterranean) and can be adapted to other coasts. The obtained results can be used by coastal managers in an easy manner to identify sensitive coastal stretches for a given storm class and the induced processes (flooding, erosion or combination of both) with the purpose to take actions and mitigate these impacts.
Lin, Ye Jue. „Multivariate characterization of wave storms in coastal areas“. Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/619809.
Der volle Inhalt der QuelleEl enfoque más común para describir los temporales de mar es simplificar este suceso tomando la altura de ola significante (Hp), el periodo pico (Tp) y la dirección (0p) en el pico de la tormenta y tratándolas de forma independiente. Sin embargo, está ampliamente aceptado que exista al menos alguna relación entre ellas. Es más, el desarrollo de sofisticados modelos numéricos en la ingeniería de costas pide variables adicionales como la duración de tormenta (D), la cantidad de energía asociada (E), la evolución temporal de las variables y su relación con índices climáticos atmosféricos, todo para una mejor reproducción de los procesos simulados. Los objetivos y resultados principales de esta tesis son los siguientes: Primero, se caracteriza tormentas de mar en el clima de oleaje presente, de la costa catalana, suponiendo estacionalidad. Las variables modeladas son: la energía unitaria en el pico del temporal (Eu), Tp, E, D, 0p y la proporción de tiempo desde el inicio hasta el pico y desde el pico al final del temporal (ratios de crecimiento-decrecimiento). Se caracteriza E, E u, T p y D con distribuciones generalizadas de Pareto (GPD), y se caracteriza la estructura de probabilidades conjunta de estas variables vía una cópula jerárquica arquimedeana (HAC). Se caracteriza 0p con una combinación de distribución de probabilidad de von Mises-Fisher y se le relaciona con E, T p y D a través de un modelo logístico multinomial. Se propone una forma triangular o trapezoide-irregular para modelar la forma del temporal. En el clima presente de la costa catalana, el modelo estadístico construido puede generar temporales sintéticos. Las 0p principales son el norte y el este. La figura geométrica que mejor describe la evolución de la altura de ola es un trapezoide irregular. Para D mayor que 100h, el pico del temporal está generalmente más cerca del final que del principio. La media de cada variable decrece en el siglo XXI, excepto la de D, en el norte de la costa. Una NAO negativa puede causar una subida de la tormentosidad. Además, el umbral de tormenta y los parámetros de GPD están influenciados principalmente por la dinámica de los patrones climáticos, en vez de serlo por los propios patrones climáticos. Después de establecer un modelo estacionario, se incorpora la no estacionalidad a la caracterización de temporales de mar en la costa catalana. Se caracteriza E, Hp, Tp y D con GPDs no estacionarios. El umbral de temporal, la tormentosidad y los parámetros de los GPDs están relacionados con la Oscilación de Atlántico norte (NAO), el Patrón de Atántico oriental (EA) y el Patrón escandinavo (SC) y sus primeras dos derivadas temporales, a través de Modelos aditivos generalizados vectoriales. Se caracteriza la estructura de probabilidades conjunta con un HAC pseudo-dependiente del tiempo. Se considera un escenario grave de cambio climático. Se repite la metodología no estacionaria en el noroeste del Mar Negro, considerando tanto un escenario suave de cambio climático como otro grave. En el noroeste del Mar Negro, la tormentosidad de mar no está afectada por los patrones climáticos propuestos, todo y que el umbral de temporal está fuertemente influenciado por SC y EA. Los valores medios de las variables de temporal parecen tener una tendencia más positiva que en la costa catalana, y se observa que una subida de los valores medios se relaciona con otra subida de las varianzas. SC y EA afectan fuertemente a los parámetros de los GPDs. En las dos zonas de estudio, la dependencia entre E y D es alta, mientras que la dependencia general entre las variables de temporal es media. En la costa catalana, se espera que la dependencia entre E y D crezca con el tiempo. En el noroeste del Mar Negro, es la dependencia entre todas las variables de temporal la que crece con el tiempo, en ambos escenarios de cambio climático: el escenario grave presenta menos dependencia entre las variables.
Kortekaas, Stella. „Tsunamis, storms and earthquakes : distinguishing coastal flooding events“. Thesis, Coventry University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491429.
Der volle Inhalt der QuelleBosom, García Eva. „Coastal vulnerability to storms at different time scales: application to the Catalan coast“. Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277381.
Der volle Inhalt der QuelleLos temporales pueden causar daños importantes en la costa, tanto a nivel económico como ambiental. En consecuencia, durante los últimos años se ha destacado la importancia de incluir estimaciones de la magnitud de los procesos y de la vulnerabilidad en las políticas costeras, de forma que los gestores puedan tomar decisiones informadas para aplicar planes de mitigación y/o adaptación. El principal objetivo de esta tesis es desarrollar una metodología que permita evaluar, cuantitativamente, la vulnerabilidad de la costa al impacto de temporales para diferentes escalas de tiempo, considerando por separado los principales procesos implicados (inundación y erosión). En este trabajo, la vulnerabilidad se define como el potencial de un sistema costero a ser dañado, por lo que se ha cuantificado comparando la magnitud de los procesos con la capacidad de adaptación de la costa. La metodología propuesta se basa en una aproximación probabilística en la que las series temporales de intensidad de los procesos se ajustan a una distribución de valores extremos. En consecuencia, tanto la magnitud de los procesos como la vulnerabilidad se asocian a una probabilidad de ocurrencia en vez de a un evento determinado. El gestor debe decidir la probabilidad de ocurrencia a tener en cuenta en el análisis, la cual determinará el periodo de retorno (Tr). Una vez seleccionado el periodo de retorno, se crean indicadores de vulnerabilidad que comparan la magnitud del proceso con la capacidad de respuesta de la playa de forma independiente para erosión e inundación. La vulnerabilidad final se formula en términos de estas dos variables intermedias por medio de una función lineal que va desde un valor mínimo de 0 (estado óptimo) a un máximo de 1 (estado de fallida), definiendo 5 categorías cualitativas. En este caso, estos umbrales se han definido considerando la función de protección de la playa. Para evaluar las variaciones temporales de la vulnerabilidad, se han analizado los cambios en la capacidad de adaptación de la costa frente al impacto de temporales inducidos por los efectos de otros procesos costeros. Considerando las características de la zona de estudio, la erosión debida a los gradientes en el transporte longitudinal de sedimentos (LST) y la erosión y e inundación causadas por la subida relativa del nivel del mar (RSLR) han sido seleccionados como los principales procesos que actúan a medio y largo plazo respectivamente. La erosión/acreción debida al LST se ha determinado mediante tasas de evolución costera, mientras que para caracterizar la erosión e inundación debidas a la RSLR se ha utilizado una combinación de distintos escenarios de nivel del mar y subsidencia. La metodología se ha aplicado a la mayor parte de la costa sedimentaria (219 km) de Cataluña (Mediterráneo noroeste). Los resultados obtenidos para un Tr= 50 años muestran porcentajes similares de costa sujeta a alta o muy alta vulnerabilidad a los dos procesos. Sin embargo, el incremento de vulnerabilidad debido a la contribución del LST y la RSLR es ligeramente mayor en el caso de la erosión. En general, los cambios inducidos por la RSLR son menores que los obtenidos considerando solo el LST. La contribución de la RSLR se detecta a escalas de tiempo mayores y es mayor en la parte sur de la costa catalana. Esto se debe a la presencia de playas disipativas con pendientes muy suaves y a la potencialmente significativa subsidencia del delta del Ebro. La contribución del LST no parece afectar a ningún tipo concreto de playa. Finalmente, este método permite identificar los puntos más vulnerables de la costa considerando la respuesta dinámica del sistema a lo largo del tiempo. Esta información es relevante para los gestores en cuanto a la organización de los recursos disponibles. Además, su versatilidad permite tanto actualizar los resultados en función de la información disponible sobre los procesos y la geomorfología costera, como aplicarlo fácilmente a otras regiones.
Doe, Robert K. „An investigation into the physical impacts of coastal storms on the Dorset coast“. Thesis, University of Portsmouth, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.439190.
Der volle Inhalt der QuelleHickey, Kieran Richard. „Documentary records of coastal storms in Scotland 1500-1991 A.D“. Thesis, Coventry University, 1997. http://curve.coventry.ac.uk/open/items/aa6dfd04-d53f-4741-1bb7-bdf99fb153be/1.
Der volle Inhalt der QuelleFranck, Travis Read. „Coastal communities and climate change : a dynamic model of risk perception, storms, and adaptation“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54846.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 303-311).
Climate change impacts, including sea-level rise and changes in tropical storm frequency and intensity, will pose signicant challenges to city planners and coastal zone managers trying to make wise investment and protection decisions. Meanwhile, policymakers are working to mitigate impacts by regulating greenhouse gas emissions. To design effective policies, policymakers need more accurate information than is currently available to understand how coastal communities will be affected by climate change. My research aims to improve coastal impact and adaptation assessments, which inform climate and adaptation policies. I relax previous assumptions of probabilistic annual storm damage and rational economic expectations-variables in previous studies that are suspect, given the stochastic nature of storm events and the real-world behavior of people. I develop a dynamic stochastic adaptation model that includes explicit storm events and boundedly rational storm perception. I also include endogenous economic growth, population growth, public adaptation measures, and relative sea-level rise. The frequency and intensity of stochastic storm events can change a region's long- term economic growth pattern and introduce the possibility of community decline. Previous studies using likely annual storm damage are unable to show this result. Additionally, I consider three decision makers (coastal managers, infrastructure investors, and residents) who differ regarding their perception of storm risk. The decision makers' perception of risk varies depending on their rationality assumptions.
(cont.) Boundedly rational investors and residents perceive storm risk to be higher immediately after a storm event, which can drive down investment, decrease economic 3 growth, and increase economic recovery time, proving that previous studies provide overly optimistic economic predictions. Rationality assumptions are shown to change economic growth and recovery time estimates. Including stochastic storms and variable rationality assumptions will improve adaptation research and, therefore, coastal adaptation and climate change policies.
by Travis Read Franck.
Ph.D.
Mulvaney, Heidi Sarah. „An investigation into sandy beach stabilisation through controlled drainage“. Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342713.
Der volle Inhalt der QuelleSwitzer, Adam D. „Depositional characteristics of recent and late Holocene overwash sandsheets in coastal embayments from southeast Australia“. Access electronically, 2005. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20051202.112948/index.html.
Der volle Inhalt der QuelleLee, Hyerin M. ArchMassachusetts Institute of Technology. „Weathering the storms : new suburban typology for coastal cities through a case study on Winthrop, MA“. Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/127849.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references (pages 61-62).
Climate change is intensifying natural events around the world. As the sea level rises, coastal cities are becoming more vulnerable to storm surges and flooding. This is especially problematic in the U.S. where the population is concentrated and is on the rise along the coasts. Properties of high total value are also at risk. Various flood mitigation strategies have been implemented domestically and internationally. Hard solutions such as seawalls and levees can be effective but they are expensive and potentially catastrophic in the event of failure. Soft solutions like dunes and living shorelines have stabilizing effects but they are moderate in their effectiveness and will not protect against significant sea level rise or major storms. Strategies involving retreat is a sure way to remove people and properties from harm's way. If the sea level continues to rise, retreating will become inevitable. Currently, there are many challenges with this method. In the U.S., flood insurance policy is structured in a way to incentivize people to stay in flood-prone areas as opposed to moving. Relocation can be disorienting for people involved and costly for tax payers. Economic and political pressure often sides with building more than building less. This thesis aims at providing a design solution for coastal suburbs that can enable retreat in a sustainable way. Winthrop, Massachusetts, which is a dense suburb lying six miles to the east of Boston and is experiencing frequent flooding was selected as a case-study site. The thesis proposes a new building typology that can appeal to suburban life style, be implemented incrementally, and, most importantly, protect people and properties from the dangers of coastal flooding.
by Hyerin Lee.
M. Arch.
M.Arch. Massachusetts Institute of Technology, Department of Architecture
Bücher zum Thema "Coastal storms"
Ciavola, Paolo, und Giovanni Coco, Hrsg. Coastal Storms. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118937099.
Der volle Inhalt der QuelleGodschalk, David R. Catastrophic coastal storms: Hazard mitigation and development management. Durham: Duke University Press, 1989.
Den vollen Inhalt der Quelle findenVasseur, Liette, Mary J. Thornbush und Steve Plante. Adaptation to Coastal Storms in Atlantic Canada. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63492-0.
Der volle Inhalt der QuelleQuevauviller, Philippe, Paolo Ciavola und Emmanuel Garnier. Management of the Effects of Coastal Storms. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119116103.
Der volle Inhalt der QuelleGeological Survey (U.S.). Coastal storm monitoring in Virginia. Reston, Virginia]: U.S. Department of the Interior, U.S. Geological Survey, 2014.
Den vollen Inhalt der Quelle findenMertz, D. R. Guide specifications for bridges vulnerable to coastal storms. Washington, DC: American Association of State Highway and Transportation Officials, 2008.
Den vollen Inhalt der Quelle findenDashew, Steve. Surviving the storm: Coastal & offshore tactics. Tuscon, Ariz: Beowulf, 1999.
Den vollen Inhalt der Quelle findenBrown, R. D. Climatology of severe storms affecting coastal areas of Eastern Canada. Markham, Ont: MEP, 1986.
Den vollen Inhalt der Quelle findenLuppens, Mahoney Jennifer, und Forecast Systems Laboratory (U.S.), Hrsg. Coastal storms initiative: Summary of 1 June-31 August 2003 evaluation. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Forecast Systems Laboratory, 2004.
Den vollen Inhalt der Quelle findenW, Ramsey Kelvin, University of Delaware und Delaware Geological Survey, Hrsg. Summary report: The coastal storms of January 27-29 and February 4-6, 1998, Delaware and Maryland. Newark, Del: University of Delaware, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Coastal storms"
Peterson, Jeffrey. „Coastal Storms, Coastal Nightmare“. In A New Coast, 9–19. Washington, DC: Island Press/Center for Resource Economics, 2019. http://dx.doi.org/10.5822/978-1-64283-013-2_2.
Der volle Inhalt der QuelleVila-Concejo, Ana, und Paul Kench. „Storms in Coral Reefs“. In Coastal Storms, 127–49. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118937099.ch7.
Der volle Inhalt der QuelleHarley, Mitchell. „Coastal Storm Definition“. In Coastal Storms, 1–21. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118937099.ch1.
Der volle Inhalt der Quellevan Dongeren, Ap, Dano Roelvink, Robert McCall, Kees Nederhoff und Arnold van Rooijen. „Modeling the Morphological Impacts of Coastal Storms“. In Coastal Storms, 195–216. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118937099.ch10.
Der volle Inhalt der QuelleJiménez, José, Clara Armaroli und Eva Bosom. „Preparing for the Impact of Coastal Storms: A Coastal Manager-oriented Approach“. In Coastal Storms, 217–39. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118937099.ch11.
Der volle Inhalt der QuelleRanasinghe, Roshanka, und David Callaghan. „Assessing Storm Erosion Hazards“. In Coastal Storms, 241–56. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118937099.ch12.
Der volle Inhalt der QuelleBertin, Xavier, Maitane Olabarrieta und Robert McCall. „Hydrodynamics Under Storm Conditions“. In Coastal Storms, 23–43. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118937099.ch2.
Der volle Inhalt der QuelleAagaard, Troels, und Aart Kroon. „Sediment Transport Under Storm Conditions on Sandy Beaches“. In Coastal Storms, 45–63. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118937099.ch3.
Der volle Inhalt der QuellePlant, Nathaniel, Kara Doran und Hilary Stockdon. „Examples of Storm Impacts on Barrier Islands“. In Coastal Storms, 65–79. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118937099.ch4.
Der volle Inhalt der QuelleWang, Ping, und Jun Cheng. „Storm Impacts on the Morphology and Sedimentology of Open-coast Tidal Flats“. In Coastal Storms, 81–98. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118937099.ch5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Coastal storms"
Benassai, G., P. Celentano und F. Sessa. „Coastal storm damage reduction program in Salerno Province after the winter 2008 storms“. In COASTAL PROCESSES 2009. Southampton, UK: WIT Press, 2009. http://dx.doi.org/10.2495/cp090111.
Der volle Inhalt der QuelleKuipers, Keelin S., und Douglas Harper. „The NOAA Coastal Storms Program“. In Solutions to Coastal Disasters Congress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40968(312)71.
Der volle Inhalt der QuellePOATE, TIM, GERD MASSELINK, ROBERT McCALL, PAUL RUSSELL und MARK DAVIDSON. „UK STORMS 2014: GRAVEL BEACH RESPONSE“. In Coastal Sediments 2015. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814689977_0257.
Der volle Inhalt der QuelleFAGHERAZZI, SERGIO, und LUCA CORTESE. „FEEDING SALT MARSHES WITH COASTAL STORMS“. In Coastal Sediments 2023. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811275135_0228.
Der volle Inhalt der QuelleGARCIA-LEON, MANUEL, VICENTE GRACIA, LAURA ROBICHAUX, ARNE KROGER, JEREMY GAULT und AGUSTIN SÁNCHEZ-ARCILLA. „EVALUATION OF TRANSIENT DEFENCE MEASURES AGAINST STORMS“. In Coastal Sediments 2015. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814689977_0166.
Der volle Inhalt der QuelleANDERSON, DYLAN, ALIREZA GHARAGOZLOU, JESSICA GORSKI und JOEL CASEY DIETRICH. „EMULATION OF BEACH PROFILE RESPONSE TO STORMS“. In Coastal Sediments 2023. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811275135_0022.
Der volle Inhalt der QuelleRAVENS, TOM, MARTIN HENKE und CELSO FERREIRA. „ARCTIC COASTAL STORMS, UNIQUE IN CHARACTER AND IMPACT“. In Coastal Sediments 2023. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811275135_0223.
Der volle Inhalt der QuelleCavaleri, L., L. Bertotti, P. Canestrelli und P. Lionello. „Extreme Storms in the Adriatic Sea“. In 22nd International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1991. http://dx.doi.org/10.1061/9780872627765.018.
Der volle Inhalt der QuelleDube, S. K., P. C. Sinha und G. D. Roy. „Numerical Simulation of Storm Surges Induced by Tropical Storms Impinging on the Bangladesh Coast“. In 19th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1985. http://dx.doi.org/10.1061/9780872624382.014.
Der volle Inhalt der QuelleKÜMMERER, VINCENT, CARLOS LOUREIRO und ÓSCAR FERREIRA. „MUTED MORPHOLOGICAL RESPONSE TO EXTREME STORMS IN GEOLOGICALLY CONTROLLED BARRIER ISLANDS“. In Coastal Sediments 2023. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811275135_0005.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Coastal storms"
Cialone, Mary, Jessamin Straub, Britt Raubenheimer, Jenna Brown, Katherine Brodie, Nicole Elko, Patrick Dickhudt et al. A large-scale community storm processes field experiment : the During Nearshore Event Experiment (DUNEX) overview reference report. Engineer Research and Development Center (U.S.), März 2023. http://dx.doi.org/10.21079/11681/46548.
Der volle Inhalt der QuelleTorres, Marissa, Norberto Nadal-Caraballo und Alexandros Taflanidis. Rapid tidal reconstruction for the Coastal Hazards System and StormSim part II : Puerto Rico and U.S. Virgin Islands. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41482.
Der volle Inhalt der QuelleMelby, Jeffrey, Thomas Massey, Fatima Diop, Himangshu Das, Norberto Nadal-Caraballo, Victor Gonzalez, Mary Bryant et al. Coastal Texas Protection and Restoration Feasibility Study : Coastal Texas flood risk assessment : hydrodynamic response and beach morphology. Engineer Research and Development Center (U.S.), Juli 2021. http://dx.doi.org/10.21079/11681/41051.
Der volle Inhalt der QuelleRamos-Santiago, Efrain, Norberto Nadal-Caraballo, Fabian Garcia-Moreno, Luke Aucoin, Meredith Carr, Madison Yawn und Jeffrey Melby. Statistical analysis of storm surge and seiche hazards for Lake Erie. Engineer Research and Development Center (U.S.), Mai 2024. http://dx.doi.org/10.21079/11681/48590.
Der volle Inhalt der QuelleTorres, Marissa, und Norberto Nadal-Caraballo. Rapid tidal reconstruction with UTide and the ADCIRC tidal database. Engineer Research and Development Center (U.S.), August 2021. http://dx.doi.org/10.21079/11681/41503.
Der volle Inhalt der QuelleStehno, Abigail, Jeffrey Melby, Shubhra Misra, Norberto Nadal-Caraballo und Victor Gonzalez. Sabine Pass to Galveston Bay, TX Pre-construction, Engineering and Design (PED) : coastal storm surge and wave hazard assessment : report 2 – Port Arthur. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41901.
Der volle Inhalt der QuelleMelby, Jeffrey, Thomas Massey, Abigail Stehno, Norberto Nadal-Caraballo, Shubhra Misra und Victor Gonzalez. Sabine Pass to Galveston Bay, TX Pre-construction, Engineering and Design (PED) : coastal storm surge and wave hazard assessment : report 1 – background and approach. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41820.
Der volle Inhalt der QuelleRuffman, A., K. Hattie, D. Boyce, B. Stevenson, A. Smith, G. Buchan und D. Snow. Historic seismicity and record of severe storms with coastal flooding for western Newfoundland - volume 1. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132211.
Der volle Inhalt der QuelleRuffman, A., K. Hattie, D. Boyce, B. Stevenson, A. Smith, G. Buchan und D. Snow. Historic seismicity and record of severe storms with coastal flooding for western Newfoundland - volume 2. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1991. http://dx.doi.org/10.4095/132212.
Der volle Inhalt der QuelleMercer Clarke, Colleen S. L., Alexander J. Clarke, Murray Simpson, John D. Clarke und Daniel Scott. Coastal Setbacks in Latin America and the Caribbean: A Study of Emerging Issues and Trends that Inform Guidelines for Coastal Planning and Development. Inter-American Development Bank, Oktober 2012. http://dx.doi.org/10.18235/0009056.
Der volle Inhalt der Quelle