Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Coassemblies“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Coassemblies" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Coassemblies"
Zhao, Jianjian, Bo Wang, Aiyou Hao und Pengyao Xing. „Arene–perfluoroarene interaction induced chiroptical inversion and precise ee% detection of chiral acids in a benzimidazole-involved ternary coassembly“. Nanoscale 14, Nr. 5 (2022): 1779–86. http://dx.doi.org/10.1039/d1nr06254a.
Der volle Inhalt der QuelleCheng, Qiuhong, Aiyou Hao und Pengyao Xing. „Dynamic evolution of supramolecular chirality manipulated by H-bonded coassembly and photoisomerism“. Materials Chemistry Frontiers 5, Nr. 17 (2021): 6628–38. http://dx.doi.org/10.1039/d1qm00850a.
Der volle Inhalt der QuelleShi, Nan, Junyan Tan, Xinhua Wan, Yan Guan und Jie Zhang. „Induced salt-responsive circularly polarized luminescence of hybrid assemblies based on achiral Eu-containing polyoxometalates“. Chemical Communications 53, Nr. 31 (2017): 4390–93. http://dx.doi.org/10.1039/c7cc01586k.
Der volle Inhalt der QuelleWong, Kong M., Alicia S. Robang, Annabelle H. Lint, Yiming Wang, Xin Dong, Xingqing Xiao, Dillon T. Seroski et al. „Engineering β-Sheet Peptide Coassemblies for Biomaterial Applications“. Journal of Physical Chemistry B 125, Nr. 50 (14.12.2021): 13599–609. http://dx.doi.org/10.1021/acs.jpcb.1c04873.
Der volle Inhalt der QuelleLiang, Juncong, Na Qi, Pengyao Xing und Aiyou Hao. „Selective chiral recognition of achiral species in nanoclay coassemblies“. Colloids and Surfaces A: Physicochemical and Engineering Aspects 614 (April 2021): 126152. http://dx.doi.org/10.1016/j.colsurfa.2021.126152.
Der volle Inhalt der QuelleCao, Zhaozhen, Bo Wang, Feng Zhu, Aiyou Hao und Pengyao Xing. „Solvent-Processed Circularly Polarized Luminescence in Light-Harvesting Coassemblies“. ACS Applied Materials & Interfaces 12, Nr. 30 (21.07.2020): 34470–78. http://dx.doi.org/10.1021/acsami.0c10559.
Der volle Inhalt der QuelleYang, Li, Xiaoqiu Dou, Chunmei Ding und Chuanliang Feng. „Induction of Chirality in Supramolecular Coassemblies Built from Achiral Precursors“. Journal of Physical Chemistry Letters 12, Nr. 4 (22.01.2021): 1155–61. http://dx.doi.org/10.1021/acs.jpclett.0c03400.
Der volle Inhalt der QuelleWang, Lu, Fuqiang Fan, Wei Cao und Huaping Xu. „Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids“. ACS Applied Materials & Interfaces 7, Nr. 29 (21.07.2015): 16054–60. http://dx.doi.org/10.1021/acsami.5b04419.
Der volle Inhalt der QuelleNiu, Lin, Lei Liu, Wenhui Xi, Qiusen Han, Qiang Li, Yue Yu, Qunxing Huang et al. „Synergistic Inhibitory Effect of Peptide–Organic Coassemblies on Amyloid Aggregation“. ACS Nano 10, Nr. 4 (21.03.2016): 4143–53. http://dx.doi.org/10.1021/acsnano.5b07396.
Der volle Inhalt der QuelleVan Zee, Nathan J., Mathijs F. J. Mabesoone, Beatrice Adelizzi, Anja R. A. Palmans und E. W. Meijer. „Biasing the Screw-Sense of Supramolecular Coassemblies Featuring Multiple Helical States“. Journal of the American Chemical Society 142, Nr. 47 (10.11.2020): 20191–200. http://dx.doi.org/10.1021/jacs.0c10456.
Der volle Inhalt der QuelleDissertationen zum Thema "Coassemblies"
Riba-Bremerch, Alexi. „Coassembly of nucleating agents in polymeric media“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2023. http://www.theses.fr/2023UPSLS016.
Der volle Inhalt der QuelleNucleation of semi-crystalline polymers, and in particular polypropylene, is an effective industrial strategy to control thermal, mechanical and optical properties and to shorten the compounding cycle. The design of nucleating agents remains industrially key to achieve desirable properties, such as toughness and optical clarity. The most cost-effective nucleating agents are low molecular weight organic molecules that form supramolecular self-assemblies in the polymer melt, which provide a heterogeneous surface that is favorable for the polymer to undergo epitaxial crystallization. Nevertheless, the design of nucleating agents is largely based on empirical relationships. In this study, we aimed to address this gap by exploring coassemblies of nucleating agents. We developed a complete methodology of analysis allowing a deep understanding of supramolecular systems in molten polymeric media. For this purpose, two nucleating agents were selected on the basis of their selectivity for different PP morphisms. Their assembly and structure were analyzed by spectrocopic, microscopic, calorimetric, and X-ray diffraction methods. We then proceeded to study the formation of the coassembled nucleating agents using the same set of techniques. Fitting and modeling of experimental measurements acquired at thermodynamic equilibrium allowed us to access the thermodynamic parameters of our system, which ultimately gave us insight into the nature of the hetero-interactions at a molecular level. This theoretical study revealed the microstructure of the obtained copolymers. We used this information to rationalize the structure-properties relationship of between nucleating agent structure and polypropylene crystallinity. Finally, inspired by this approach, we began to design and prepare a new model system that would allow us to understand these self-assembly processes at polymer-polymer interfaces
Buchteile zum Thema "Coassemblies"
Anantharam, Arun, und Geoffrey W. Abbott. „Does hERG Coassemble with a β Subunit? Evidence for Roles of MinK and MiRP1“. In The hERG Cardiac Potassium Channel: Structure, Function and Long QT Syndrome, 100–117. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/047002142x.ch9.
Der volle Inhalt der QuelleChakraborty, Amrita, und Thalappil Pradeep. „Nanocluster–nanoparticle coassemblies“. In Atomically Precise Metal Nanoclusters, 111–28. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-90879-5.00019-6.
Der volle Inhalt der QuelleSarkar, Sovik Dey, Chandrakanta Guchhait und Bimalendu Adhikari. „Multicomponent Low Molecular Weight Gels and Gelators“. In Multicomponent Hydrogels, 48–84. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781837670055-00048.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Coassemblies"
Nilsson, Bradley L., Danielle M. Raymond und Jade J. Welch. „Rippled β-Sheet Fibrils from Coassembled Enantiomeric Amphipathic Peptides as Potential Microbicide Biomaterials“. In The 24th American Peptide Symposium. Prompt Scientific Publishing, 2015. http://dx.doi.org/10.17952/24aps.2015.033.
Der volle Inhalt der Quelle