Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CO2 reduction catalysis“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CO2 reduction catalysis" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CO2 reduction catalysis"
Dagorne, Samuel. „Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis“. Synthesis 50, Nr. 18 (28.06.2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Der volle Inhalt der QuelleTian, Jindan, Ru Han, Qiangsheng Guo, Zhe Zhao und Na Sha. „Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis“. Catalysts 12, Nr. 6 (02.06.2022): 612. http://dx.doi.org/10.3390/catal12060612.
Der volle Inhalt der QuelleSrivastava, Sumit, Manvender S. Dagur, Afsar Ali und Rajeev Gupta. „Trinuclear {Co2+–M3+–Co2+} complexes catalyze reduction of nitro compounds“. Dalton Transactions 44, Nr. 40 (2015): 17453–61. http://dx.doi.org/10.1039/c5dt03442f.
Der volle Inhalt der QuelleLisovski, Oleg, Sergei Piskunov, Dmitry Bocharov, Yuri Zhukovskii, Janis Kleperis, Ainars Knoks und Peteris Lesnicenoks. „CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations“. Crystals 12, Nr. 2 (28.01.2022): 194. http://dx.doi.org/10.3390/cryst12020194.
Der volle Inhalt der QuellePetersen, Haley A., Tessa H. T. Myren und Oana R. Luca. „Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction“. Inorganics 8, Nr. 11 (11.11.2020): 62. http://dx.doi.org/10.3390/inorganics8110062.
Der volle Inhalt der QuelleHahn, Christopher. „(Invited) Steering Electrocatalytic CO2 Reduction Reactivity Using Microenvironments“. ECS Meeting Abstracts MA2022-02, Nr. 49 (09.10.2022): 1879. http://dx.doi.org/10.1149/ma2022-02491879mtgabs.
Der volle Inhalt der QuelleCao, Yanwei, Qiongyao Chen, Chaoren Shen und Lin He. „Polyoxometalate-Based Catalysts for CO2 Conversion“. Molecules 24, Nr. 11 (30.05.2019): 2069. http://dx.doi.org/10.3390/molecules24112069.
Der volle Inhalt der QuelleZhou, Yiying, Junxi Cai, Yuming Sun, Shuhan Jia, Zhonghuan Liu, Xu Tang, Bo Hu, Yue Zhang, Yan Yan und Zhi Zhu. „Research on Cu-Site Modification of g-C3N4/CeO2-like Z-Scheme Heterojunction for Enhancing CO2 Reduction and Mechanism Insight“. Catalysts 14, Nr. 8 (20.08.2024): 546. http://dx.doi.org/10.3390/catal14080546.
Der volle Inhalt der QuelleXue, Sensen, Xingyou Liang, Qing Zhang, Xuefeng Ren, Liguo Gao, Tingli Ma und Anmin Liu. „Density Functional Theory Study of CuAg Bimetal Electrocatalyst for CO2RR to Produce CH3OH“. Catalysts 14, Nr. 1 (20.12.2023): 7. http://dx.doi.org/10.3390/catal14010007.
Der volle Inhalt der QuelleHall, Anthony Shoji, Youngmin Yoon, Anna Wuttig und Yogesh Surendranath. „Mesostructure-Induced Selectivity in CO2 Reduction Catalysis“. Journal of the American Chemical Society 137, Nr. 47 (18.11.2015): 14834–37. http://dx.doi.org/10.1021/jacs.5b08259.
Der volle Inhalt der QuelleDissertationen zum Thema "CO2 reduction catalysis"
Smith, Adrien. „Activation and reduction of CO2 by metalloporphyrin-based molecular catalysts“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF039.
Der volle Inhalt der QuelleTransforming CO₂ into valuable reduced forms of carbon is an interesting approach towards the recycling of this greenhouse gas, by introducing non-fossil fuel based C1 building blocks back into the carbon cycle. Tetraphenyl iron porphyrins and derivatives have been shown to be efficient and selective molecular catalysts for CO₂ reduction to CO. The introduction of various functions in the second coordination sphere of porphyrins showed great improvements of both the overpotential and the catalytic rates.Inspired by the distal pocket of enzymatic active centers, an iron porphyrin with a carboxylate strap is investigated. Electrochemical, kinetic and computational chemistry studies show that this catalyst operates at a low overpotential, while maintaining high catalytic rates. It is proposed that the carboxylate function, initially acting as an axial ligand of the metal, plays an important role in the insertion and transformation of CO₂, in synergy with a water molecule trapped in the superstructure.Furthermore, two iron porphyrins were synthetized bearing an imidazolium group at various positions with respect to the metal center. The original goal of this study was to establish a correlation between the distance of the cationic group from the metal center and the catalytic performances of the catalyst, which can guide the design of new catalysts for CO₂ reduction.The electrochemical study of these catalysts revealed that these imidazolium functions can be electroactive. Electron paramagnetic resonance was used to describe their various reduced forms. These studies revealed and describe the potential electroactive behavior of the imidazolium groups on these novel iron porphyrins catalysts
Afonso, Joana da Costa Franco. „Catalytic hydrogenation of carbon dioxide to form methanol and methane“. Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10854.
Der volle Inhalt der QuelleWoolerton, Thomas William. „Development of enzymatic H2 production and CO2 reduction systems“. Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:393741ac-94b1-4d56-b680-d9a434db77e2.
Der volle Inhalt der QuellePršlja, Paulina. „Theoretical Studies of Single-Site Catalysts for Efficient Electrochemical CO2 Reduction“. Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/671468.
Der volle Inhalt der QuelleEl desarrollo de la electroquímica tiene el potencial de utilizar el CO2 como materia prima para la producción sostenible de compuestos y materiales y tiene un gran impacto en la industria química. El catalizador “de sitio único” (single site catalyst) es un material prometedor para lograr una elevada actividad y selectividad hacia CO e hidrocarburos C1. La estructura única de este catalizador derivado de carbono reduce la competencia de estos procesos con otros procesos catalíticos como la reacción hydrogen evolution reaction (HER) porque el single site catalyst requiere la unión de hidrógeno en la parte superior. En esta tesis, métodos DFT y conceptos electroquímicos computacionales han sido aplicados para entender los procesos de reducción de CO2. En el capítulo 3 se describe la importancia de las características estructurales del single site catalyst, además de los conceptos relacionados con la química de coordinación que se aplican para comprender la actividad del catalizador en la reacción electroquímica de reducción de CO2 (eCO2RR). El objetivo del capítulo 4 es establecer correlaciones experimentales y teóricas entre las propiedades fisicoquímicas y catalíticas para la eCO2RR hacia CO para el catalizador del MNC. El proceso de reconstrucción de las nanopartículas de Ni mediante la desintegración de Ni(CO)2 en materiales de carbono dopados con N se describe en el capítulo 5. Por último, en el capítulo 6 se describe la selectividad de los productos de reducción de CO2 teniendo en cuenta cómo afecta el potencial y la temperatura sobre el catalizador modelado de CoTPP/MWCNT.
The development of electrochemistry has the potential to use CO2 as a feedstock for the sustainable production of chemicals and materials and it has an important impact on the chemical industry. Single site catalyst is a promising new material for achieving high activity and selectivity towards CO and C1 hydrocarbons. The unique structure of carbon-based catalyst makes it a good compressor of competing Hydrogen evolution reaction (HER) because the single site requires an ontop binding of hydrogen. In this thesis, I applied DFT methods and computational electrochemical concepts for understanding the processes of CO2 reduction (eCO2RR). In chapter 3 I described the importance of single-site structural features catalyst, besides the basic concept of the coordination chemistry that is applied to understand eCO2RR activity of the catalyst. The aim of chapter 4 was to establish experimental and theoretical correlations between physicochemical and catalytic properties for the eCO2RR towards CO for MNC catalyst. The process of reconstruction of Ni nanoparticles by the disintegration of Ni(CO)2 on N-doped carbon materials is described in chapter 5. Finally, in chapter 6 I unraveled the selectivity of CO2 reduction products that were influenced by potential and the temperature over modeled CoTPP/MWCNT catalyst.
Dattila, Federico. „Modelling and mapping pathways of electrochemical CO2 reduction on modified catalytic surfaces“. Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/670954.
Der volle Inhalt der QuelleLa reducción de CO2 es el único proceso para generar combustibles verdes con un impacto negativo neto en las emisiones de CO2. Por lo tanto, el desarrollo futuro de nuestra sociedad necesita una aplicación industrial de esta tecnología para producir productos químicos de uso intensivo como el etileno. El cobre es un material único para catalizar estos productos, sin embargo, avances significativos en este proceso requieren una comprensión teórica profunda de su complejidad. En esta tesis me propuse desarrollar métodos teóricos para abordar los principales factores involucrados en la reducción de CO2 con cobre: (i) reconstrucción superficial debido a potencial negativo; (ii) efectos químicos sobre la selectividad; y (iii) el efecto del electrolito. Los capítulos I y II se dedicaron a las motivaciones y métodos y el Capítulo 3 a comprobar resultados experimentales bien establecidos. En el capítulo 4 investigué la reconstrucción del cobre policristalino a potenciales negativos. Este proceso está impulsado por la polarización de la superficie, que promueve dominios (100) y defectos. Siguiendo las previsiones teóricas, sinteticé un catalizador a base de cobre eficaz para producir etileno con alto rendimiento. En el Capítulo V, estudié el óxido de cobre para investigar el estado de oxidación del cobre, su coordinación y los sitios superficiales activos hacia la producción de químicos C2+. Entre los resultados, demostré que la polarización impulsa la reducción de CO2, mientras un nuevo intermedio, el glioxilato desprotonado, mejora la selectividad hasta los C2+. En el capítulo VI me dediqué a efectos químicos que influencian la reactividad del cobre. Adatomos de azufre, que actúan como centros de anclaje, permiten la generación de formiato. Finalmente, en el Apéndice A introduje el efecto de los cationes sobre la reducción de CO2, que aún no se comprende completamente, pero tiene una clara relevancia en la distribución del producto.
CO2 reduction is the only process which can generate green fuels with a net negative impact in CO2 emissions. Therefore, the future development of our society needs an industrial scale up of this technology, involving the production of heavily used chemicals such as ethylene. Copper is a unique material for catalyzing these C2+ products, however significant advances need a deep theoretical understanding of the complexity of this material under CO2 reduction conditions. In this thesis I aimed at developing theoretical methods to address the main factors involved in this process: (i) surface reconstruction at negative potential; (ii) chemical effects on copper selectivity; and (iii) the effect of the electrolyte. Chapters I and II were dedicated to the motivations and methods. After having benchmarked in Chapter 3 well-established experimental results, such as the morphology dependence of CO2 product distribution on copper local morphology, I investigated the reconstruction of polycrystalline copper at negative potentials. This process is driven by local surface polarization, which destabilizes close-packed domains and promotes (100) facets and defects. Following theoretical guidelines, I synthesized an effective copper-based catalyst with produced ethylene at high yield and high current density. In Chapter V I studied a complex oxide-derived copper material to provide insights about copper oxidation state, its coordination and surface ensembles active toward C2+ chemicals. Among the outcomes, I demonstrated that polarization drives CO2 reduction activity, whilst a newly reported intermediate, a deprotonated glyoxylate, triggers C2+ selectivity. In chapter VI I dedicated to chemical effects on copper reactivity. Sulfur adatoms, acting as strong tethering centers enable the generation of formate, a chemical employed as preservative for animal food stock. Finally, in Appendix A I introduced cation effect on CO2 reduction, not yet fully understood but having a clear relevance on product distribution.
Fugate, Elizabeth Anne. „Investigation of Electronic Structure Effects of Transition Metal Oxides toward Water Oxidation and CO2 Reduction Catalysis“. The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462868623.
Der volle Inhalt der QuelleChakraborty, Sumit. „Homogeneous Catalysis of Nickel Hydride Complexes Bearing a Bis(phosphinite) Pincer Ligand“. University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1342716471.
Der volle Inhalt der QuelleFrogneux, Xavier. „Transformations réductrices du CO2 pour la formation de liaisons C-N et C-C“. Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112136/document.
Der volle Inhalt der QuelleIn the current world, carbon dioxide (CO2) is the major waste of the massive utilization of fossil resources but only few applications have been developed using this compound. In order to take advantage of its abundancy, the development of novel chemical transformation of CO2 to produce fine chemicals is of high interest in the scientific community. In particular, the formation of C-N bond(s) from CO2 and amine compounds unlocks a new way to access high energy and value-added. A second type of highly desirable transformation is the formation of C-C bonds with CO2 so as to synthesize carboxylic acid derivatives. The utilization of hydrosilanes as mild reductants allows the reactions to proceed under 1 bar of CO2 with abundant and cheap metal-based catalysts (iron, zinc) or with organocatalysts. The synthesis of formamides, methylamines and aminals from CO2 are described herein. Ultimately, the catalytic carboxylation of carbosilanes has been achieved for the first time using copper-based complexes. In the specific case of 2-pyridylsilanes, the use of pentavalent fluoride salts allowed us to perform the reaction without catalyst
Giang, Hannah. „Rational Fabrication of Molybdenum Disulfide and Metal-doped Molybdenum Disulfide Thin Films via Electrodeposition Method for Energy Storage, Catalysis, and Biosensor Applications“. OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1861.
Der volle Inhalt der QuelleKour, Gurpreet. „First principles investigations on transition metal based electrocatalysts for efficient clean energy conversion“. Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/232798/1/Gurpreet_Kour_Thesis.pdf.
Der volle Inhalt der QuelleBücher zum Thema "CO2 reduction catalysis"
Weichselbaumer, Melanie. Pyridine-functionalized Polymeric Catalysts for CO2-Reduction. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-10358-3.
Der volle Inhalt der QuelleWeichselbaumer, Melanie. Pyridine-functionalized Polymeric Catalysts for CO2-Reduction. Springer Spektrum, 2015.
Den vollen Inhalt der Quelle findenWeichselbaumer, Melanie. Pyridine-Functionalized Polymeric Catalysts for CO2-Reduction. Spektrum Akademischer Verlag GmbH, 2015.
Den vollen Inhalt der Quelle findenIshida, Hitoshi, Charles Machan, Marc Robert und Nobuharu Iwasawa, Hrsg. Molecular Catalysts for CO2 Fixation/Reduction. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-622-8.
Der volle Inhalt der QuelleMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Incorporated, John, 2022.
Den vollen Inhalt der Quelle findenMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Incorporated, John, 2022.
Den vollen Inhalt der Quelle findenMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Incorporated, John, 2022.
Den vollen Inhalt der Quelle findenMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Limited, John, 2021.
Den vollen Inhalt der Quelle findenPayne, Emma Kate. The synthesis and characterization of novel platinum and palladium diimene compounds for use as anticancer drugs and CO2 reduction catalyst. 2003.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "CO2 reduction catalysis"
Wilcox, Jennifer. „The Role of CO2 Reduction Catalysis in Carbon Capture“. In Carbon Capture, 245–55. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2215-0_8.
Der volle Inhalt der QuelleRisbridger, Thomas, und Ross Anderson. „Chapter 2. Bio-inspired and Bio-electrochemical Approaches in CO2 Reduction Catalysis“. In Electrochemical Reduction of Carbon Dioxide, 17–62. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781782623809-00017.
Der volle Inhalt der QuelleGan, Lu, David Jennings, Joseph Laureanti und Anne Katherine Jones. „Biomimetic Complexes for Production of Dihydrogen and Reduction of CO2“. In Homo- and Heterobimetallic Complexes in Catalysis, 233–72. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_146.
Der volle Inhalt der QuelleHaider, Mohd Belal, Mata Mani Tripathi, Zakir Hussain und Rakesh Kumar. „Potential Application of Ionic Liquids and Deep Eutectic Solvents in Reduction of Industrial CO2 Emissions“. In Catalysis for Clean Energy and Environmental Sustainability, 643–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65021-6_20.
Der volle Inhalt der QuelleSreejith, S. S., Nithya Mohan und M. R. P. Kurup. „Emergent Catalytic Materials Towards CO2 Reduction“. In Emerging Materials, 315–60. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1312-9_9.
Der volle Inhalt der QuelleLi, Yuehui, Kathrin Junge und Matthias Beller. „Zinc-Catalyzed Reductions of Unsaturated Compounds“. In Zinc Catalysis, 5–32. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675944.ch2.
Der volle Inhalt der QuelleBonincontro, Danilo, und Elsje Alessandra Quadrelli. „CO2 Reduction Reactions by Rhodium-Based Catalysts“. In Topics in Organometallic Chemistry, 263–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/3418_2016_172.
Der volle Inhalt der QuelleSubramaniam, Jeevithra Dewi, und Pei Meng Woi. „Recent Advancement of Electrocatalyst System in CO2 Reduction“. In Nano-catalysts for Energy Applications, 114–36. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003082729-7.
Der volle Inhalt der QuelleMa, Ming, und Wilson A. Smith. „Nanostructured Catalysts for the Electrochemical Reduction of CO2“. In Nanostructure Science and Technology, 337–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59662-4_11.
Der volle Inhalt der QuelleBoddu, Sanyasinaidu, S. T. Nishanthi und Kamalakannan Kailasam. „Visible-Light Heterogeneous Catalysts for Photocatalytic CO2 Reduction“. In Visible Light-Active Photocatalysis, 421–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527808175.ch15.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CO2 reduction catalysis"
Ly, Khoa Hoang. „Operando Vibrational Spectroelectrochemistry for Studying CO2 Reduction Catalysis Promoted by Molecularly-defined Electrocatalysts“. In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.223.
Der volle Inhalt der QuelleLy, Khoa Hoang. „Operando Vibrational Spectroelectrochemistry for Studying CO2 Reduction Catalysis Promoted by Molecularly-defined Electrocatalysts“. In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.223.
Der volle Inhalt der QuelleChai, Rukaun, Yuetian Liu, Qianjun Liu, Xuan He und Pingtian Fan. „Effect and Mechanism of CO2 Electrochemical Reduction for CCUS-EOR“. In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206135-ms.
Der volle Inhalt der QuelleMorita, Daiki, Yuya Kotani, Qiuyue Zu, Fuka Yoshida, Ratnak Sok und Jin Kusaka. „Acceleration of Fast-SCR Reaction by Eliminating “The Ammonia Blocking Effect”“. In CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-37-0001.
Der volle Inhalt der QuelleDomingo Tafalla, Beatriu, Tamal Chatterjee, Federico Franco und Emilio Palomares Gil. „Electro- and Photo-induced Interfacial Charge Transfers in Nanocrystalline Mesoporous TiO2 and TiO2/Iron Porphyrin Sensitized Films Under CO2 Reduction Catalysis“. In MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.109.
Der volle Inhalt der QuelleTomin, Sebastian, Uwe Wagner und Thomas Koch. „Effect of Dithering on Post-Catalyst Exhaust Gas Composition and on Short Time Regeneration of Deactivated PdO/Al <sub>2</sub> O <sub>3</sub> Catalysts under Real Engine Conditions“. In CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-37-0002.
Der volle Inhalt der QuelleBerahim, Nor Hafizah, und Akbar Abu Seman. „CO2 Utilization: Converting Waste into Valuable Products“. In SPE Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210729-ms.
Der volle Inhalt der QuelleFerreri, Paolo, Giuseppe Cerrelli, Yong Miao, Stefano Pellegrino und Lorenzo Bianchi. „Conventional and Electrically Heated Diesel Oxidation Catalyst Physical Based Modeling“. In CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-37-0010.
Der volle Inhalt der QuellePolaert, Isabelle, Bachar Alrafei, Jose Delgado-Liriano und Alain Ledoux. „Synergetic effect of microwave plasma and catalysts in CO2 methanation“. In Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9806.
Der volle Inhalt der QuelleHofstetter, Johannes, Paul Boucharel, Frank Atzler und Georg Wachtmeister. „Fuel Consumption and Emission Reduction for Hybrid Electric Vehicles with Electrically Heated Catalyst“. In CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-37-0017.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "CO2 reduction catalysis"
Badrinarayanan und Olsen. PR-179-11201-R01 Performance Evaluation of Multiple Oxidation Catalysts on a Lean Burn Natural Gas Engine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), August 2012. http://dx.doi.org/10.55274/r0010772.
Der volle Inhalt der QuelleBetley, Theodore, M. Lalonde, G. T. Sazama und A. B. Scharf. Bifunctional Catalysts for CO2 Reduction. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada610432.
Der volle Inhalt der QuelleSariciftci, Niyazi Serdar. CO2 Recycling: The Conversion of Renewable Energy into Chemical Fuels. AsiaChem Magazine, November 2020. http://dx.doi.org/10.51167/acm00011.
Der volle Inhalt der QuelleSimmons. L51814 Survey Of Dry Low NOx Combustor Experience. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), September 1999. http://dx.doi.org/10.55274/r0010207.
Der volle Inhalt der Quelle