Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „CO2 capture and conversion“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CO2 capture and conversion" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "CO2 capture and conversion"
Sullivan, Ian, Andrey Goryachev, Ibadillah A. Digdaya, Xueqian Li, Harry A. Atwater, David A. Vermaas und Chengxiang Xiang. „Coupling electrochemical CO2 conversion with CO2 capture“. Nature Catalysis 4, Nr. 11 (November 2021): 952–58. http://dx.doi.org/10.1038/s41929-021-00699-7.
Der volle Inhalt der QuelleTian, Sicong, Feng Yan, Zuotai Zhang und Jianguo Jiang. „Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency“. Science Advances 5, Nr. 4 (April 2019): eaav5077. http://dx.doi.org/10.1126/sciadv.aav5077.
Der volle Inhalt der QuelleL. de Miranda, Jussara, Luiza C. de Moura, Heitor Breno P. Ferreira und Tatiana Pereira de Abreu. „The Anthropocene and CO2: Processes of Capture and Conversion“. Revista Virtual de Química 10, Nr. 6 (2018): 1915–46. http://dx.doi.org/10.21577/1984-6835.20180123.
Der volle Inhalt der QuelleSullivan, Ian, Andrey Goryachev, Ibadillah A. Digdaya, Xueqian Li, Harry A. Atwater, David A. Vermaas und Chengxiang Xiang. „Author Correction: Coupling electrochemical CO2 conversion with CO2 capture“. Nature Catalysis 5, Nr. 1 (Januar 2022): 75–76. http://dx.doi.org/10.1038/s41929-022-00734-1.
Der volle Inhalt der QuelleZhang, Kexin, Dongfang Guo, Xiaolong Wang, Ye Qin, Lin Hu, Yujia Zhang, Ruqiang Zou und Shiwang Gao. „Sustainable CO2 management through integrated CO2 capture and conversion“. Journal of CO2 Utilization 72 (Juni 2023): 102493. http://dx.doi.org/10.1016/j.jcou.2023.102493.
Der volle Inhalt der QuelleManiam, Kranthi Kumar, Madhuri Maniam, Luis A. Diaz, Hari K. Kukreja, Athanasios I. Papadopoulos, Vikas Kumar, Panos Seferlis und Shiladitya Paul. „Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products“. Processes 11, Nr. 4 (08.04.2023): 1148. http://dx.doi.org/10.3390/pr11041148.
Der volle Inhalt der QuelleNing, Huanghao, Yongdan Li und Cuijuan Zhang. „Recent Progress in the Integration of CO2 Capture and Utilization“. Molecules 28, Nr. 11 (01.06.2023): 4500. http://dx.doi.org/10.3390/molecules28114500.
Der volle Inhalt der QuelleKafi, Maedeh, Hamidreza Sanaeepur und Abtin Ebadi Amooghin. „Grand Challenges in CO2 Capture and Conversion“. Journal of Resource Recovery 1, Nr. 2 (01.04.2023): 0. http://dx.doi.org/10.52547/jrr.2302-1007.
Der volle Inhalt der QuelleHu, Yong, Qian Xu, Yao Sheng, Xueguang Wang, Hongwei Cheng, Xingli Zou und Xionggang Lu. „The Effect of Alkali Metals (Li, Na, and K) on Ni/CaO Dual-Functional Materials for Integrated CO2 Capture and Hydrogenation“. Materials 16, Nr. 15 (02.08.2023): 5430. http://dx.doi.org/10.3390/ma16155430.
Der volle Inhalt der QuelleLiu, Lei, Chang-Ce Ke, Tian-Yi Ma und Yun-Pei Zhu. „When Carbon Meets CO2: Functional Carbon Nanostructures for CO2 Utilization“. Journal of Nanoscience and Nanotechnology 19, Nr. 6 (01.06.2019): 3148–61. http://dx.doi.org/10.1166/jnn.2019.16590.
Der volle Inhalt der QuelleDissertationen zum Thema "CO2 capture and conversion"
Brandvoll, Øyvind. „Chemical looping combustion : fuel conversion with inherent CO2 capture“. Doctoral thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1203.
Der volle Inhalt der QuelleChemical looping combustion (CLC) is a new concept for fuel energy conversion with CO2 capture. In CLC, fuel combustion is split into seperate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and suel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a varient of oxy-fuel combustion. In principle, pure CO2 can be obtained from the reduction exhaust by condensation of the produced water vapor. The termodynamic potential and feasibility of CLC has been studied by means of process simulatons and experimental studies of oxygen carriers. Process simulations have focused on parameter sensitivity studies of CLC implemented in 3 power cycles; CLC-Combined Cycle, CLC-Humid Air Turbine and CLC-Integrated Steam Generation. Simulations indicate that overall fuel conversion ratio, oxidation temperature and operating pressure are among the most imortant process parameters in CLC. A promising thermodynamic potentail of CLC has been found, with efficiencies comparable to, - or better than existing technologies for CO2 capture. The proposed oxygen carrier nickel oxide on nickel spinel (NiONiA1) has been studied in reduction with hydrogen, methane and methane/steam as well as oxidation with dry air. It has been found that at atmosphereic pressure and temperatures above 600° C, solid reduction with dry methane occurs with overall fuel conversion of 92%. Steam methane reforming is observed along with methane cracking as side reactions, yealding an overall selectivity of 90% with regard to solid reduction. If steam is added to the reactant fuel, coking can be avoided. A methodology for long term investigation of solid chemical activity in a batch reactor is proposed. The method is based on time variables for oxidaton. The results for NiONiA1 do not rule out CLC as a viable alternative for CO2 capture, but long term durability studies along with realistic testing of the carrier in a continuous rig is needed to firmly conclude. For comparative purposes a perovskite was synthesized and tested in CLC, under similar conditions as NiONiA1. The results indicate that in a moving bed CLC application, perovskites have inherent disadvantages as compared to simpler compounds, by virtue of low relative oxygen content.
Kim, Hyung Rae. „Chemical Looping Process for Direct Conversion of Solid Fuels In-Situ CO2 Capture“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250605561.
Der volle Inhalt der QuelleMARCHESE, MARCO. „Conversion of industrial CO2 to value-added fuels and chemicals via Fischer-Tropsch upgrade“. Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2914540.
Der volle Inhalt der QuelleShokouhfar, Nasrin. „Synthèse et caractérisation de nouvelles armatures métal-organique à base de zirconium à partir de ligands carboxylates et étude de leur application dans l'adsorption et la détection des pollutions de l'eau et la capture et la conversion du CO2 et N2“. Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILN058.
Der volle Inhalt der QuelleThis thesis investigates the synthesis and characterization of Zr-based metal-organic frameworks (MOFs) and their applications in water treatment and solar fuel production. MOFs are porous materials composed of metal ions and organic linkers that exhibit tuneable structures and functionalities. These properties make them suitable for various applications, such as gas storage, catalysis, sensing, drug delivery, etc.Water treatment is the process of removing contaminants from water to make it safe and clean for human use. One of the main contaminants in water are dyes, which are widely used in the textile, paper, and leather industries. Dye pollution can cause serious problems for aquatic life, human health, and aesthetic quality of water. To remove dyes from water, we synthesized a new Zr-MOF called TMU-66, which has a hollow sphere shape and an N-oxide functional group. TMU-66 can efficiently and selectively adsorb dye molecules through various interactions, such as electrostatic attraction, π-π stacking, and coordination bonding. TMU-66 exhibited and adsorption capacity of 472 mg/g for Congo red dye at pH 6.8 and 25 °C, one of the highest values achieved for MOF-based adsorbents so far.Solar fuel production is the process of converting solar energy into chemical fuels that can be stored and used later. One of the most promising fuels is ammonia (NH3), which can be produced from nitrogen (N2) and water (H2O) using sunlight as the energy source. This process is called N2 photoreduction or photocatalytic nitrogen fixation. However, this process is challenging because N2 is very stable and difficult to break apart. We modified another Zr-MOF called MOF-808 by adding a nitro group to its linker. The modified framework is able to absorb visible light and transfer electrons to N2 molecules. We also combined MOF-808/NIP with another material called g-C3N4, which can enhance light absorption and electron transfer. The resulting composite, MOF-808/NIP@g-C3N4, can produce up to 490 μmol ammonia per gram of composite per hour under visible light and ambient conditions.In summary, the objectives of this thesis work were to investigate the potential of MOFs for two distinct applications, utilizing a conceptual design approach that incorporated bandgap engineering, structure modulation, and heterojunction composite materials. The findings revealed that MOFs can absorb water impurities and function as photocatalysts to achieve ammonia production through solar-powered N2 photoreduction. This breakthrough has the potential to foster the creation of more effective and environmentally conscious technologies that tackle worldwide water pollution and ammonia production issues. These technologies are crucial in safeguarding our planet and guaranteeing a stable future
Ramkumar, Shwetha. „CALCIUM LOOPING PROCESSES FOR CARBON CAPTURE“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274882053.
Der volle Inhalt der QuelleDaza, Yolanda Andreina. „Closing a Synthetic Carbon Cycle: Carbon Dioxide Conversion to Carbon Monoxide for Liquid Fuels Synthesis“. Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6079.
Der volle Inhalt der QuelleTrompelt, Michael. „Untersuchung von Möglichkeiten zur Wirkungsgradsteigerung von braunkohlegefeuerten IGCC-Kraftwerken mit CO2-Abtrennung“. Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2015. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-158214.
Der volle Inhalt der QuelleDanaci, Simge. „Optimisation et intégration de catalyseurs structurés en réacteurs structurés pour la conversion de CO₂ en méthane“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI041/document.
Der volle Inhalt der QuelleIn this doctoral study, the three dimensional fibre deposition (3DFD) technique has been applied to develop and manufacture advanced multi-channelled catalytic support structures. By using this technique, the material, the porosity, the shape and size of the channels and the thickness of the fibres can be controlled. The aim of this research is to investigate the possible benefits of 3D-designed structured supports for CO2 methanation in terms of activity, selectivity and stability and the impact of specific properties introduced in the structural design of the supports
Zeng, Liang. „Multiscale Study of Chemical Looping Technology and Its Applications for Low Carbon Energy Conversions“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354722135.
Der volle Inhalt der QuelleOlivieri, Luca <1987>. „Polymeric membranes for CO2 capture“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7418/4/olivieri_luca_tesi.pdf.
Der volle Inhalt der QuelleBücher zum Thema "CO2 capture and conversion"
Li, Lan, Winnie Wong-Ng, Kevin Huang und Lawrence P. Cook, Hrsg. Materials and Processes for CO2 Capture, Conversion, and Sequestration. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.
Der volle Inhalt der QuelleNakao, Shin-ichi, Katsunori Yogo, Kazuya Goto, Teruhiko Kai und Hidetaka Yamada. Advanced CO2 Capture Technologies. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18858-0.
Der volle Inhalt der QuelleLiu, Helei, Raphael Idem und Paitoon Tontiwachwuthikul. Post-combustion CO2 Capture Technology. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00922-9.
Der volle Inhalt der QuelleCommission, European, Hrsg. CO2 capture and storage projects. Luxembourg: Office for Official Publications of the European Communites, 2007.
Den vollen Inhalt der Quelle findenTreviño, Martha Alejandra Arellano. A study of catalytic metals and alkaline metal oxides leading to the development of a stable Ru-doped Ni Dual Function Material for CO2 capture from flue gas and in-situ catalytic conversion to methane. [New York, N.Y.?]: [publisher not identified], 2020.
Den vollen Inhalt der Quelle findenMadeddu, Claudio, Massimiliano Errico und Roberto Baratti. CO2 Capture by Reactive Absorption-Stripping. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04579-1.
Der volle Inhalt der QuellePapadopoulos, Athanasios I., und Panos Seferlis, Hrsg. Process Systems and Materials for CO2 Capture. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119106418.
Der volle Inhalt der QuelleCarbon capture and storage: CO2 management technologies. Toronto: Apple Academic Press, 2014.
Den vollen Inhalt der Quelle findenSamadi, Jaleh, und Emmanuel Garbolino. Future of CO2 Capture, Transport and Storage Projects. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74850-4.
Der volle Inhalt der QuelleZhang, Liwei, Hrsg. Corrosion in CO2 Capture, Transportation, Geological Utilization and Storage. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2392-2.
Der volle Inhalt der QuelleBuchteile zum Thema "CO2 capture and conversion"
Bredesen, Rune, und Thijs A. Peters. „Membranes in Energy Systems with CO2 Capture“. In Membranes for Energy Conversion, 217–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. http://dx.doi.org/10.1002/9783527622146.ch7.
Der volle Inhalt der QuelleShah, Yatish T. „Plasma-Activated Catalysis for CO2 Conversion“. In CO2 Capture, Utilization, and Sequestration Strategies, 347–417. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-7.
Der volle Inhalt der QuelleShah, Yatish T. „Biological Conversion of Carbon Dioxide“. In CO2 Capture, Utilization, and Sequestration Strategies, 113–92. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-4.
Der volle Inhalt der QuelleDuan, Lunbo, und Lin Li. „OCAC for Fuel Conversion Without CO2 Capture“. In Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed, 19–63. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9127-1_3.
Der volle Inhalt der QuelleShah, Yatish T. „Carbon Dioxide Conversion Using Solar Thermal and Photo Catalytic Processes“. In CO2 Capture, Utilization, and Sequestration Strategies, 281–345. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-6.
Der volle Inhalt der QuelleSharma, Tanvi, Abhishek Sharma, Swati Sharma, Anand Giri, Ashok Kumar und Deepak Pant. „Recent Developments in CO2-Capture and Conversion Technologies“. In Chemo-Biological Systems for CO2 Utilization, 1–14. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429317187-1.
Der volle Inhalt der QuelleZhang, Peng, Jingjing Tong und Kevin Huang. „Electrochemical CO2Capture and Conversion“. In Materials and Processes for CO2 Capture, Conversion, and Sequestration, 213–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.ch5.
Der volle Inhalt der QuelleYang, Zhen-Zhen, Qing-Wen Song und Liang-Nian He. „CO2 Capture, Activation, and Subsequent Conversion with PEG“. In SpringerBriefs in Molecular Science, 71–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31268-7_6.
Der volle Inhalt der QuelleShah, Yatish T. „CO2 Conversion to Fuels and Chemicals by Thermal and Electro-Catalysis“. In CO2 Capture, Utilization, and Sequestration Strategies, 193–280. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-5.
Der volle Inhalt der QuelleAsgari, Mehrdad, und Wendy L. Queen. „Carbon Capture in Metal-Organic Frameworks“. In Materials and Processes for CO2 Capture, Conversion, and Sequestration, 1–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.ch1.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "CO2 capture and conversion"
Dasgupta, Nabankur, und Tuan HO. „CO2 capture and conversion in clay nanoconfinements.“ In Proposed for presentation at the AIChE conference held November 13-17, 2022 in Phoenix, AZ. US DOE, 2022. http://dx.doi.org/10.2172/2006052.
Der volle Inhalt der QuelleGutierrez-Sanchez, Oriol, Bert De Mot, Deepak Pant, Tom Breugelmans und Metin Bulut. „Direct Air Capture and Electrochemical Conversion of CO2“. In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.115.
Der volle Inhalt der QuelleWang, Wei-Ning. „Facile Development of Nanostructured Photocatalysts for CO2 Capture and Conversion“. In Nano-Micro Conference 2017. London: Nature Research Society, 2017. http://dx.doi.org/10.11605/cp.nmc2017.01047.
Der volle Inhalt der QuelleMiersemann, Ulrike, Matteo Loizzo und Patrick Lamy. „Evaluating Old Wells for Conversion to CO2 Injectors: Experience From the Rousse Field“. In SPE International Conference on CO2 Capture, Storage, and Utilization. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/139506-ms.
Der volle Inhalt der QuelleHernandez, Simelys, Hilmar Guzman, Federica Zammillo, Roger Miro, Alberto Lopera, Adrianna Nogalska, Maria J. Lopez-Tendero und Miriam Diaz de los Bernardos. „Scaling-up the sun-driven electrocatalytic CO2 capture and conversion to Syngas“. In MATSUS Spring 2024 Conference. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.177.
Der volle Inhalt der QuelleDesideri, Umberto, und Stefania Proietti. „CO2 Capture and Removal System for a Gas-Steam Combined Cycle“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33296.
Der volle Inhalt der QuelleKenarsari, Saeed Danaei, und Yuan Zheng. „CO2 Capture Using Calcium Oxide Applicable to In-Situ Separation of CO2 From H2 Production Processes“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62619.
Der volle Inhalt der QuelleLi, Mengran, Hugo Pieter Iglesias van Montfort, Erdem Irtem, Maryam Abdinejad, Kailun Yang, Mark Sassenburg, Siddhartha Subramanian, Joost Middelkoop und Thomas Burdyny. „Probing dominant catalytically active species for CO2 electrochemical conversion in ethanolamine capture medium“. In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.042.
Der volle Inhalt der QuelleMereu, Federico, Jayangi D. Wagaarachchige, Zulkifli Idris, Klaus-Joachim Jens und Maths Halstensen. „Response Surface Modelling to Reduce CO2 Capture Solvent Cost by Conversion of OZD to MEA“. In 64th International Conference of Scandinavian Simulation Society, SIMS 2023 Västerås, Sweden, September 25-28, 2023. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp200003.
Der volle Inhalt der QuelleZachary, Justin, und Sara Titus. „CO2 Capture and Sequestration Options: Impact on Turbo-Machinery Design“. In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50642.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "CO2 capture and conversion"
Tsouris, Costas, und Radu Custelcean. Integrated Process for Direct Air Capture of CO2 and Electrochemical Conversion to Ethanol. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2333761.
Der volle Inhalt der QuelleDagle, Robert, Jotheeswari Kothandaraman und David Heldebrant. Integrated Capture and Conversion of CO2 to Methanol (ICCCM) Process Technology - CRADA 449 (Final Report). Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1916459.
Der volle Inhalt der QuelleDagle, Robert. Simultaneous Capture and Conversion of CO2 to Methanol via a Switchable Ionic Liquid and Low-Temperature Metal Catalyst - CRADA 449. Office of Scientific and Technical Information (OSTI), Februar 2021. http://dx.doi.org/10.2172/1827784.
Der volle Inhalt der QuelleHo, M. CO2 capture from boiler exhaust gas. Cooperative Research Centre for Greenhouse Gas Technologies, Juni 2008. http://dx.doi.org/10.5341/rpt08-1024.
Der volle Inhalt der QuelleGattiker, James. Direct Air Capture of CO2 (DAC). Office of Scientific and Technical Information (OSTI), Mai 2021. http://dx.doi.org/10.2172/1782623.
Der volle Inhalt der QuelleHackett, Gregory, und Norma Kuehn. Pulverized Coal CO2 Capture Retrofit Database. Office of Scientific and Technical Information (OSTI), März 2023. http://dx.doi.org/10.2172/1968297.
Der volle Inhalt der QuelleHelen Kerr. CO2 Capture Project: An Integrated, Collaborative Technology Development Project For CO2 Separation, Capture And Geologic Sequestration. Office of Scientific and Technical Information (OSTI), Januar 2002. http://dx.doi.org/10.2172/890976.
Der volle Inhalt der QuelleHelen Kerr. CO2 Capture Project: An Integrated, Collaborative Technology Development Project For CO2 Separation, Capture And Geologic Sequestration. Office of Scientific and Technical Information (OSTI), Juli 2002. http://dx.doi.org/10.2172/890979.
Der volle Inhalt der QuelleHo, W. S. Winston, und Yang Han. FE0026919: Novel CO2-Selective Membranes for CO2 Capture from <1% CO2 Sources. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1574273.
Der volle Inhalt der QuelleGary T. Rochelle, Andrew Sexton, Jason Davis, Marcus Hilliard, Qing Xu, David Van Wagener und Jorge M. Plaza. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), März 2007. http://dx.doi.org/10.2172/907880.
Der volle Inhalt der Quelle