Auswahl der wissenschaftlichen Literatur zum Thema „CO2 capture and conversion“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "CO2 capture and conversion" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "CO2 capture and conversion"

1

Sullivan, Ian, Andrey Goryachev, Ibadillah A. Digdaya, Xueqian Li, Harry A. Atwater, David A. Vermaas und Chengxiang Xiang. „Coupling electrochemical CO2 conversion with CO2 capture“. Nature Catalysis 4, Nr. 11 (November 2021): 952–58. http://dx.doi.org/10.1038/s41929-021-00699-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Tian, Sicong, Feng Yan, Zuotai Zhang und Jianguo Jiang. „Calcium-looping reforming of methane realizes in situ CO2 utilization with improved energy efficiency“. Science Advances 5, Nr. 4 (April 2019): eaav5077. http://dx.doi.org/10.1126/sciadv.aav5077.

Der volle Inhalt der Quelle
Annotation:
Closing the anthropogenic carbon cycle is one important strategy to combat climate change, and requires the chemistry to effectively combine CO2 capture with its conversion. Here, we propose a novel in situ CO2 utilization concept, calcium-looping reforming of methane, to realize the capture and conversion of CO2 in one integrated chemical process. This process couples the calcium-looping CO2 capture and the CH4 dry reforming reactions in the CaO-Ni bifunctional sorbent-catalyst, where the CO2 captured by CaO is reduced in situ by CH4 to CO, a reaction catalyzed by catalyzed by the adjacent metallic Ni. The process coupling scheme exhibits excellent decarbonation kinetics by exploiting Le Chatelier’s principle to shift reaction equilibrium through continuous conversion of CO2, and results in an energy consumption 22% lower than that of conventional CH4 dry reforming for CO2 utilization. The proposed CO2 utilization concept offers a promising option to recycle carbon directly at large CO2 stationary sources in an energy-efficient manner.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

L. de Miranda, Jussara, Luiza C. de Moura, Heitor Breno P. Ferreira und Tatiana Pereira de Abreu. „The Anthropocene and CO2: Processes of Capture and Conversion“. Revista Virtual de Química 10, Nr. 6 (2018): 1915–46. http://dx.doi.org/10.21577/1984-6835.20180123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sullivan, Ian, Andrey Goryachev, Ibadillah A. Digdaya, Xueqian Li, Harry A. Atwater, David A. Vermaas und Chengxiang Xiang. „Author Correction: Coupling electrochemical CO2 conversion with CO2 capture“. Nature Catalysis 5, Nr. 1 (Januar 2022): 75–76. http://dx.doi.org/10.1038/s41929-022-00734-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Zhang, Kexin, Dongfang Guo, Xiaolong Wang, Ye Qin, Lin Hu, Yujia Zhang, Ruqiang Zou und Shiwang Gao. „Sustainable CO2 management through integrated CO2 capture and conversion“. Journal of CO2 Utilization 72 (Juni 2023): 102493. http://dx.doi.org/10.1016/j.jcou.2023.102493.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Maniam, Kranthi Kumar, Madhuri Maniam, Luis A. Diaz, Hari K. Kukreja, Athanasios I. Papadopoulos, Vikas Kumar, Panos Seferlis und Shiladitya Paul. „Progress in Electrodeposited Copper Catalysts for CO2 Conversion to Valuable Products“. Processes 11, Nr. 4 (08.04.2023): 1148. http://dx.doi.org/10.3390/pr11041148.

Der volle Inhalt der Quelle
Annotation:
Carbon capture, utilisation and storage (CCUS) is a key area of research for CO2 abatement. To that end, CO2 capture, transport and storage has accrued several decades of development. However, for successful implementation of CCUS, utilisation or conversion of CO2 to valuable products is important. Electrochemical conversion of the captured CO2 to desired products provides one such route. This technique requires a cathode “electrocatalyst” that could favour the desired product selectivity. Copper (Cu) is unique, the only metal “electrocatalyst” demonstrated to produce C2 products including ethylene. In order to achieve high-purity Cu deposits, electrodeposition is widely acknowledged as a straightforward, scalable and relatively inexpensive method. In this review, we discuss in detail the progress in the developments of electrodeposited copper, oxide/halide-derived copper, copper-alloy catalysts for conversion of CO2 to valuable products along with the future challenges.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ning, Huanghao, Yongdan Li und Cuijuan Zhang. „Recent Progress in the Integration of CO2 Capture and Utilization“. Molecules 28, Nr. 11 (01.06.2023): 4500. http://dx.doi.org/10.3390/molecules28114500.

Der volle Inhalt der Quelle
Annotation:
CO2 emission is deemed to be mainly responsible for global warming. To reduce CO2 emissions into the atmosphere and to use it as a carbon source, CO2 capture and its conversion into valuable chemicals is greatly desirable. To reduce the transportation cost, the integration of the capture and utilization processes is a feasible option. Here, the recent progress in the integration of CO2 capture and conversion is reviewed. The absorption, adsorption, and electrochemical separation capture processes integrated with several utilization processes, such as CO2 hydrogenation, reverse water–gas shift reaction, or dry methane reforming, is discussed in detail. The integration of capture and conversion over dual functional materials is also discussed. This review is aimed to encourage more efforts devoted to the integration of CO2 capture and utilization, and thus contribute to carbon neutrality around the world.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kafi, Maedeh, Hamidreza Sanaeepur und Abtin Ebadi Amooghin. „Grand Challenges in CO2 Capture and Conversion“. Journal of Resource Recovery 1, Nr. 2 (01.04.2023): 0. http://dx.doi.org/10.52547/jrr.2302-1007.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hu, Yong, Qian Xu, Yao Sheng, Xueguang Wang, Hongwei Cheng, Xingli Zou und Xionggang Lu. „The Effect of Alkali Metals (Li, Na, and K) on Ni/CaO Dual-Functional Materials for Integrated CO2 Capture and Hydrogenation“. Materials 16, Nr. 15 (02.08.2023): 5430. http://dx.doi.org/10.3390/ma16155430.

Der volle Inhalt der Quelle
Annotation:
Ni/CaO, a low-cost dual-functional material (DFM), has been widely studied for integrated CO2 capture and hydrogenation. The core of this dual-functional material should possess both good CO2 capture–conversion performance and structural stability. Here, we synthesized Ni/CaO DFMs modified with alkali metals (Na, K, and Li) through a combination of precipitation and combustion methods. It was found that Na-modified Ni/CaO (Na-Ni/CaO) DFM offered stable CO2 capture–conversion activity over 20 cycles, with a high CO2 capture capacity of 10.8 mmol/g and a high CO2 conversion rate of 60.5% at the same temperature of 650 °C. The enhanced CO2 capture capacity was attributed to the improved surface basicity of Na-Ni/CaO. In addition, the incorporation of Na into DFMs had a favorable effect on the formation of double salts, which shorten the CO2 capture and release process and promoted DFM stability by hindering their aggregation and the sintering of DFMs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Liu, Lei, Chang-Ce Ke, Tian-Yi Ma und Yun-Pei Zhu. „When Carbon Meets CO2: Functional Carbon Nanostructures for CO2 Utilization“. Journal of Nanoscience and Nanotechnology 19, Nr. 6 (01.06.2019): 3148–61. http://dx.doi.org/10.1166/jnn.2019.16590.

Der volle Inhalt der Quelle
Annotation:
Major fossil fuel consumption associated with CO2 emission and socioeconomic instability has received much concern within the global community regarding the long-term sustainability and security of these commodities. The capture, sequestration, and conversion of CO2 emissions from flue gas are now becoming familiar worldwide. Nanostructured carbonaceous materials with designed functionality have been extensively used in some key CO2 exploitation processes and techniques, because of their excellent electrical conductivity, chemical/mechanical stability, adjustable chemical compositions, and abundant active sites. This review focuses on a variety of carbonaceous materials, like graphene, carbon nanotubes, amorphous porous carbons and carbon hybrid composites, which have been demonstrated promising in CO2 capture/separation and conversion (electrocatalysis and photocatalysis) to produce value-added chemicals and fuels. Along with the discussion and concerning synthesis strategies, characterization and conversion and capture/separation techniques employed, we further elaborate the structure-performance relationships in terms of elucidating active sites, reaction mechanisms and kinetics improvement. Finally, challenges and future perspectives of these carbon-based materials for CO2 applications using well-structured carbons are remarked in detail.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "CO2 capture and conversion"

1

Brandvoll, Øyvind. „Chemical looping combustion : fuel conversion with inherent CO2 capture“. Doctoral thesis, Norwegian University of Science and Technology, Department of Energy and Process Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1203.

Der volle Inhalt der Quelle
Annotation:

Chemical looping combustion (CLC) is a new concept for fuel energy conversion with CO2 capture. In CLC, fuel combustion is split into seperate reduction and oxidation processes, in which a solid carrier is reduced and oxidized, respectively. The carrier is continuously recirculated between the two vessels, and hence direct contact between air and suel is avoided. As a result, a stoichiometric amount of oxygen is transferred to the fuel by a regenerable solid intermediate, and CLC is thus a varient of oxy-fuel combustion. In principle, pure CO2 can be obtained from the reduction exhaust by condensation of the produced water vapor. The termodynamic potential and feasibility of CLC has been studied by means of process simulatons and experimental studies of oxygen carriers. Process simulations have focused on parameter sensitivity studies of CLC implemented in 3 power cycles; CLC-Combined Cycle, CLC-Humid Air Turbine and CLC-Integrated Steam Generation. Simulations indicate that overall fuel conversion ratio, oxidation temperature and operating pressure are among the most imortant process parameters in CLC. A promising thermodynamic potentail of CLC has been found, with efficiencies comparable to, - or better than existing technologies for CO2 capture. The proposed oxygen carrier nickel oxide on nickel spinel (NiONiA1) has been studied in reduction with hydrogen, methane and methane/steam as well as oxidation with dry air. It has been found that at atmosphereic pressure and temperatures above 600° C, solid reduction with dry methane occurs with overall fuel conversion of 92%. Steam methane reforming is observed along with methane cracking as side reactions, yealding an overall selectivity of 90% with regard to solid reduction. If steam is added to the reactant fuel, coking can be avoided. A methodology for long term investigation of solid chemical activity in a batch reactor is proposed. The method is based on time variables for oxidaton. The results for NiONiA1 do not rule out CLC as a viable alternative for CO2 capture, but long term durability studies along with realistic testing of the carrier in a continuous rig is needed to firmly conclude. For comparative purposes a perovskite was synthesized and tested in CLC, under similar conditions as NiONiA1. The results indicate that in a moving bed CLC application, perovskites have inherent disadvantages as compared to simpler compounds, by virtue of low relative oxygen content.

APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kim, Hyung Rae. „Chemical Looping Process for Direct Conversion of Solid Fuels In-Situ CO2 Capture“. The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1250605561.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

MARCHESE, MARCO. „Conversion of industrial CO2 to value-added fuels and chemicals via Fischer-Tropsch upgrade“. Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2914540.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shokouhfar, Nasrin. „Synthèse et caractérisation de nouvelles armatures métal-organique à base de zirconium à partir de ligands carboxylates et étude de leur application dans l'adsorption et la détection des pollutions de l'eau et la capture et la conversion du CO2 et N2“. Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILN058.

Der volle Inhalt der Quelle
Annotation:
Cette thèse porte sur la synthèse et la caractérisation de cadres métallo-organiques (MOF) à base de Zr et leurs applications dans le traitement de l'eau et la production de carburant solaire. Les MOF sont des matériaux poreux composés d'ions métalliques et d'éléments de liaison organiques qui présentent des structures et des fonctionnalités ajustables. Ces propriétés les rendent aptes pour diverses applications, telles que le stockage de gaz, la catalyse, la détection, l'administration de médicaments, etc.Le traitement de l'eau consiste à éliminer les contaminants de l'eau afin de la rendre propre et sans danger pour l'homme. L'un des principaux contaminants de l'eau sont les colorants, largement utilisé dans les industries du textile, du papier et du cuir. La pollution par les colorants peut entraîner de graves problèmes pour la vie aquatique, la santé humaine et la qualité esthétique de l'eau. Pour éliminer les colorants de l'eau, nous avons synthétisé un nouveau Zr-MOF appelé TMU-66, qui a une forme de sphère creuse et un groupe fonctionnel N-oxyde. TMU-66 peut adsorber efficacement et sélectivement les molécules de colorant par le biais de diverses interactions, telles que les interactions électrostatiques, l'empilement π-π et la liaison de coordination. TMU-66 a présenté une capacité d'adsorption de 472 mg/g pour le colorant rouge Congo à un pH de 6,8 et à 25 °C, une des valeurs les plus élevées obtenues jusqu'à présent pour des adsorbants à base de MOF.La production de combustibles solaires est le processus de conversion de l'énergie solaire en combustibles chimiques qui peuvent être stockés et utilisés ultérieurement. L'un des carburants les plus prometteurs est l'ammoniac (NH3), qui peut être produit à partir d'azote (N2) et d'eau (H2O) en utilisant l'irradiation solaire comme source d'énergie. Ce processus est appelé photoréduction de N2 ou fixation photocatalytique de l'azote. Cependant, ce processus est difficile car N2 est très stable et difficile à décomposer. Nous avons modifié un autre Zr-MOF, appelé MOF-808, en introduisant un groupe nitro dans le linker organique. Cette structure modifiée peut absorber la lumière visible et transférer des électrons aux molécules de N2. Nous avons également combiné le MOF-808/NIP avec un autre matériau, le g-C3N4, pour améliorer l'absorption de la lumière et le transfert d'électrons. Le composite ainsi obtenue, MOF-808/NIP@g-C3N4, peut produire jusqu'à 490 μmol d'ammoniac par gramme de composite et par heure sous irradiation visible.En résumé, les objectifs de ce travail de thèse étaient d'étudier le potentiel des MOF pour deux applications distinctes, en utilisant une approche conceptuelle qui intègre l'ingénierie de la bande interdite, la modulation de la structure et les matériaux composites à hétérojonction. Les résultats ont révélé que les MOF peuvent adsorber les impuretés de l'eau et fonctionner comme des photocatalyseurs pour produire de l'ammoniac grâce à la photoréduction de N2 sous irradiation visible. Les résultats obtenus ouvrent des perspectives très intéressantes dans le domaine de traitement de l'eau polluée et de production d'ammoniac. Ces technologies sont cruciales pour sauvegarder notre planète et garantir un avenir stable
This thesis investigates the synthesis and characterization of Zr-based metal-organic frameworks (MOFs) and their applications in water treatment and solar fuel production. MOFs are porous materials composed of metal ions and organic linkers that exhibit tuneable structures and functionalities. These properties make them suitable for various applications, such as gas storage, catalysis, sensing, drug delivery, etc.Water treatment is the process of removing contaminants from water to make it safe and clean for human use. One of the main contaminants in water are dyes, which are widely used in the textile, paper, and leather industries. Dye pollution can cause serious problems for aquatic life, human health, and aesthetic quality of water. To remove dyes from water, we synthesized a new Zr-MOF called TMU-66, which has a hollow sphere shape and an N-oxide functional group. TMU-66 can efficiently and selectively adsorb dye molecules through various interactions, such as electrostatic attraction, π-π stacking, and coordination bonding. TMU-66 exhibited and adsorption capacity of 472 mg/g for Congo red dye at pH 6.8 and 25 °C, one of the highest values achieved for MOF-based adsorbents so far.Solar fuel production is the process of converting solar energy into chemical fuels that can be stored and used later. One of the most promising fuels is ammonia (NH3), which can be produced from nitrogen (N2) and water (H2O) using sunlight as the energy source. This process is called N2 photoreduction or photocatalytic nitrogen fixation. However, this process is challenging because N2 is very stable and difficult to break apart. We modified another Zr-MOF called MOF-808 by adding a nitro group to its linker. The modified framework is able to absorb visible light and transfer electrons to N2 molecules. We also combined MOF-808/NIP with another material called g-C3N4, which can enhance light absorption and electron transfer. The resulting composite, MOF-808/NIP@g-C3N4, can produce up to 490 μmol ammonia per gram of composite per hour under visible light and ambient conditions.In summary, the objectives of this thesis work were to investigate the potential of MOFs for two distinct applications, utilizing a conceptual design approach that incorporated bandgap engineering, structure modulation, and heterojunction composite materials. The findings revealed that MOFs can absorb water impurities and function as photocatalysts to achieve ammonia production through solar-powered N2 photoreduction. This breakthrough has the potential to foster the creation of more effective and environmentally conscious technologies that tackle worldwide water pollution and ammonia production issues. These technologies are crucial in safeguarding our planet and guaranteeing a stable future
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ramkumar, Shwetha. „CALCIUM LOOPING PROCESSES FOR CARBON CAPTURE“. The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274882053.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Daza, Yolanda Andreina. „Closing a Synthetic Carbon Cycle: Carbon Dioxide Conversion to Carbon Monoxide for Liquid Fuels Synthesis“. Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6079.

Der volle Inhalt der Quelle
Annotation:
CO2 global emissions exceed 30 Giga tonnes (Gt) per year, and the high atmospheric concentrations are detrimental to the environment. In spite of efforts to decrease emissions by sequestration (carbon capture and storage) and repurposing (use in fine chemicals synthesis and oil extraction), more than 98% of CO2 generated is released to the atmosphere. With emissions expected to increase, transforming CO2 to chemicals of high demand could be an alternative to decrease its atmospheric concentration. Transportation fuels represent 26% of the global energy consumption, making it an ideal end product that could match the scale of CO2 generation. The long-term goal of the study is to transform CO2 to liquid fuels closing a synthetic carbon cycle. Synthetic fuels, such as diesel and gasoline, can be produced from syngas (a combination of CO and H2) by Fischer Tropsch synthesis or methanol synthesis, respectively. Methanol can be turned into gasoline by MTO technologies. Technologies to make renewable hydrogen are already in existence, but CO is almost exclusively generated from methane. Due to the high stability of the CO2 molecule, its transformation is very energy intensive. Therefore, the current challenge is developing technologies for the conversion of CO2 to CO with a low energy requirement. The work in this dissertation describes the development of a recyclable, isothermal, low-temperature process for the conversion of CO2 to CO with high selectivity, called Reverse Water Gas Shift Chemical Looping (RWGS-CL). In this process, H2 is used to generate oxygen vacancies in a metal oxide bed. These vacancies then can be re-filled by one O atom from CO2, producing CO. Perovskites (ABO3) were used as the oxide material due to their high oxygen mobility and stability. They were synthesized by the Pechini sol-gel synthesis, and characterized with X-ray diffraction and surface area measurements. Mass spectrometry was used to evaluate the reducibility and re-oxidation abilities of the materials with temperature-programmed reduction and oxidation experiments. Cycles of RWGS-CL were performed in a packed bed reactor to study CO production rates. Different metal compositions on the A and B site of the oxide were tested. In all the studies, La and Sr were used on the A site because their combination is known to enhance oxygen vacancies formation and CO2 adsorption on the perovskites. The RWGS-CL was first demonstrated in a non-isothermal process at 500 °C for the H2-reduction and 850 °C for the CO2 conversion on a Co-based perovskite. This perovskite was too unstable for the H2 treatment. Addition of Fe to the perovskite enhanced its stability, and allowed for an isothermal and recyclable process at 550 °C with high selectivity towards CO. In an effort to decrease the operating temperature, Cu was incorporated to the structure. It was found that Cu addition inhibited CO formation and formed very unstable oxide materials. Preliminary studies show that application of this technology has the potential to significantly reduce CO2 emissions from captured flue gases (i.e. from power plants) or from concentrated CO2 (adsorbed from the atmosphere), while generating a high value chemical. This technology also has possible applications in space explorations, especially in environments like Mars atmosphere, which has high concentrations of atmospheric carbon dioxide.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Trompelt, Michael. „Untersuchung von Möglichkeiten zur Wirkungsgradsteigerung von braunkohlegefeuerten IGCC-Kraftwerken mit CO2-Abtrennung“. Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2015. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-158214.

Der volle Inhalt der Quelle
Annotation:
Mit der Arbeit werden braunkohlegefeuerte IGCC-CCS-Kraftwerke gesamtheitlich beschrieben, deren Potenziale erarbeitet und mit ASPEN Plus™ sowie EBSILON® Professional simulativ abgebildet. Es kann gezeigt werden, dass ausgehend von Basiskonzepten braunkohlegefeuerter IGCC-CCS-Kraftwerke mit verschiedenen Potenzialen zum gegenwärtigen Stand der Technik sowie dem im Jahr 2025 Wirkungsgradsteigerungen sowie prozesstechnische Vereinfachungen möglich sind. Als Potenziale werden dabei verringerte Braunkohletrocknung, konservativere Annahmen der technologischen Auslegung als auch Modifizierungen der CO-Konvertierung, sowie für das Jahr 2025 konservative Annahmen und innovative Potenziale untersucht. Ausgangspunkt bildet eine Analyse von bestehenden und zukünftig erwarteten Prozesskomponenten braunkohlegefeuerter IGCC-CCS-Kraftwerke unter Berücksichtigung von drei unterschiedlichen Vergasungsverfahren (nach Siemens, nach Shell und dem HTW-Verfahren).
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Danaci, Simge. „Optimisation et intégration de catalyseurs structurés en réacteurs structurés pour la conversion de CO₂ en méthane“. Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI041/document.

Der volle Inhalt der Quelle
Annotation:
Dans cette étude de doctorat, la technique de dépôt tridimensionnel de fibres (3DFD) a été appliquée pour développer et fabriquer des structures de support catalytique multi-canaux avancées. En utilisant cette technique, le matériau, la porosité, la forme et la taille des canaux et l'épaisseur des fibres peuvent être contrôlées. L'objectif de cette recherche est d'étudier les performances des supports structurés 3D conçus pour la méthanation du CO2 en termes d'activité, de sélectivité de stabilité et d’étudier l'impact des propriétés spécifiques introduites dans la conception structurale des supports
In this doctoral study, the three dimensional fibre deposition (3DFD) technique has been applied to develop and manufacture advanced multi-channelled catalytic support structures. By using this technique, the material, the porosity, the shape and size of the channels and the thickness of the fibres can be controlled. The aim of this research is to investigate the possible benefits of 3D-designed structured supports for CO2 methanation in terms of activity, selectivity and stability and the impact of specific properties introduced in the structural design of the supports
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zeng, Liang. „Multiscale Study of Chemical Looping Technology and Its Applications for Low Carbon Energy Conversions“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354722135.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Olivieri, Luca <1987&gt. „Polymeric membranes for CO2 capture“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7418/4/olivieri_luca_tesi.pdf.

Der volle Inhalt der Quelle
Annotation:
The object of this PhD work is the study of innovative, composite and nanostructured polymeric materials for membrane-based separation and removal of CO2 from gaseous streams. The research on gas separation membranes, in the last two decades was largely devoted to the synthesis and fabrication of new, multiphasic materials, such as copolymers, composite materials bearing fillers dispersed in the polymeric matrix, or functionalized materials having selective functional groups attached to the polymer backbone. The materials investigated in this thesis can be divided in three classes: copolyetherimides: copolymers formed by a glassy polyimide phase, composite membranes, commonly defined as Mixed Matrix Membranes, functionalized materials obtained by chemically attaching amine moieties to a polymeric backbone for the instauration, in appropriate operative conditions, of the facilitated transport mechanism of CO2. All the above materials have the advantage that their transport properties, in terms of solubility, diffusivity and thus of gas permeability and selectivity, can be tuned and adjusted for the practical purpose. To this end, in this work, an experimental campaign devoted to the measurement of transport properties will be supported by a modeling approach on the continuous scale, for better understanding mass transport properties and the influence of material formulation on them, and develop easily accessible models for the prediction of materials behavior.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "CO2 capture and conversion"

1

Li, Lan, Winnie Wong-Ng, Kevin Huang und Lawrence P. Cook, Hrsg. Materials and Processes for CO2 Capture, Conversion, and Sequestration. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Nakao, Shin-ichi, Katsunori Yogo, Kazuya Goto, Teruhiko Kai und Hidetaka Yamada. Advanced CO2 Capture Technologies. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18858-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Liu, Helei, Raphael Idem und Paitoon Tontiwachwuthikul. Post-combustion CO2 Capture Technology. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-00922-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Commission, European, Hrsg. CO2 capture and storage projects. Luxembourg: Office for Official Publications of the European Communites, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Treviño, Martha Alejandra Arellano. A study of catalytic metals and alkaline metal oxides leading to the development of a stable Ru-doped Ni Dual Function Material for CO2 capture from flue gas and in-situ catalytic conversion to methane. [New York, N.Y.?]: [publisher not identified], 2020.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Madeddu, Claudio, Massimiliano Errico und Roberto Baratti. CO2 Capture by Reactive Absorption-Stripping. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-04579-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Papadopoulos, Athanasios I., und Panos Seferlis, Hrsg. Process Systems and Materials for CO2 Capture. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119106418.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Carbon capture and storage: CO2 management technologies. Toronto: Apple Academic Press, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Samadi, Jaleh, und Emmanuel Garbolino. Future of CO2 Capture, Transport and Storage Projects. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74850-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zhang, Liwei, Hrsg. Corrosion in CO2 Capture, Transportation, Geological Utilization and Storage. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2392-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "CO2 capture and conversion"

1

Bredesen, Rune, und Thijs A. Peters. „Membranes in Energy Systems with CO2 Capture“. In Membranes for Energy Conversion, 217–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. http://dx.doi.org/10.1002/9783527622146.ch7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Shah, Yatish T. „Plasma-Activated Catalysis for CO2 Conversion“. In CO2 Capture, Utilization, and Sequestration Strategies, 347–417. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Shah, Yatish T. „Biological Conversion of Carbon Dioxide“. In CO2 Capture, Utilization, and Sequestration Strategies, 113–92. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Duan, Lunbo, und Lin Li. „OCAC for Fuel Conversion Without CO2 Capture“. In Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed, 19–63. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-9127-1_3.

Der volle Inhalt der Quelle
Annotation:
AbstractAs a new concept, oxygen carrier aided combustion (OCAC) technology proposed in 2013 by Chalmers University of Technology’s group, can alleviate the problem of uneven distribution of oxygen in the reactors. In the past 10 years,various research institutions, including Chalmers University of Technology, University of Cambridge, Tsinghua University, Friedrich-Alexander University and University of Nottingham, have conducted a series of studies on OCAC technology. It is worth mentioning that Chalmers University of Technology has complied with most of these studies from laboratory to industry scales. In particular, they carried out a serious of semi-industrial scale experiments in the 12 MWthCFB boiler, which is well-known research boiler. OCAC technology is comprehensively introduced from six aspects: combustion characteristics, NOx/SOx emission, ash-related issues, aging of oxygen carrier, oxygen carrier recovery and physicochemical characteristics of oxygen carrier. In this chapter, allsummarized studies were performed under traditional air-combustion conditions without much consideration of CO2 capture.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Shah, Yatish T. „Carbon Dioxide Conversion Using Solar Thermal and Photo Catalytic Processes“. In CO2 Capture, Utilization, and Sequestration Strategies, 281–345. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Sharma, Tanvi, Abhishek Sharma, Swati Sharma, Anand Giri, Ashok Kumar und Deepak Pant. „Recent Developments in CO2-Capture and Conversion Technologies“. In Chemo-Biological Systems for CO2 Utilization, 1–14. First edition. | Boca Raton, FL : CRC Press, 2020.: CRC Press, 2020. http://dx.doi.org/10.1201/9780429317187-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Zhang, Peng, Jingjing Tong und Kevin Huang. „Electrochemical CO2Capture and Conversion“. In Materials and Processes for CO2 Capture, Conversion, and Sequestration, 213–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.ch5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Yang, Zhen-Zhen, Qing-Wen Song und Liang-Nian He. „CO2 Capture, Activation, and Subsequent Conversion with PEG“. In SpringerBriefs in Molecular Science, 71–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31268-7_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Shah, Yatish T. „CO2 Conversion to Fuels and Chemicals by Thermal and Electro-Catalysis“. In CO2 Capture, Utilization, and Sequestration Strategies, 193–280. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003229575-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Asgari, Mehrdad, und Wendy L. Queen. „Carbon Capture in Metal-Organic Frameworks“. In Materials and Processes for CO2 Capture, Conversion, and Sequestration, 1–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119231059.ch1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "CO2 capture and conversion"

1

Dasgupta, Nabankur, und Tuan HO. „CO2 capture and conversion in clay nanoconfinements.“ In Proposed for presentation at the AIChE conference held November 13-17, 2022 in Phoenix, AZ. US DOE, 2022. http://dx.doi.org/10.2172/2006052.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gutierrez-Sanchez, Oriol, Bert De Mot, Deepak Pant, Tom Breugelmans und Metin Bulut. „Direct Air Capture and Electrochemical Conversion of CO2“. In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.115.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Wang, Wei-Ning. „Facile Development of Nanostructured Photocatalysts for CO2 Capture and Conversion“. In Nano-Micro Conference 2017. London: Nature Research Society, 2017. http://dx.doi.org/10.11605/cp.nmc2017.01047.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Miersemann, Ulrike, Matteo Loizzo und Patrick Lamy. „Evaluating Old Wells for Conversion to CO2 Injectors: Experience From the Rousse Field“. In SPE International Conference on CO2 Capture, Storage, and Utilization. Society of Petroleum Engineers, 2010. http://dx.doi.org/10.2118/139506-ms.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Hernandez, Simelys, Hilmar Guzman, Federica Zammillo, Roger Miro, Alberto Lopera, Adrianna Nogalska, Maria J. Lopez-Tendero und Miriam Diaz de los Bernardos. „Scaling-up the sun-driven electrocatalytic CO2 capture and conversion to Syngas“. In MATSUS Spring 2024 Conference. València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.177.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Desideri, Umberto, und Stefania Proietti. „CO2 Capture and Removal System for a Gas-Steam Combined Cycle“. In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-33296.

Der volle Inhalt der Quelle
Annotation:
This paper presents the study of a natural gas fired power cycle which includes a carbon dioxide capture plant based on an absorption and scrubbing system. The interest in this integration is due to the widespread use of combined cycles in the power generation sector because of their high energy conversion efficiency. Energy consumption of the capture and removal system and its influence on the energetic performance of the power plant have been calculated. Mass and heat balance calculations are carried out by using the software tools GateCycle for the combined cycle and Aspen+ Software for the absorption process. Results of plant performance calculations, including compression of the captured carbon dioxide, are presented. The results, compared to the combined cycle power plant with no carbon dioxide capture, have also been compared to the more commonly known carbon dioxide capture process based on atmospheric absorption with MEA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kenarsari, Saeed Danaei, und Yuan Zheng. „CO2 Capture Using Calcium Oxide Applicable to In-Situ Separation of CO2 From H2 Production Processes“. In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62619.

Der volle Inhalt der Quelle
Annotation:
A lab-scale CO2 capture system is designed, fabricated, and tested for performing CO2 capture via carbonation of very fine calcium oxide (CaO) with particle size in micrometers. This system includes a fixed-bed reactor made of stainless steel (12.7 mm in diameter and 76.2 mm long) packed with calcium oxide particles dispersed in sand particles; heated and maintained at a certain temperature (500–550°C) during each experiment. The pressure along the reactor can be kept constant using a back pressure regulator. The conditions of the tests are relevant to separation of CO2 from combustion/gasification flue gases and in-situ CO2 capture process. The inlet flow, 1% CO2 and 99% N2, goes through the reactor at the flow rate of 150 mL/min (at standard conditions). The CO2 percentage of the outlet gas is monitored and recorded by a portable CO2 analyzer. Using the outlet composition, the conversion of calcium oxide is figured and employed to develop the kinetics model. The results indicate that the rates of carbonation reactions considerably increase with raising the temperature from 500°C to 550°C. The conversion rates of CaO-carbonation are well fitted to a shrinking core model which combines chemical reaction controlled and diffusion controlled models.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Li, Mengran, Hugo Pieter Iglesias van Montfort, Erdem Irtem, Maryam Abdinejad, Kailun Yang, Mark Sassenburg, Siddhartha Subramanian, Joost Middelkoop und Thomas Burdyny. „Probing dominant catalytically active species for CO2 electrochemical conversion in ethanolamine capture medium“. In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.042.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Mereu, Federico, Jayangi D. Wagaarachchige, Zulkifli Idris, Klaus-Joachim Jens und Maths Halstensen. „Response Surface Modelling to Reduce CO2 Capture Solvent Cost by Conversion of OZD to MEA“. In 64th International Conference of Scandinavian Simulation Society, SIMS 2023 Västerås, Sweden, September 25-28, 2023. Linköping University Electronic Press, 2023. http://dx.doi.org/10.3384/ecp200003.

Der volle Inhalt der Quelle
Annotation:
The increasing CO2 concentration in the atmosphere is the most urgent global challenge. The most mature CO2 abatement option is post-combustion CO2 capture employing Monoethanolamine (MEA) solvent. One challenge of using MEA is its in-service degradation to 2-oxazolidinone (OZD), a heterocyclic five-membered organic ring compound. Furthermore, OZD degrades more MEA leading to CO2 capture solvent loss and hence increased operational cost. It is therefore of interest to investigate methods to convert OZD back to MEA. This work reports the conversion of 2-oxazolidinone to MEA by heat treatment at an alkaline condition. Raman spectroscopy and Ion-Exchange chromatography were applied to qualify and quantify the reaction. The optimal reaction parameters were identified by an experimental design model using the Response Surface Methodology (RSM). A second-order model with three variables and five levels of focus was employed, with the OZD conversion percentage as the response. This methodology was chosen because such a model could estimate the main effects, interactions and quadratic terms by relying on a relatively small number of experiments. 17 experimental runs were designed by the software using this method. At a reaction time of 35 minutes, reaction temperature of 100°C, and 2.5 mole of hydroxide per mole of OZD resulted in a complete conversion of OZD to MEA.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zachary, Justin, und Sara Titus. „CO2 Capture and Sequestration Options: Impact on Turbo-Machinery Design“. In ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-50642.

Der volle Inhalt der Quelle
Annotation:
In the present climate of uncertainty about CO2 emissions legislation, owners and power plant planners are looking into the possibility of accommodating “add on” carbon capture and sequestration (CCS) solutions in their current plant designs. The variety of CCS technologies currently under development makes it a very challenging task. This paper initially discusses the more mature post-combustion CCS technologies, such as chemical absorption, and the associated equipment requirements in terms of layout, integration within the generating plant, and auxiliary power consumption. The analysis addresses both supercritical coal-fired as well as combined cycle plants. Plant configuration details and various operational scenarios are evaluated. The issues related to balance-of-plant systems, including water treatment, availability and redundancy criteria, are also offered. Continuing the paper presents a number of options for pre-combustion processes such as oxy-fuel combustion and integrated gasification combined cycle (IGCC) water-shift CO conversion to CO2. The impacts of several processes that only partially capture carbon are also evaluated from an engineering, procurement, and construction (EPC) contractor’s perspective as plant designer and integrator. Finally, the paper presents several examples of studies in development by Bechtel where a neutral but proactive technical approach was applied to achieve the best and most cost-effective solution.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "CO2 capture and conversion"

1

Tsouris, Costas, und Radu Custelcean. Integrated Process for Direct Air Capture of CO2 and Electrochemical Conversion to Ethanol. Office of Scientific and Technical Information (OSTI), April 2024. http://dx.doi.org/10.2172/2333761.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Dagle, Robert, Jotheeswari Kothandaraman und David Heldebrant. Integrated Capture and Conversion of CO2 to Methanol (ICCCM) Process Technology - CRADA 449 (Final Report). Office of Scientific and Technical Information (OSTI), November 2022. http://dx.doi.org/10.2172/1916459.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Dagle, Robert. Simultaneous Capture and Conversion of CO2 to Methanol via a Switchable Ionic Liquid and Low-Temperature Metal Catalyst - CRADA 449. Office of Scientific and Technical Information (OSTI), Februar 2021. http://dx.doi.org/10.2172/1827784.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Ho, M. CO2 capture from boiler exhaust gas. Cooperative Research Centre for Greenhouse Gas Technologies, Juni 2008. http://dx.doi.org/10.5341/rpt08-1024.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Gattiker, James. Direct Air Capture of CO2 (DAC). Office of Scientific and Technical Information (OSTI), Mai 2021. http://dx.doi.org/10.2172/1782623.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hackett, Gregory, und Norma Kuehn. Pulverized Coal CO2 Capture Retrofit Database. Office of Scientific and Technical Information (OSTI), März 2023. http://dx.doi.org/10.2172/1968297.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Helen Kerr. CO2 Capture Project: An Integrated, Collaborative Technology Development Project For CO2 Separation, Capture And Geologic Sequestration. Office of Scientific and Technical Information (OSTI), Januar 2002. http://dx.doi.org/10.2172/890976.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Helen Kerr. CO2 Capture Project: An Integrated, Collaborative Technology Development Project For CO2 Separation, Capture And Geologic Sequestration. Office of Scientific and Technical Information (OSTI), Juli 2002. http://dx.doi.org/10.2172/890979.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Ho, W. S. Winston, und Yang Han. FE0026919: Novel CO2-Selective Membranes for CO2 Capture from <1% CO2 Sources. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1574273.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Gary T. Rochelle, Andrew Sexton, Jason Davis, Marcus Hilliard, Qing Xu, David Van Wagener und Jorge M. Plaza. CO2 Capture by Absorption with Potassium Carbonate. Office of Scientific and Technical Information (OSTI), März 2007. http://dx.doi.org/10.2172/907880.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie